

The effect of synthetic rubbers on the electrical properties of graphene

By-Ayush Tyagi

Supervisor- Dr. Camilla Coletti

Problems with CVD graphene

• Graphene is a promising candidate to be used as a filler material for rubber in tires. Graphene can fill the gaps in between rubber molecules to make it more stronger.

10 µm

Graphene on Si/SiO₂

a)

20

• The main issue with CVD graphene is the PMMA residues attached to the graphene during transfer and lithography process.

 Table 1
 Cleaning results of electronic properties for four different FET devices

Sample name	Electron mobility $(cm^2 V^{-1} s^{-1})$		Hole mobility $(cm^2 V^{-1} s^{-1})$		Dirac point shift (V)	
	Before	After	Before	After	Before	After
Α	788.2	842.5	631.5	702.0	+33.0	+22.1
в	789.9	835.3	645.8	617.9	+21.6	+8.4
C	2047.1	2257.5	1440.9	1500.3	+24.2	+7.9
D	716.0	849.3	619.8	630.3	+22.3	+7.6

Choi W, Shehzad M A, Park S and Seo Y 2017 Influence of removing PMMA residues on surface of CVD graphene using a contact-mode atomic force microscope RSC Adv. 7 6943-9

AFM image of Graphene

on Si/SiO₂

b)

4µm

Project - 1

Two-step PMMA removal from CVD graphene used during transfer and lithography process towards high quality graphene

Miseikis V, Bianco F, David J, Gemmi M, Pellegrini V, Romagnoli M and Coletti C 2017 Deterministic patterned growth of high-mobility large-crystal graphene: A path towards wafer scale integration 2D Mater. **4**

Schematic cleaning procedure of CVD graphene.

Remover-(AR-600-71)

Tyagi et al in preparation.

Raman and AFM results after transfer and cleaning with remover

Raman and AFM data after device fabrication and cleaning with

remover

Tyagi et al in preparation. National Enterprise for nanoScience and nanoTechnology

0 µm

25 nm 0

5

20

16

12

8

20

60 (f)

50

10 0

25

0.0

30

0.5

35

Z_m (nm)

1.0

Volume (10³×µm³)

Counts (a.u.)

(d)

20

15

10

0

50

2.0

45

1.5

5

SiO

After Remover

45

50

2.0

40

After Remover

1.5

Graphene

25 nm

20

15

10

0

Mobility calculation of graphene with and without Remover

Schematics of back-gated graphene FET.

Project - 2

Graphene-Polyvest (Polybutadiene): Raman analysis

Graphene-Polyvest (Polybutadiene): electrical transport

Graphene-SBR (styrene butadiene): Raman results

Graphene-SBR Raman data indicate even stronger doping reduction in graphene than when using polyvest.

Graphene-SBR (styrene butadiene): electrical transport and AFM data

Conclusion and Future Perspective

Project-1

- An efficient and rapid way of cleaning CVD graphene is developed.
- Electrical and morphological properties are enhanced.
- The clean graphene can be used for different applications i.e., high performance electrical and optical devices, to get high performance heterostructures with other 2D materials etc.

Project-2

- Change in the properties of graphene by using polymers i.e., Polyvest (polybutadiene) and SBR (styrene butadiene) is investigated.
- These results are the important steps to understand the interaction between graphene and rubbers as a filler material for the graphene tires.
- These two polymers could be the promising candidates as a polymeric dielectric material.
- Effect of pyrroles together with graphene/rubber adducts is in process.

Thanks to all of my mentors for their support and guidance.

Dr. Camilla Coletti @iit

Vaidotas Miseikis @iit

Stiven Forti @iit

Leonardo Martini @iit

Special thanks to Tronchetti Provera foundation Prof. Beltram and Luca Giannini for giving me this opportunity.

Prof. Fabio Beltram

Luca Giannini @Pirelli

