

Background studies for Angular Coefficient Analysis

<u>Valerio Bertacchi</u> Lorenzo Bianchini Elisabetta Manca Gigi Rolandi Suvankar Roy Chowdhury

Kick-off meeting PRIN 2017F28R78 7 February 2020

SCUOLA NORMALE SUPERIORI

Outlook

- Background of the analysis
- «ABCD» method
- Preliminary results
- Systematic uncertainty treatment
- Future upgrades

Background of angular coefficient analysis

Signal:

Events with exactly one Muon with:

- p_T>25 GeV, |η|<2.4
- Small impact parameter
- Isolated
- M_T>40 GeV

EW background:

Prompt muons from EW processes:

- Drell-Yan events with a missed muon
- Top events (single or *tt*), via $t \rightarrow W (\rightarrow \mu \nu)b$
- Diboson events (*WW*,*WZ*,*ZZ*), with a muonic decay
- $Z \rightarrow \overline{\tau}\tau, W \rightarrow \tau\nu$

QCD background:

High-energy muons from multijet production, isolated "by chance"

• Muonic decays of heavy flavor mesons

Data-Driven estimation method: "ABCD"

ABCD method – definitions

- Define the four region based on 2 cuts:
 - Loose cut (high Mt): B+D region
 - Tight cut (loose AND isolated): D region

• The D region is the signal region, most of W are there

• How large is the probability that a QCD event that pass the loose selection, pass also the tight one?

Prompt rate: $p = \frac{D}{D+B} \Big|_{EW}$ (Ideally 1)

Fake rate:
$$f = \frac{D}{D+B} \Big|_{QCD}$$
 (Ideally 0

ABCD method – measure of QCD in D

- Goal: measure QCD in Signal region (D) using :
 - Data
 - EWK MC
- Simplified case: assume p=1

 $D_{\text{QCD}} = (B+D)_{\text{QCD}} \cdot f = \frac{f}{1-f} B_{\text{QCD}} = \frac{f}{1-f} B_{\text{data}}$

• Real case: $p < 1 \rightarrow also W$ in B region

 $D_{\text{QCD}} = \frac{f}{p-f} \left[pB_{\text{data}} - (1-p)D_{\text{data}} \right]$

(see backup for details)

Prompt rate: $p = \frac{D}{D+B}\Big|_{EW}$

Fake rate: $f = \frac{D}{D+B}|_{QCD}$

ABCD method - workflow

- 1. Measure **p** and **f** (*described in following slides*)
- 2. Bin in η and p_T of the muon
- 3. Apply the loose selection only
- 4. For each data event weight the event if it falls in B or D region:
 - Anti-Iso weight (B): $\frac{fp}{p-f}$
 - Iso weight (D): $-\frac{f(1-p)}{p-f}$
- 5. The distribution of the weighted events is the number of QCD events in signal region (D), in bin of η and p_T

Prompt rate:
$$p = \frac{D}{D+B}|_{EW}$$

Fake rate:
$$f = \frac{D}{D+B}|_{QCD}$$

ABCD method – measurement of p

- 1. Bin in η and p_T of the muon
- 2. Loose selection (Mt>40)
- 3. From EWK MC events evaluate $p = \frac{D}{D+B}$
- 4. For each bin of η , fit p in function of p_T with and error function:

$$p_{\eta}(p_T) = A \frac{2}{\sqrt{\pi}} \int_0^{p_T} e^{-(Bx+C)^2} dx$$

Prompt rate:
$$p = \frac{D}{D+B}|_{EW}$$

Fake rate: $f = \frac{D}{D+B}|_{QCD}$

7

ABCD method – measurement of f

- 1. Bin in η and p_T of the muon
- 2. Anti-loose selection (M_T<40): fake rate hypotesis:

 $\frac{D}{D+B}\Big|_{QCD} = \frac{C}{A+C}\Big|_{QCD}$

- 1. Subtraction of EWK to data: data \Rightarrow data EWK
- 2. Evaluation of $f = \frac{c}{A+c}$ on this sample
- 3. For each bin of η , linear fit of f function of p_T

Prompt rate:
$$p = \frac{D}{D+B}|_{EW}$$

Fake rate: $f = \frac{D}{D+B}|_{QCD}$

8

ABCD method – measurement of f

- 1. Bin in η and p_T of the muon
- 2. Anti-loose selection (M_T<40): fake rate hypotesis:

 $\frac{D}{D+B}\Big|_{QCD} = \frac{C}{A+C}\Big|_{QCD}$

- 3. Subtraction of EWK to data: data \Rightarrow data EWK
- 4. Evaluation of $f = \frac{c}{A+c}$ on this sample
- 5. For each bin of η , linear fit of f function of p_T

Why is true?

- Because QCD isolation is not M_T-dependent *Why is needed*?
- Because of the subtraction of point 3 (in signal region QCD<<EWK)

Prompt rate:
$$p = \frac{D}{D+B}\Big|_{EW}$$

Fake rate:
$$f = \frac{D}{D+B}|_{QCD}$$

ABCD method – measurement of f

- Bin in η and p_T of the muon 1.
- Anti-loose selection (M_T<40): fake rate hypotesis: 2.

