
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Annual exam, PhD Nanosciences, 20 October
2020

Inference and communication with quantum systems

Marco Fanizza
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Topics

Quantum statistical inference
Learn properties of quantum states measuring the least amount of copies of a state

Communication in the presence of noise
Study the fundamental limits on communication rates of classical and quantum
information
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Quantum learning

Quantum tomography requires O(d2) copies of a state in the worst case, giving a full
classical description of the state. If one is interested in partial properties of a state,
less copies may be required.

• Quantum learning machines: minimize the error probability of a universal
machine that distinguishes ρ⊗n ⊗ σ⊗n ⊗ ρ from ρ⊗n ⊗ σ⊗n ⊗ σ
Fanizza, Mari, Giovannetti, IEEE Transactions on Information Theory 65(9), (2019)

• Evaluate the minimum mean square error for an estimator of the overlap | ⟨ψ|ϕ⟩ |
of two unknown states |ψ⟩ and |ϕ⟩, given m copies of |ψ⟩ and n copies of |ϕ⟩.
Fanizza, Rosati, Skotiniotis, Calsamiglia, Giovannetti, Physical Review Letters 124.6 (2020)

Optimal universal measurements can be obtained using symmetry principles.
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Quantum learning: current projects

• Estimate distances between mixed states: quantum Jensen-Shannon divergence
QJS(ρ, σ) = S(ρ+σ

2 )− 1
2S(ρ)−

1
2S(σ), achievable with Õ(r2/ϵ2) copies, trace

distance D(ρ, σ) = ||ρ−σ||1
2 currently open

• Testing identity of a collection of m states, scaling in m of the sample complexity

• Testing membership to a set of m states, scaling in m of the sample complexity.

New tool: regularized least square measurements
A quantum generalization of the union bound P(

∪
i Ei) ≤

∑
i P(Ei), with a regulator

granting a better bound if events are not linearly independent.
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Classical communication over quantum channels

Alice wants to send a message to Bob, in the presence of noise. Alice and Bob want
to establish a protocol such that despite of the noise, Bob is able to recover Alice’s
message exactly, with high probability.

• Noise model NA→B : L(HA) → L(HB)
• Alice encodes: m → C(m) = ρ ∈ S(H⊗n

A ), M total messages
• Bob receives N⊗n(ρ)
• Bob decodes with a POVM {Em̂}m̂∈|M|, p(m̂|m) = tr[N⊗n(ρm)Em̂]

• Rate R =
log2 M

n , classical capacity C(N ) supremum of achievable rates
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Loss of phase reference

• Alice’s and Bob’s frame differ by a
phase shift: e−iθa†a

• Loss of any phase reference after m
uses of the transmission line

• In each sequence of m consecutive
uses the phase shift is uniformly
random

Φm(ρ) =

∫
dθ
2π

e−iθn̂ρeiθn̂ (1)

where n̂ =
∑m

i=1 â
†
i âi is the

total-photon-number operator

Fanizza, Rosati, Skotiniotis, Calsamiglia, Giovannetti, arXiv preprint arXiv:2006.06522

6 / 12



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Classical communication with loss of phase synchronization

The optimal strategy: Fock states maximize the capacity, but they cannot be easily
produced

Restricted encodings
What are the optimal rate with more economical states?

• An intuitive strategy: send a phase reference on one mode and coherent states
on the remaining m− 1 modes.

• Optimal strategy with coherent states: generate a coherent state in one mode
and then apply a random interferometer. We compute upper and lower bounds.
Better than any phase synchronization strategy at high energy
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Advantage from squeezed coherent states

• Squeezed coherent states
can have lower entropy than
Poisson in the photon
number distribution

• For m = 1 a binary encoding
with vacuum and a squeezed
coherent state beats coherent
states. In stark contrast with
phase-insensitive Gaussian
channels

• For m > 1 lower bound with
squeezing are considerably
higher. Conjectured to beat
coherent encodings at all m
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Quantum communication over quantum channels

Alice possesses a share of a quantum state, possibly entangled with Charlie. She
wants to send Bob her share of the quantum state, such that the joint state held by
Bob and Charlie is close to the original one, independently of the the particular state.

