

Università degli Studi di Milano

Highlights from the Saclay workshop "Ultimate precision at hadron colliders"

Alessandro Vicini University of Milano, INFN Milano

Pisa, February 7th 2020

Schedule of the workshop

first week: PDF

EW precision measurements low-energy observables

WEDNESDAY, 27 NOVEMBER

Break

Lunch

second week: Higgs and high-energy probes global interpretation

Measurement of m_W : experimental and theoretical requirements

Measurement of $\sin^2 \theta$: experimental and theoretical requirements

Speaker: Mauro Chiesa (University of Würzburg)

Chiesa_orsay.pdf

Discussion

()

9:00 → 11:00 Measurements of EW precision observables

A wmass.pdf

Measurements of EW precision observables

🔑 Mixing_angle-Bode..

Speaker: Arie Bodek (University of Rochester (US))

Speaker: Stefano Camarda (CERN)

London (GB))

10:00

London (GB))

11:30

4:00 \rightarrow 18:00 Informal discussions: 2

1:00 → 11:30

1:30 → 12:30

→ 14:00

2:30

Different open problems and challenges

Theory

role of higher-order corrections in the description of differential observables (Gehrmann) impact of the QCDxEW interplay in the MW determination (Chiesa) role the input scheme in the $\sin^2\theta_{\text{eff}}$ determination (Chiesa) relevance of the PDF correlations in the MW determination (Bagnaschi)

Global fits and interpretation

prospects for the GFitter results in view of new improved experimental inputs (Schott)

Experiments

relevance of low- and high-pile-up data (Camarda, Bendavid) bayesian reweighing and PDF uncertainty in the sin²θ_{eff} determination (Bodek) methodologies to combine the MW results of different experiments/channels/energies (Andari)

Triple-differential Drell-Yan cross section

• Lepton pair production: EW precision observable

 $\frac{\mathrm{d}^3\sigma}{\mathrm{d}m_{ll}\mathrm{d}y_{ll}\mathrm{d}\cos\theta^*} = \frac{\pi\alpha^2}{3m_{ll}s}\sum_q P_q(\cos\theta^*) \left[f_q(x_1,Q^2)f_{\bar{q}}(x_2,Q^2) + (q\leftrightarrow\bar{q})\right]$

• ATLAS 8 TeV measurement [1710.05167]

Observable	Central-Central	Central-Forward
$m_{ll} \; [ext{GeV}]$	[46, 66, 80, 91, 102, 116, 150, 200] [0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 0.00]	[66,80,91,102,116,150] [1.2,1.6,2,2.4,2.8,3.6]
10 [[1	1.4,1.6,1.8,2,2.2,2.4]	
$\cos heta^*$	$\left[-1, -0.7, -0.4, 0, 0.4, 0.7, 1 ight]$	$\left[-1, -0.7, -0.4, 0, 0.4, 0.7, 1 ight]$
Total Bin Count:	504	150

Thomas Gehrmann

Ultimate Precision at Hadron Colliders

Triple-differential Drell-Yan cross section

• Measured with fiducial event selection cuts (on single leptons)

Central-Central	Central-Forward			
$p_T^l > 20 \text{ GeV}$	$p_{T,F}^l > 20 \text{ GeV}$	$p_{T,C}^{l} > 25 \text{ GeV}$		
$ y^l < 2.4$	$2.5 < y_F^l < 4.9$	$ y_{C}^{l} < 2.4$		
46 GeV $\leq mu \leq -200 \text{ GeV}$	66 GeV < mu	< 150 GeV		

• Fiducial cuts influence acceptances in triple-differential bins

[D.Walker, Durham 2019 PhD thesis]

Triple-differential Drell-Yan cross section

- Leading-order forbidden bins
 - require finite Q_T of lepton pair
 - shown here: symmetric lepton pair

→ prediction starts only at NLO

- lower accuracy
- potential perturbative instabilities

Thomas Gehrmann

Ultimate Precision at Hadron Colliders

10

Triple-differential Drell-Yan cross section

Including $O(\alpha_s^{3})$ in forbidden bins

- improve theory uncertainty
- better agreement with data
- sizable deviations in bins around M_z
- require NLO EW