 $\frac{D}{D+B}\Big|_{QCD} = \frac{C}{A+C}\Big|_{QCD}$

- Subtraction of EWK to data: $data \Rightarrow data EWK$ 3.
- Evaluation of $f = \frac{c}{A+C}$ on this sample 4.
- For each bin of η , linear fit of f function of p_T 5.

EWK MC must be fine tuned! Developed and EWK Scale Factor:

- Cut at M_T>90
- $N_{EWK}^{data} = N^{data} N^{MC}_{QCD}$ $S(p_T, \eta) = N_{EWK}^{data} N_{EWK}^{MC}$
- EWK $\Rightarrow S \times (EWK)$, data \rightarrow data $-s \times (EWK)$

Examples of preliminary results

Examples of preliminary results

Systematic uncertainties treatment

• Variation of input vatiables (M_T,RelIso,Iso,P_T, η)

• 20 variation

- SF stat and syst (Trigger, ID, Iso), (12)
- PT Rochester Correction (2)
- JER, JES, unclustered Energy (6)
- Run the analysis again for each variation and produce a:
 - «varied» prompt and fake rate (in bin of p_T and η)
 - «varied» QCD template

Advantages of these approach:

- 1. It is possible to follow the impact of the single source of systematic uncertainties
- 2. Provide a set of varied template comparable with the same variation in the rest of the analysis
- 3. *Extra*: the systematic variation can be used to describe nonlinearities of the fakerate (*see backup slides*)

Example of systematics analysis

Ratio varied/nominal QCD template, 0<η<0.4, W⁺

14

Conclusions

Current status:

Next steps:

Future Upgrade:

- The strategy to extract the bkg template is ready
- The bkg template are ready to be tested

- Optimize the current implementation (Scale Factors, Cuts, Binning, Fit procedure, systematic approach)
- Do closures (on data) and robustness checks

• Implement a simultaneous fit of fake rate and QCD yields in signal region, assuming prompt rate and data isolation efficiency only (*see backup*)

BACKUP SLIDES

Useful variables

Transverse Mass: $M_{\perp}^2 = 2p_l^{\perp} p_{\nu}^{\perp} (1 - \cos(\Delta \phi)) = 2(|\vec{p}_l^{\perp}| |\vec{p}_l^{\perp} + \vec{h}^{\perp}| + (\vec{p}_l^{\perp})^2 + \vec{p}_l^{\perp} \cdot \vec{h}^{\perp})$

Pseudorapidity: $\eta = -\ln(\tan(\frac{\theta}{2}))$

Event selection

def fiducial_muon(mu):

return (abs(mu.eta)<2.4 and mu.pt>10 and abs(mu.dxy)<0.05 and abs(mu.dz)<0.2)
def loose muon id(mu):</pre>

return (fiducial_muon(mu) and mu.isPFcand and mu.pfRelIso04_all< 0.25 and mu.pt>10)
def medium_muon_id(mu):

return (fiducial_muon(mu) and mu.mediumId and mu.pfRelIso04_all<=0.15 and mu.pt>20)
def medium_aiso_muon_id(mu):

return (fiducial_muon(mu) and mu.mediumId and mu.pfRelIso04_all> 0.15 and mu.pt>20)
event_flag = -1

```
(idx1, idx2) = (-1, -1)
```

Z-like event

if len(loose_muons)>=2:

if len(loose_muons)==2:

(idx1, idx2) = (loose_muons[0][1], loose_muons[1][1])

event_flag = 2 if (loose_muons[0][0].charge+loose_muons[1][0].charge)==0 else 3
else: event_flag = -1
W-like event: 1 loose, 1 medium
elif len(medium_muons)==1:

event_flag = 0

(idx1, idx2) = (medium_muons[0][1], -1)

Fake-like event

elif len(medium_muons)==0 and len(medium_aiso_muons)==1:

 $event_flag = 1$

(idx1, idx2) = (medium_aiso_muons[0][1], -1)

anything else

```
else:
```

Isolation variable definition

Most common isolation definition during Run-1 ("δβ-corrected") is :

$$\operatorname{Iso}_{\delta\beta} = \left(\sum_{CH} P_T + \max\left(\sum_{NH} P_T + \sum_{PH} P_T - 0.5\sum_{PU} P_T, 0\right)\right) / P_T^{\mu}$$

- PT sum of **charged hadrons** from LV arounds the muon
- As **neutral component**, add following if it is grater than 0 :
 - "PT sum of neutral hadrons and photons arounds the muon" minus "estimated contribution from PU neutral particles (δβ)"
 - $\delta\beta = 0.5 \times \text{"PT} \text{ sum of charged hadrons from PU"}$

0.5 comes from the ratio between charged/neutral particles in isospin limit.