The maximum ratio between the qubits sent and number of uses of the channel gives
fundamental limits on error correction in quantum computers and quantum
memories.
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Bounds from flagged extensions (with F. Kianvash)

For a convex combination of channels Λ(ρ) =
∑

i piΛi(ρ) one can define a flagged
extension

ΛF(ρ) =
∑
i

piΛi(ρ)⊗ |ϕi⟩⟨ϕi|

• Flagged extensions have higher quantum capacity, but exactly computable
under certain sufficient conditions.

• We can compute state-of-the-art upper bounds for the main finite dimensional
quantum channels, such as depolarizing channel and generalized amplitude
damping channel - fundamental noise models applicable to qubit quantum
processors.

• Open problems: better bounds from flagged extensions of Λ⊗n, generalization
to continuous variable channels

Fanizza, Kianvash, Giovannetti, Physical Review Letters 125.2, 020503, (2020)

Kianvash, Fanizza, Giovannetti, arXiv preprint arXiv:2008.02461
10 / 12



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Summary and open questions

Key results

• Characterization of optimal measurements for several quantum learning tasks

• Squeezing helps in classical communication over a practically motivated
non-Gaussian channel

• New flexible and effective technique to bound quantum capacities.

Open questions

• Membership problem using regularized least square measurement

• Improve and extend bounds from flagged channels

Thank you
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Classical communication

Alice wants to send a message to Bob, but anything that Alice sends gets corrupted
by some noise. Alice and Bob want to establish a protocol such that despite of the
noise, Bob is able to recover Alice’s message exactly, with high probability.

• Alice encodes: m → C(m) = (x1, ..., xn)
• Channel xi → yi ∼ p(yi|xi)
• Bob receives (y1, ..., yn) with probability p(y1|x1)p(y2|x2) · · · p(yn|xn)
• Bob decodes: m̂ = D(y1, ..., yn)
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Transmission rate

Alice and Bob want to operate protocols such that the probability of decoding each
word exactly is arbitrarily close to one. They also want to communicate in the most
economical way, that is to use the transmission line the smallest number of times
possible.

• m̂ ̸= m with some probability. Largest probability of decoding error perr(C)
• Number of possible messages M, equivalent to log2M bits

• Number of uses of the channel n

• Rate R =
log2 M

n , achievable if there exists a sequence of codes {Cn}n∈N with rate
R such that limn→∞ perr(Cn) = 0

• Capacity of a channel, C = supremum of achievable rates
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Classical capacity and mutual information

Shannon noisy coding theorem

C = max
p(x)

I(X; Y)

• p(x, y) = p(y|x)p(x)
• I(X, Y) = H(X) +H(Y)−H(X, Y), H(X) = −

∑
i p(xi) log2 p(xi)

• Single-letter formula

Remark
In Shannon theory computation is free, communication is expensive. We are
neglecting the computational difficulties of encoding and decoding. In this sense, the
theorem sets fundamental limits on information transmission, and sets a goal for any
proposed practical implementation.
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Classical communication over quantum channels

• Noise model: CPTP map NA→B : L(HA) → L(HB)

• Alice encodes: m → C(m) = ρ ∈ S(H⊗n
A )

• Bob receives N⊗n(ρ)

• Bob decodes with a POVM {Em̂}m̂∈|M|, p(m̂|m) = tr[N⊗n(ρm)Em̂]

• Rate R =
log2 M

n , classical capacity C(N ) supremum of achievable rates
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Classical capacity of a quantum channel

Holevo-Schumacher-Westmoreland theorem

C(N ) = lim
n→∞

χ(N⊗n)

n
χ(N ) := max

{pi,ρi}
χ(N , ρ)

• χ(N , {pi, ρi}) = S(
∑

i piN (ρi))−
∑

i piS(N (ρi))

• S(ρ) = − tr[ρ log2 ρ]
• Regularized formula, cannot be used to compute the capacity. One could have
χ(N⊗k) > kχ(N ) (superadditivity)

• χ(N ) is a lower bound on the capacity and it’s the best rate achievable without
using entanglement across different uses of the channel
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Quantum communication over quantum channels

Alice possesses a share of a quantum state, possibly entangled with Charlie. She
wants to send Bob her share of the quantum state, such that the joint state held by
Bob and Charlie is close to the original one, independently of the the particular state.

