

Annual report

2nd year of PhD in Nanosciences

PhD Student: Giulia Piccinini

Internal Supervisor: Luigi Rolandi

External Supervisor: Camilla Coletti

2D materials van der Waals heterostructures

Materials by design by mixing and matching 2D crystals with different properties in one vertical stack → combinations with new functionalities

The **relative angle**between the
individual elements
changes the physics

2D materials van der Waals heterostructures

Materials by design by mixing and matching 2D crystals with different properties in one vertical stack → combinations with new functionalities

The **relative angle** between the individual elements changes the physics

WS₂/graphene heterostructure

Structural and electrical **characterization** (doping, strain, electron and hole transport)

Piccinini et al., 2D Mater., 7, 014002 (2019)

Talk "Deterministic direct growth of WS₂ on CVD graphene arrays" @ Graphene Flagship's WP3 annual meeting

Collaborations:

- aging of WS₂
- WS₂ optical dielectric function

20/10/2020 Annual Report – Year II

Twisted bilayer graphene (tBLG) encapsulated in hBN

Twist angle → new degree of freedom induces several angle dependent properties in tBLG → vastly different electronic behavior that depends sensitively on the angle between the layers

tBLG encapsulated in hBN ← high mobility and fine gating

This year focus:

- ✓ Sample **characterization** and selection of the best possible area for device fabrication
- ✓ Development of skills in device **fabrication**
- ✓ Study of an **electrostatic model** to determine the charge density in the two graphene layers

 Raman spectroscopy → check of the twist angle

- Raman spectroscopy → check of the twist angle
- AFM → flat and clean area

- Raman spectroscopy → check of the twist angle
- AFM → flat and clean area

B = 1 T

30°-twisted bilayer graphene from chemical vapor deposition (CVD):

No need of a manual stacking process

B = 1 T

 Interlayer decoupling → possibility to tune the charge density of the two layers independently

Low-T magnetotransport measurements:

- μ up to 10⁵ cm²/Vs
- 30°-tBG behaves as uncoupled graphene layers ←8-fold degenerate quantum Hall states

Possibility to control the **splitting** of the charge neutrality point

Possibility to control the **splitting** of the charge neutrality point

Electrostatic model

D screened by the layer density imbalance as well as the inter-layer dielectric environment

$$C_{GG}\frac{(\mu_U - \mu_L)}{e} = D - e\frac{(n_U - n_L)}{2}$$

Possibility to control the **splitting** of the charge neutrality point

Electrostatic model

D screened by the layer density imbalance as well as the inter-layer dielectric environment

$$C_{GG}\frac{(\mu_U - \mu_L)}{e} = D - e\frac{(n_U - n_L)}{2}$$

Possibility to control the splitting of the charge neutrality point

D screened by the layer density imbalance as well as the inter-layer dielectric environment

$$C_{GG}\frac{(\mu_U - \mu_L)}{e} = D - e\frac{(n_U - n_L)}{2}$$

Next steps

➤ hBN/1.1°-tBLG/hBN

1.1°-tBLG→ flat bands near zeroFermi energy, resulting in correlated insulating states at half-filling

tBLG: manual assembly from CVD graphene

Constriction in hBN/30°-tBLG/hBN

300 nm constriction in 30°-tBLG

→ ready to be measured in order to observe the conductance quantization

Next steps

➤ hBN/1.1°-tBLG/hBN

1.1°-tBLG→ flat bands near zero
 Fermi energy, resulting in correlated insulating states at half-filling

tBLG: manual assembly from CVD graphene

Constriction in hBN/30°-tBLG/hBN

300 nm constriction in 30°-tBLG

→ ready to be measured in order to observe the conductance quantization

Training for magnetotransport measurements

Electron transport measurements training on Bernal stacked BLG

Standard electrical characterization

on Bernal stacked BLG → resistivity curves as a function of the gate, mobility and charge density estimation

Training to be completed in the next few weeks!