Background strategy reminder

Prompt rate: $p = \frac{D}{D+B}|_{EW}$ Fake rate: $f = \frac{D}{D+B}|_{QCD}$

QCD yeld in signal region: $D_{QCD} = \frac{f}{p-f}(pB - (1-p)D)$ Approach:

- 1. Measure p and f
- 2. Bin in η and p_T of the muon
- 3. Apply the loose selection
- 4. For each data event weight the event if it falls in B or D region
- 5. The distribution of the weighted events is the number of QCD events in signal region (D), in bin of η and p_T

Measurement of f

- 1. Binning in η of the muon and evaluation of EWK scale factor (high M_T counting)
- 2. Bin in η and p_T of the muon
- 3. Anti-loose selection (es M_T<40): fake rate hypotesis: $\frac{D}{D+B}|_{QCD} = \frac{C}{A+C}|_{QCD}$
- 4. Subtraction of EWK rewighted to data: data \Rightarrow data -s(EWK)
- 5. Evaluation of f=C/(A+C) on this sample
- 6. For each bin of η , linear fit of f function of p_T

Measurement of p

- . Bin in η and p_T of the muon
- Loose selection (es Mt>40)
 From W MC evaluated
- 3. From W MC evaluated p=D/(D+B) events
- 4. For each bin of η , linear fit of p function of p_T

Derivation of QCD yield formula

A, B, C, D =number of events in the region. q = QCD, q = electroweak, d = Data

$$f = \frac{D_q}{D_q + B_q}, \quad \frac{D_w}{D_w + B_w}$$

$$D_q = f(D + B)_q$$

$$= f(D + B)_d - f(D + B_w)$$

$$= f(D + B)_d - \frac{f}{p}D_w$$

$$= f(D + B)_d - \frac{f}{p}(D_d - D_q),$$

$$D_q(\frac{p - f}{p}) = f[B_d + D_d(\frac{p - 1}{p})],$$

$$D_q = \frac{f}{p - f}[pB_d - (1 - p)D_d]$$

ElectroWeak Scale Factor approach comparison

- We want to bin both in η and $_{pT}$
 - 1. Very high MT counting:
 - Cut at Mt>90
 - N_{EWK}^{data}=N^{data}-N^{MC}_{QCD}
 - EWSF(p_T , η)=N_{EWK}^{data/}N_{EWK}^{MC}
 - 2. Strong Isolation counting:
 - Cut at first isolation bin (RelIso<0.01)
 - $N_{EWK}^{data} = N^{data} N^{MC}_{QCD}$
 - EWSF(p_T , η)=N_{EWK}^{data/}N_{EWK}^{MC}

Pro: well calibrated **Cons**: Add a cut in M_T (JER/JES dependent)

Pro: Indipendent from

Cons: calibration of fist

bin must be checked

JER/JES

(see backup)

0.15

0.2

0.25

0.3

0.35

0.4

22

0.45 (Rellso-

Prompt rate detailed plots

23

Systematics to describe nonlinearities: the Correlated Fit

The idea:

Taking into account p_T -correlation of several systematic variation to better descrive fakerate non-linearties

- Build a correlation matrix of the fake rate data with the bin-to-bin correlation in $\ensuremath{p_T}$
- Do a linear fit, for each bin of η , using the correlation matrix

Implementation:

• correlation matrix: $C = M_{\text{stat}} + \sum_{s=\text{syst0}}^{\text{systM}} M_s$, con: $M_{\text{stat}}^{i,j} = \delta_{i,j}\sigma_{i,j}^2$, $M_s^{i,j} = (f_i^{\text{nom}} - f_i^s)(f_j^{\text{nom}} - f_j^s)$ e con $i, j \in \{p_T^0, \dots, p_T^N\}$

• Simmetrization: $|f_i^{\text{nom}} - f_i^s| = \frac{1}{2}(|f_i^{\text{nom}} - f_i^{\text{s,up}}| + |f_i^{\text{nom}} - f_i^{\text{s,down}}|)$ $\operatorname{sign}(f_i^{\text{nom}} - f_i^s) = \operatorname{sign}(f_i^{\text{nom}} - f_i^{s,up})$

• Minimization: $\chi^2 = \vec{v}^T C^{-1} \vec{v}, \quad \vec{v} = p \vec{x} + q$

Systematics to describe nonlinearities: the Correlated Fit

Example of the correlation in p_T bins in the fakerate with the systematic ratios

How to use the "correlated fit"?

Using correlatedFit the "statistical" uncertainty on parameters contains also systematic variation uncertainty
To properly evaluate the statistical uncertainty has been used 1k toys (independently for each η bin) varying the central values of nominal fake rate
The correlatedFit has been repeated for each systematic variation, changing the central value only (same correlation matrix!)

Systematics to describe nonlinearities: the Correlated Fit

- Smaller statistical error
- Almost the same systematic error

Future Upgrade – Simultaneous Fit

The Idea

Using the p_T binning there are enough degree of freedom to fit together the normalization and the fake rate.

Advantages

- No EWKSF tuning
- No transfer between low M_T and high M_T region for fakerate

Implementation

- Each η bin a separate fit
- Free parameters: fakerate slope and offset, normalization of each eta bins for W and QCD (2+2N)
- Measurement (fixed parameters): data yield and isolation efficiency of data for each p_T bin (2N), prompt rate for each p_T bin (N)
- Degree of freedom: N-2≈37