Annual presentation for the first year of PhD Nanoscience.

SCUOLA NORMALE SUPERIORI PISA

Presented by- Ayush Tyagi

Supervisor- Dr. Camilla Coletti

Attended courses during first year of PhD.

RELAZIONE ATTIVITA' ANNUALE DEI PERFEZIONANDI/DOTTORANDI – PRIMO ANNO REPORT ON THE PHD ACTIVITY – FIRST YEAR

NOME E COGNOME	AYUSH TYAGI
NAME AND SURNAME	
DISCIPLINA/PHD COURSE	NANOSCIENCE

CORSI FREQUENTATI CON SOSTENIMENTO DI ESAME FINALE	VOTAZIONE	NUMERO
ATTENDED COURSES (WITH FINAL EXAM)	RIPORTATA	DI ORE
	MARK	HOURS
Introductory Quantum Physics	28/30	40
Nanostructured Materials	26/30	40
Condensed Matter Physics	28/30	50

CORSI FREQUENTATI SENZA SOSTENIMENTO DI ESAME FINALE ATTENDED COURSES (ATTENDANCE ONLY)	
Italian Language (Intensive Course)	10
Training course on health and safety	8

Information About Stages.

- A. Semiconductor based nanowires. (with F. Rosella and Domenic Prete)
- Device fabrication and characterization of III-V (InAs) based suspended nanowires.
- Quantum transport measurements at nanoscale.
- Thermal conductivity measurement using 3ω-method.

- B. Manipulation of colloidal nanostructures for clinical and industrial application . (with Valerio Voliani, D. Cassano and G. Giannone)
 - Learned basic production procedure for noble metal nanomaterials in liquid solution.
 - AuSi based standard nanoparticles preparation.

PhD Thesis Topic

"Tailoring electrical properties of Graphene using organic polymers."

Graphene

- 2D layered allotrope of carbon.
- High electron mobility (~50000cm²/Vs), high Young's modulus (1TPa) and much higher thermal conductivity (>5000Wm⁻¹K⁻¹) as compare to other carbon structures.

Source-http://condensedconcepts.blogspot.com

Why organic polymer?

- 2D polymers can be considered in metal organic framework, e.g., Cu-BHT([Cu₃(C₆S₆)]n which are conducting.
- The objective will be to see the modification in electrical properties of Graphene by depositing these 2D organic polymers on top.

Experimental Procedure

- Synthesis of graphene using CVD
- Polymer deposition using spin coating.

(B)

• Chemical, structural and electrical characterizations will be done by using RAMAN, AFM, STM, Four probe measurement etc. while for device fabrication EBL will be used.

Trainings attended during the first year-

- RAMAN, STM and AFM.
- Clean room general training which includes use of spinner, O₂ plasma etching, optical microscope and wet bench.

RAMAN

References

- A two-dimensional pi–d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behavior Xing Huang1, Peng Sheng1, Zeyi Tu1, Fengjiao Zhang1, Junhua Wang, doi: 10.1038/ncomms8408.
- Challenge of rubber/graphene composites aiming at real application, Zhijun Yang, Baochun Guo, Liqun Zhang, rubber chemistry and technology, Vol. 90, No. 2, pp. 225–237 (2017).
- http://condensedconcepts.blogspot.com

THANK YOU!