

Cortical excitability in a conditional model of PCDH19 Epilepsy

Didi Lamers, PhD student biophysics Scuola Normale Superiore Roberta Mezzena, Dr. Silvia Landi, Dr. Gian Michele Ratto

Progress

Courses Scuola Normale Superiore	Conferences and Summer Schools
Introductory Quantum Physics	Neuroscience School of Advanced Studies: Sleep and Cognition
Fundamentals of Biophysics at the Nanoscale	World Conference on PCDH19 - 4th edition
Biophysical Principles of Neuroscience	OIST Computational Neuroscience Course
Ciclo di Seminari - Scienze Biofisiche	Gordon Research Conference: Inhibition in the CNS
Italian language courses A1 (intensive short course) and B1 at CLI	

Paper

Perineuronal nets control visual input via thalamic recruitment of cortical PV interneurons *Faini G, Aguirre A, Landi S, Lamers D, Pizzorusso T, Ratto G M, Deleuze C, Bacci A.* eLife 2018;7:e41520

PCDH19 Epilepsy

* Second most clinically relevant genetic cause of epilepsy

Seizure onset in early infancy

Frequently associated with ID and ASD

Caused by mutations in X-Chromosomal gene PCDH19

* Heterozygous females affected, or males with mosaic mutation

PCDH19 Epilepsy

* Second most clinically relevant genetic cause of epilepsy

* Seizure onset in early infancy

* Frequently associated with ID and ASD

Caused by mutations in X-Chromosomal gene PCDH19

* Heterozygous females affected, or males with mosaic mutation

Virtually nothing known about PCDH19 or how its mosaic expression could cause epilepsy, ID, and ASD

Our aim: using in vivo electrophysiology and 2p-imaging in a novel PCDH19 mouse model to investigate how mosaic PCDH19 expression affects computation

PCDH19 mosaicism in a conditional mouse model

In collaboration with Maria Passafaro and Silvia Bassani, CNR Milan

PCDH19 mosaicism in a conditional mouse model

In collaboration with Maria Passafaro and Silvia Bassani, CNR Milan

Mosaic PCDH19 expression

PCDH19 mosaicism increases mortality in adolescence

Mantel-Cox (Log-rank) test: P = 0.0062, N = 70 mosaics, N = 48 controls

PCDH19 mosaicism increases mortality in adolescence

Mantel-Cox (Log-rank) test: P = 0.0062, N = 70 mosaics, N = 48 controls

Local Field Potential Recordings

At least 30 days after injection

LFP recordings in anesthetized mice of baseline activity in layer 2/3 of the visual cortex in Cre-injected and control hemispheres

Slow Wave Activity in a control mouse

Signs of hyperexcitability: β oscillations

Band-pass filtered signal at 0.5-4 Hz Band-pass filtered signal at 9-25 Hz

Signs of hyperexcitability: β oscillations

 Epileptiform activity spreads from the mosaic patch (the likely induction site) to the opposite hemisphere

 Our mouse model can be useful to study aberrant network activity in PCDH19 Epilepsy

Disrupted Slow Wave Activity

Disrupted Slow Wave Activity

How to explain disrupted SWA?

Reduction in slope hints at less connected network

How to explain disrupted SWA?

How to explain disrupted SWA?

In agreement with a reduced network strength: reduced firing and network synchronization

But: what about the transient episodes of hyperexcitability?

30 µm

30 µm

On average higher activity in mosaic animals, but also a larger variance of activity

Increase from 6.3% (control green) to 28.3% (treated green) of hyperactive cells (> 4 transients per minute, Busche et al. Science 2008)

EGFP/EGFP-Cre positive cell
EGFP/EGFP-Cre negative cell

Mosaic animals have a reduced synchronicity to slow waves.

Mosaic animals have a reduced synchronicity to slow waves.

Animals with ' β oscillations' have a significantly higher synchronized activity than other mosaic animals

Conclusions

Our mouse model displays signs of hyperexcitability

* SWA is disrupted in a mosaic PCDH19 brain

* PCDH19 is not merely a developmental disease

* Mosaic network less synchronized and with a larger variation of activity?

Thank you!

Roberta Mezzena, Silvia Landi, Maria Passafaro, Silvia Bassani, Gian Michele Ratto