expinT

NANOSCIENCES $3^{\text {rd }}$ year PhD report

Supervisor: Andrea Camposeo

Research goals

PhD goal: development of printing methodologies for stimuli-responsive materials

Multilayers with transient optical properties based on naturally-degradable optical systems

OBJECTIVE 2:
Additive manufacturing of mechanically deformable free-form optics

OBJECTIVE 3:
3D printing of white-light-emitting system

Naturally-degradable optical systems

1. CDD substrate fabrication

2. Engineering of the polymeric bilayer

Bilayer thickness ratio of $\mathbf{R}=\mathbf{0} \mathbf{0}$ keep the light emitting structure unbent. (scale bar: $200 \mu \mathrm{~m}$)
2. CDD Sublimation properties

Sublimation rate can be controlled changing the environmental conditions

Light-emitting heterostructures

pumping with ≈ 10 ns pulses @ 355 nm ASE threshold: $0.2 \mathrm{~mJ} \mathrm{~cm}^{-2}$

Nd:YAG

Na:YAG

Mechanically deformable free-form optics
xPRINT
In collaboration with Prof. A. Tredicucci
Magic Windows (MW)

2. MW fabrication by Digital Light Processing system

Material: E-Shell600 ${ }^{\circledR}$ EnvisionTEC Single layer thickness:15 $\mu \mathrm{m}$ Time exposure: 3 sec

3. Characterization of MWs projection

Mechanically deformable free-form optics

In collaboration with Prof. A. Tredicucci
4. Elastomeric MWs fabrication by replica molding

3D printed lens

Replica molding
Elastomeric 3D lens

Target image

3D printed MW

Elastomeric MW

microQRcode MW design

microQRcode MW projection

Fabrication of a complex MW projecting a microQRcode of encoded data
'ABVZ'

Mechanical strain (ε) measured on the elastomeric MW

Pattern generated by a 15% strained MW: reading of the information encoded

White-light-emitting 3D printed system

3D printing by SLA of engineered transparent host matrix

Förster Resonance Energy Transfer

White-light-emitting 3D printed system

$$
\begin{gathered}
\Phi_{\text {PL }}(\%) \text { printed } \mathbf{B}=\mathbf{1 6 \%} \\
\Phi_{\mathrm{PL}}(\%) \text { printed } \mathbf{R}=\mathbf{4 2 \%} \\
\Phi_{\mathrm{PL}}(\%) \text { printed } \mathbf{G}=\mathbf{8} \%
\end{gathered}
$$

Single-color-emitting 3D printed system

STILBENE-420

COUMARIN-500

RHODAMINE-590

White-light-emitting 3D printed system

3D printing of white-light-emitting structure

R:G:B molar ratio

1-5:10:100
2-1:1:10
$3-1: 2: 5$
4-1:1:1
$5-1: 2: 2$
w-2:2:1

Molar ratio of white emitting system: R:G:B= 2:2:1

Future work

xPRINT

Development of light-responsive 3D printed systems

erc
xpRINT

Thanks for the attention

Francesca D’Elia