Thomas Gehrmann

Thomas Gehrmann

Ultimate Precision at Hadron Colliders

13

 10^{0}

 10^{-1}

 ϕ_n^*

 10^{-2}

Directions in precision QCD

• NNLO for higher multiplicities (beyond $2 \rightarrow 2$)

- virtual two-loop amplitudes and integrals largely unknown
- methods for handling infrared singularities becoming unpractical
- much room for conceptual and technical progress
- Matching NNLO and parton showers
 - Higgs and Drell-Yan production [S.Höche, Y.Li, S.Prestel; P.Monni, P.Nason, E.Re, M.Wiesemann, G.Zanderighi]

Matching NNLO and analytic resummation

- Higgs and Drell-Yan q_T distribution [HX.Zhu et al., P.Monni et al.]
- N3LO for benchmark processes

Thomas Gehrmann

Ultimate Precision at Hadron Colliders

16

Μ		C	hi	iesa
	•			ouu

Templates accuracy: LO		M_W shifts (MeV)				
		W^+ ·	$\rightarrow \mu^+ \nu$	W^{+} -	$\rightarrow e^+ \nu$	
	Pseudodata accuracy	M_T	p_T^ℓ	M_T	p_T^ℓ	
1	HORACE only FSR-LL at $\mathcal{O}(\alpha)$	-94±1	-104 ± 1	-204±1	-230 ± 2	
2	HORACE FSR-LL	-89 ± 1	-97 ± 1	-179 ± 1	-195 ± 1	
3	HORACE NLO-EW with QED shower	-90 ± 1	-94 ± 1	-177 ± 1	-190 ± 2	
4	HORACEFSR-LL + Pairs	-94 ± 1	-102 ± 1	-182±2	-199 ± 1	
5	Рнотоs FSR-LL	-92±1	-100 ± 2	-182±1	-199 ± 2	

	$pp \to W^+, \sqrt{s} = 14 \text{ TeV}$			M_W shift	ts (MeV)	
	Templates accuracy: NLO-QCD+QC	CD_{PS}	$W^+ \rightarrow$	$\mu^+ u$	$W^+ \to e^+$	$\nu(dres)$
	Pseudodata accuracy	QED FSR	M_T	p_T^ℓ	M_T	p_T^ℓ
1	$NLO-QCD+(QCD+QED)_{PS}$	Pythia	-95.2 ± 0.6	-400 ± 3	-38.0 ± 0.6	-149±2
2	$NLO-QCD+(QCD+QED)_{PS}$	Photos	-88.0 ± 0.6	-368 ± 2	-38.4 ± 0.6	-150 ± 3
3	$\rm NLO\text{-}(\rm QCD\text{+}\rm EW)\text{+}(\rm QCD\text{+}\rm QED)_{\rm PS}\texttt{two-rad}$	Pythia	-89.0 ± 0.6	-371 ± 3	-38.8 ± 0.6	-157 ± 3
4	$\rm NLO-(QCD+EW)+(QCD+QED)_{PS}{\tt two-rad}$	Рнотоз	-88.6 ± 0.6	-370 ± 3	-39.2 ± 0.6	-159 ± 2

convolution with QCD can change a lot the impact of EW corrections

Mauro Chiesa

Towards fully NLO-EW analyses

the bulk of the QCDxQED effects is included in the analyses

but

an estimate of the uncertainty on the size of these corrections is not available

Alessandro Vicini - University of Milano

M. Chiesa

same order as 2 γ radiation (NNLO)

p_{2}	$p \rightarrow W^+$, $\sqrt{s} = 14$ TeV Templates accuracy: LO	$ _{W^+}$	M_W sh $\rightarrow \mu^+ \nu$	ifts (MeV) $ W^+$ -	$\rightarrow e^+ \nu$
	Pseudo-data accuracy	M_T	p_T^ℓ	M_T	p_T^ℓ
1 2	HORACE FSR-LL HORACE FSR-LL + Pairs	-89±1 -94±1	<mark>-97±1</mark> -102±1	-179±1 -182±2	-195±1 -199±1

 $\Delta M_W(\mu^+\nu) \sim 5 \pm 1$ MeV (from μ) and $\sim 3 \pm 2$ MeV (from e)