• Initial state ρA′C ∈ S(HA′ ⊗HC), Alice encodes: ρA′C → EA′→An(ρA′C)

• Bob receives N⊗n
An→Bn ◦ EA′→An(ρA′C)

• Bob decodes and obtains ρ′B′C = DBn→B′ ◦ N⊗n
An→BN ◦ EA′→An(ρA′C)

• Rate R =
log2 dimHA′

n , quantum capacity Q(N ) supremum of achievable rates
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Quantum capacity of a quantum channel

Lloyd-Devetak-Shor theorem

Q(N ) = lim
n→∞

Ic(N⊗n)

n
Ic(N ) := max

ρAA′
Ic(N , ρAA′)

• Ic(N , ρAA′) = S(N (ρA))− S(N ⊗ I(ρAA′))

• Regularized formula, cannot be used to compute the capacity. One could have
Ic(N⊗k) > kIc(N ) (superadditivity)

• Ic(N ) is a lower bound on the quantum capacity

Given the difficulties of calculating capacities of quantum channels, finding general
bounds or bounds that work for particular channels is considered an important
improvement.
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Quantum capacity of the depolarizing channel

Λ(ρ) := (1− p)ρ+ pTr[ρ] I
2
= (1− 3p

4
)ρ+

p
4
XρX+

p
4
YρY+

p
4
ZρZ (2)

• Most symmetric qubit to qubit channel (generalizable to d-level systems).

• Convex combination of Pauli operations, models random phase-flip and bit-flip
errors in qubits, which represent ideal errors to correct to preserve the state of a
quantum memory.

• Q = 0 for p ≥ 1/4.

• Additive classical capacity, superadditive coherent information.

After more than 20 years of study, the quantum capacity of this simple channel is still
unknown, but a long series of efforts have improved the upper bounds on the
quantum capacity.
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Approaches for upper bounds on the quantum capacity

• Find a degradable channel Λext that extends Λ = Ξ ◦ Λext for some CPTP Ξ.
(Smith-Smolin 2008, Ouyang 2014, Leditzky et al. 2018, MF et al. 2020)

• Approximate degradability: minimize ϵ = ||Λ̃− Ξ ◦ Λ||♢ over maps Ξ.
Continuity of the capacity gives bounds on the quantum capacity, as ϵ = 0 for
degradable channels. (Sutter et al. 2017, Leditzky et al. 2018)

• Combination of both techniques: approximate degradability for extensions
(Wang, arXiv:1912.00931).
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Sufficient conditions for degradability of flagged extensions

• |Ψ⟩ =
∑

i
√
pi |i⟩ |ϕi⟩, with controlled

unitary gives a flagged extension∑
i piΛi ⊗ |ϕi⟩⟨ϕi|

• If the state after WBF→BE′ is symmetric
under exchange E ↔ E′ the channel is
degradable

• For two pure flags we get an overlap

c =
√

1−2p
1−p

• Generalizable to many flags
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Bounds on the quantum capacity of the depolarizing channel

Qconv

Qfmin

QLDS

QW

Q1

0.00 0.05 0.10 0.15 0.20 0.25

0.0

0.2

0.4

0.6

0.8

1.0

3p/4

Q

0 0.01 0.02 0.03
0.7

0.8

0.9

1

3p/4

Q

Qconv is the convex hull of the available upper bounds from degradable extensions, Qfmin is
the new upper bound, and Q1 is the lower bound given by the coherent information of one
use of the channel. QLDS is the bound from Leditzky et al. 2018 and QW is the bound from
Wang using flagged extensions.
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Generalized amplitude damping channel (GAD)

Ay,N(ρ) = NAy(ρ) + (1−N) X ◦ Ay ◦ X(ρ),

• Realistic model of errors on superconducting qubits. Physically it represents an
interaction with another environmental qubit, such that the states |00⟩ and |11⟩
are invariant but a rotation in the space of the states |01⟩ and |10⟩ occurs.

