

#### Annual Exam for PhD students Second Year

October 20, 2020

Nicola Melchioni Supervisor: Alessandro Tredicucci

#### Introduction









Intersubband Transitions and Surface Polaritons

Critical Coupling driven by Graphene Plasmons

Whispering Gallery Modes in Graphene Microdisks

Non-local intersubband transitions

#### Structure of our Quantum Well





# Issues in backgating the sample





# Coupling with Phonon Polaritons



Phonon Polaritons in hBN are surface polaritons Phonon polaritons can be excited in hBN Reststrahlen Band Dispersion is thickness dependent

No charge carrier involved: electrical tuning is not crucial





In collaboration with Dr. F. Koppens' group @ICFO, Castelldefels (BCN)

# Critical Coupling driven by plasmons

ISU SCUO NORM SUPER

ħω<sub>ph</sub>

Resonant condition for  $h_c = \frac{\lambda}{4}$  where ~ 100% of light is absorbed **Gold antennas on Graphene** (CVD grown, prov. by Dr. C. Coletti's group) **Large-area pattern** of few microns gold squares for FTIR Development of a **technique** for fast but reproducible fabrication



# Critical Coupling driven by plasmons



Three samples: bare cavity, gold pattern and gold pattern with graphene Bare cavity absorption shows weak and broad absorption Gold patterned sample is expected to show a shifted peak Graphene narrows the resonance even at low  $E_F$ 





#### Whispering Gallery Modes (WGMs) in Graphene



Modes living at the edge of a circular cavity Due to rotational symmetry, WGMs are **degenerate in phase Breaking the symmetry** could lead to a lift of the degeneracy Comsol simulations performed to confirm observability with a s-SNOM



#### Non-local Intersubband transitions



#### Coupling in a Metal-Insulator-Graphene cavity

Kurman et al, Nat Phys 2020

So strong a coupling it **changes the properties** of the crystal **Bandgap renormalization** depending on Fermi energy of the crystal We want to explore the effects of the coupling in this system **on ISB transitions** 







# Thank you for your attention!