Mauro Chiesa

Towards fully NLO-EW analyses

An electroweak scheme with (Gmu, MZ, $sin^2\theta_{eff}$) as inputs

M.Chiesa, F.Piccinini, AV, arXiv: 1906.11569

The weak mixing angle is related to the left- and right-handed (vector and axial-vector) couplings of the Z boson to fermions

$$\sin^2 \theta_{eff}^l = \frac{I_3^l}{2Q_l} \left(1 - \frac{g_V^l}{g_A^l} \right) = \frac{I_3^l}{Q_l} \left(\frac{-g_R^l}{g_L^l - g_R^l} \right)$$

The request that the tree-level relation holds to all orders fixes the counterterm for $\sin^2 \theta_{\text{eff}}$ on-shell definition $\delta \sin^2 \theta_{eff}^{\ell} = -\frac{1}{2} \frac{g_L^{\ell} g_R^{\ell}}{(q_L^{\ell} - q_R^{\ell})^2} \operatorname{Re} \left(\frac{\delta g_L^{\ell}}{q_L^{\ell}} - \frac{\delta g_R^{\ell}}{q_R^{\ell}} \right)$

The renormalised angle is identified with the LEP leptonic effective weak mixing angle

The Z mass is defined in the complex mass scheme.

 Δr is evaluated with sin² θ_{eff} as input and differs from the usual (α ,MW,MZ) expression

See also D.C.Kennedy, B.W.Lynn, Nucl. Phys. B322, 1; F.M.Renard, C.Verzegnassi, Phys.Rev.D52, 1369; A.Ferroglia, G.Ossola, A.Sirlin, Phys.Lett.B507, 147; A.Ferroglia, G.Ossola, M.Passera, A.Sirlin, Phys.Rev.D65 (2002) 113002

This scheme allows to express any observable as $\mathcal{O} = \mathcal{O}(G_{\mu}, m_Z, \sin^2 \theta_{eff}^{lep})$

so that templates as a function of $\sin^2\theta_{eff}$ can be easily generated

- \rightarrow direct relation between the data and the parameter of interest
- \rightarrow simple estimate of all the systematic effects, theoretical and experimental

The result of the fit in this scheme can be directly combined with LEP results

Alessandro Vicini - University of Milano

AFB mtop parametric uncertainties and perturbative convergence

M.Chiesa, F.Piccinini, AV, arXiv:1906.11569

prediction for AFB at the LHC in the (Gmu, MZ, $sin^2\theta_{eff}$) input scheme (red), comparison with (Gmu, MW, MZ) (blue)

faster perturbative convergence \rightarrow good control over the systematic uncertainties very weak parametric mtop dependence of the templates used to fit the data

The combination (Gmu, MZ, $sin^2\theta_{eff}$) offers a very effective parameterisation of the Z resonance in terms of normalisation, position, shape

Interpretation in the context of the Electroweak Fit

- Unofficial combination yields a value of
 - M_W = 80380±13 MeV, with a p-value of 0.74
 - Several PDF correlation scenarios tested and results are stable
- Predicted value of the electroweak fit
 - M_W = 80356±6 MeV
 - 1.6σ "tension" with the SM prediction
 - Dominated by m_{top} and m_Z uncertainty, contributing 2.6 and 2.5 MeV
 - Without m_H: M_W=80364±17MeV

Page 10

- The estimate of the residual theoretical error on the MW prediction (3 MeV) is not supported by the comparison of calculations in different renormalisation schemes (OS vs MSbar)
- and might have a role in the significance of the fit
- \rightarrow 3-loop EW results would be needed to solve this issue

M. Schott

Prospects and challenges

Two paths for future measurements at ATLAS and CMS

	High pileup	Low pileup	
Most sensitive observable	p _T lepton	m _T	
Theory challenge	W/Z p _r ratio, PDFs	PDFs	
Experimental challenge	p_{T} lepton calibration	Recoil calibration	
Dominant uncertainties	Physics modelling, PDFs	Recoil, stat, PDFs	
→ Or → Ca of	hly option at LHCb In benefit from very high sta The HL-LHC program	 Requires ded Provides mea data-driven m 	licated runs asurement and hodelling of p _T W
Orthog	onal approaches with di	fferent dominant u	Incertainties

