

Second Year PhD Exam

Roberta Mezzena

Pisa, 20/10/2020

External Supervisor: Dr. Marco Cecchini

Internal Supervisor: Prof. Gian Michele Ratto

Krabbe Disease

Krabbe Disease

Krabbe Disease

Collective migration KD fibroblasts

At least 2 area for each experiments were used, t-test

HOM fibroblasts tend to close the gap less

Focal Adhesion KD

fibroblast

WT fibroblasts do, respect to HOM, less FAs

At least 15 cells for each exp were used, t-test

Glial KD cells

000

1. Brain dissection from PO-P3 newborn mouse

2. The tissue is finely shredded and plated in a flask (T25)

3. After 7-10 days cells are confluent.

- 1. Microglia
- 2. Oligodendrocytes
- 3. Astrocytes

Angelman Syndrome

Nanotechnology

PAPER

Study of adhesion and migration dynamics in ubiquitin E3A ligase (UBE3A)-silenced SYSH5Y neuroblastoma cells by microstructured surfaces

R Mezzena¹, C Masciullo¹, S Antonini¹, F Cremisi², M Scheffner³, M Cecchini¹ and I Tonazzini^{1,4}

Published 14 October 2020 • © 2020 IOP Publishing Ltd

Nanotechnology, Volume 32, Number 2

Impact of the loss of UBE3A on FA assembly and spatial distribution in SHs neuronal cells.

Wound closure

National Enterprise for nanoScience and nanoTechnology

Peripheral Nerve Injuries

Proliferation rate of RT4 Schwann cells

PDMS intermediate mold and chitosan film

Bright filed microscopy of the micro-structured chitosan membranes $\frac{v}{8}$ 250-

Solvent casting patterned chitosan (CS) film for periferal nerve regeneration:

- O/N stirring of CS solution homogeneous solutions.
- Deposition of CS solution on patterned mold and evaporation of the solvent at RT → less rigid and brittle films.
- Neutralization for 30' with 0.5% NaOH solution → polymer mesh less stressed and a more cell-friendly substrate than the previous one.
- → Time cutting from 11 hours to 1 hour and 30 minutes.
- → Completely **out of the CR**, making it repeatable also in other lab.

National Enterprise for nanoScience and nanoTechnology

Colleagues

Mentors

Dr. Marco Cecchini

Dr. Ilaria Tonazzini

Dr. Matteo Agostini

Dr. Mariacristina Gagliardi

Elena Corradi, PhD student

Dr. Ambra Del Grosso