• Should be both pursued, will benefit from the combination

Stefano Camarda

18

Prospects for m_w at the HL-LHC with low pileup data

- Increased acceptance provided by the new inner detector in ATLAS, (ITk) extends the coverage up to $|\eta| < 4$
- Allows further in-situ constraints on PDFs from pseudorapidity bins
- With 1fb⁻¹ of low pileup data (<µ>~2) likely to reach ~ 6 MeV of stat+PDF uncertainty
- LHeC ep collisions would largely reduce PDF uncertainties (< 2 MeV)

Stefano Camarda

19

W mass at the LHC with high pileup data

 The statistical uncertainty is expected to be reduced by factors of 2 to 7 by analysing 8 and 13 TeV datasets

sqrt(s)	7 TeV	8 TeV	13 TeV
Lumi	~4.5 fb ⁻¹	~20 fb ⁻¹	~100 fb ⁻¹
Events	15x10⁻ ⁶	80x10 ⁻⁶	600x10 ⁻⁶
Stat Unc.[MeV]	7	3	1

Measured Expected Expected

• The muon momentum calibration uncertainty in the ATLAS 7 TeV m_w result is ~9 MeV in the p_{τ} lepton category and ~6 MeV in the combined result

$ \eta_{\ell} $ range	[0.0	[0, 0.8]	[0.	8, 1.4]	[1.	4, 2.0]	[2	[2.0, 2.4]	Com	bined
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^{ℓ}	m_{T}
$\delta m_W [{ m MeV}]$										
Momentum scale	8.9	9.3	14.2	15.6	27.4	29.2	111.0	115.4	8.4	8.8

 This is likely to be the dominant experimental uncertainty in high pileup measurements

Uncertainty correlation

	ATLAS	Tevatron
рТ	Pythia8	RESBOS
Ai, y	DYNNLO	RESBOS
PDF	CT10nnlo	CTEQ6.6
EW	Photos	Photos

- All experimental : uncorrelated
 - Small caveat : m Z, the primary reference for calibration in ATLAS and D0 (CDF uses J/psi)
- Physics modelling
 - Boson pT : can be assumed uncorrelated
 - Model purely based on Z data at the Tevatron
 - Combination of Z data and Z \rightarrow W extrapolation at ATLAS
 - QED / EW corrections : under discussion
 - Photon radiation uncertainties
 - Radiation of pairs
 - Weak corrections
 - PDFs are the main source of correlations

Correlation between PDF uncertainties to be evaluated

N.Andari

- PDFs are the main source of correlations:
 - Re-create analyses on "smeared" truth-level samples (Powheg) with variety of weights corresponding to different PDFs
 - Evaluate shifts in m_W from use of different PDF sets and PDF uncertainties from EV
 - Evaluate correlations and perform combinations

PDF uncertainties and correlations

PDF variations are applied as event weights on the generator level, calculated internally in Powheg as the ratio of the event cross sections predicted by CT10 and alternative PDF sets:

- CT10 nnlo, CTEQ6.6, CTEQ6.1, MSTW2008 used in publications
- CT10, CT14, MMHT2014, NNPDF31, CT18: other PDF sets

Different energies 2, 7 TeV (pp-bar for 2 TeV)

$$\delta m_{W\alpha}^{+} = \left[\sum_{i} \left(\delta m_{W\alpha}^{i}\right)^{2}\right]^{1/2} \text{ if } \delta m_{W\alpha}^{i} > 0, \qquad \delta m_{W\alpha}^{-} = \left[\sum_{i} \left(\delta m_{W\alpha}^{i}\right)^{2}\right]^{1/2} \text{ if } \delta m_{W\alpha}^{i} < 0,$$

Where i runs for the uncertainty sets

$$\rho_{\alpha\beta} = \frac{\sum_{i} \delta m_{W\alpha}^{i} \delta m_{W\beta}^{i}}{\delta m_{W\alpha} \delta m_{W\beta}}$$

Correlation of PDF uncertainties between different categories alpha and beta

N.Andari

PDF correlations (preliminary; to be redone with latest inputs...)

CT10	1.	2.	3.	4.
1. W+ 2 TeV	1	0.99	0.26	0.51
2. W⁻ 2 TeV	0.99	1	0.31	0.52
3. W+ 7 TeV	0.26	0.31	1	-0.23
4. W ⁻ 7 TeV	0.51	0.52	-0.23	1
CTEQ6.6	1.	2.	3.	4.
CTEQ6.6 1. W ⁺ 2 TeV	1. 1	2. 1	3. 0.37	4. 0.45
CTEQ6.6 1. W+ 2 TeV 2. W- 2 TeV	1. 1 1	2. 1 1	3. 0.37 0.36	4. 0.45 0.46
CTEQ6.6 1. W+ 2 TeV 2. W- 2 TeV 3. W+ 7 TeV	1. 1 1 0.37	2. 1 1 0.36	3. 0.37 0.36 1	4. 0.45 0.46 -0.42

Few % stat uncertainties to be evaluated on the correlations $^{\ensuremath{^{19}}}$

A.Bodek

muons

electrons

combined

A.Bodek

Precision Electroweak Physics

Arie Bodek, Aleko Khukhunaishvili , University of Rochester Bayesian reweighting method Factor of 2 reduction in errors

The Bayesian reweighing offers the most optimistic estimate of the uncertainty, before a new global PDF fit includes the new data

The correlation between the PDFs and $\sin^2\theta_{\text{eff}}$ might be better handled in a simultaneous global fit

Conclusions

Many long and lively discussions during the Saclay workshop

More work is needed from both th and exp sides

Optimistic but challenging perspectives

Where will we stand in 10 Years with an Ultimate Precision at the LHC?

- By the end of the LHC, we (being optimistic) might have
 - $\Delta m_W \approx 8 \text{ MeV}$
 - $\Delta m_{Top} \approx 300 \text{ MeV}$
 - $\Delta \sin^2 \Theta_W \approx 0.00012$
- ... results in indirect precisions of
 - $\Delta m_W \approx 4$ MeV, $\Delta m_{Top} \approx 1.3$ GeV, $\Delta m_H \approx 13$ GeV
 - See also a detailed study from Gfitter from 2014: https://arxiv.org/abs/1407.3792

Prof. Dr. M. Schott (Johannes Gutenberg University, Mainz)

Page 25

Momentum calibration

- Most measurements of m_w at hadron colliders (UA2, D0, ATLAS) lay the foundations of the energy and momentum calibration upon an external measurement of m_z
- Drawbacks:
 - Effectively provide a measurement of m_w/m_z, and suffer from an irreducible 2 MeV uncertainty from the LEP measurement of m_z
 - Introduce correlation of momentum calibration uncertainites between different measurements

Stefano Camarda

21

Muon momentum calibration with J/ ψ

- One notable exception: CDF measurement of m_w based the muon momentum calibration on J/ ψ (and Y)
- Electron energy and recoil momentum are crosscalibrated to the muon-momentum scale
- Propagation of the momentum scale from ~5 to ~80 ⁴
 GeV is a great challenges, requires perfect control of
 - Misalignments
 - Magnetic field nonuniformities
 - Material and energy loss

Source	$_{(\times 10^{-3})}^{J/\psi}$	Υ (×10 ⁻³)	$\begin{array}{c} Common \\ (\times 10^{-3}) \end{array}$
QED and energy-loss model	0.080	0.045	0.045
Magnetic field nonuniformities	0.032	0.034	0.032
Ionizing material correction	0.022	0.014	0.014
Resolution model	0.020	0.005	0.005
Background model	0.011	0.005	0.005
COT alignment corrections	0.009	0.018	0.009
Trigger efficiency	0.004	0.005	0.004
Fit range	0.004	0.005	0.004
$\Delta p/p$ step size	0.002	0.003	0
World-average mass value	0.004	0.027	0
Total systematic	0.092	0.068	0.058
Statistical	0.004	0.025	0
Total	0.092	0.072	0.058

 Benefit from larger sample than Z, and more precise mass measurement (10⁻⁶)

Stefano Camarda

22