• The environment is in a thermal state, this channel models energy relaxation to
the state of the environment. N is related to the temperature and y to the
coupling of the interaction.

• If the environmental qubit is in the ground state, the channel is degradable, but
as long as the temperature is not zero the quantum capacity cannot be
evaluated anymore.
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Bounds on the quantum capacity of GAD

Q1

QW

Qconv

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

y

Q

N=0.1

Q1

QW

Qconv

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

y

Q

N=0.3

Q1

QW

Qconv

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

y

Q

N=0.5

Bounds on the quantum capacity of GAD from different flagged extensions. Q1 is the lower
bound given by the coherent information of one use of the GAD. Qconv is the new upper
bound, QW is the upper bound obtained by Wang.
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Loss of phase reference

• Decoherence between total photon number subspaces

Φm(ρ) =

∫
dθ
2π

e−iθn̂ρeiθn̂ =

∞∑
n=0

Π̂nρΠ̂n,=

∞∑
n=0

pnρn, (3)

where Π̂n is the projector on the subspace with total photon number n,

pn := tr
[
Π̂nρ

]
and ρn := Π̂nρΠ̂n/pn.

• Fock states are invariant Φm(|⃗n⟩ ⟨n⃗|) = |⃗n⟩ ⟨n⃗|
• The case m = 1 is equivalent to measuring photon number of each mode, For
m > 1 some coherence is preserved.
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Classical communication with loss of phase synchronization

• Any ensemble of states E = {qx, ρx} gives an achievable rate χ(Φ, E)
• Energy constraint

∑
x qx tr{n̂ρx} ≤ E

• The optimal strategy: Fock states maximize the capacity, but they cannot be
easily produced

C(Φm, E) = mg(
E
m
), g(E) = −E log E+ (1 + E) log(1 + E) (4)

Restricted encodings
What are the optimal rate with more economical states? An intuitive strategy: send a
phase reference on one mode and coherent states on the remaining m− 1 modes.
The phase can be estimated with error ∆ϕ ≥ 1/∆n̂
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Optimality of covariant encodings

Any ensemble of states gives a higher or equal rate if scrambled with a random
interferometer

E → EHaar = {pidU,UρiU†}

χ(Φm, E) ≤ χ(Φm, EHaar)
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Rate of covariant encodings

• The rate for covariant encodings with pure states is

χ(Φm, EHaar) =

∞∑
n=0

∑
x

qxpn(x) log
(
n+m− 1

m− 1

)
(5)

+H

(∑
x

qxp(x)

)
−
∑
x

qxH(p(x)) (6)

= mg(
E
m
)−D(

∑
x

qxp(x)||pTh)−
∑
x

qxH(p(x)), (7)

• Only the total photon number distribution is relevant

• States with low entropy in the photon number distribution seem preferred. This
goes against phase synchronization schemes.
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Covariant coherent states encoding

• Generate a coherent state in one mode and then apply a random unitary

• For m = 1 we reduce to the Poisson channel: equivalent to measuring photon
number. Capacity still open

• Upper and lower bounds available

• Low energy: next to leading order in E attainable with binary encodings |0⟩ , |α⟩
and photodetection on each mode separately

• High energy: R = (m− 1
2) log E+O(1), while C(Φm, E) = m log E+O(1)
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Phase synchronization strategy

• Prepare a fixed reference state with energy
(1− x)E. The rate is at most (m− 1)g( xE

m−1),
by monotonicity. At high energies this upper
bound is (m− 1) log E, which is less than what
obtained with a thermal ensemble of coherent
states: (m− 1

2) log E.
• The plot illustrates the rates for m = 2 with a
truncated phase state as reference
|ψ⟩ = [2xE+ 1]−1/2

∑2xE
n=0 |n⟩

All in all, synchronization with nonclassical light seems not only suboptimal, but also
detrimental with respect to naive coherent state encodings
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Quantum learning: current projects

Testing problems
Devise a quantum measurement with binary outcome (YES/NO) such that the
measurement applied to n copies of ρ

• If ρ has a property, returns YES with probability > 1/3

• If ρ is ϵ far from having the property, returns NO with probability > 1/3

The sample complexity is the minimum n such that this text exists.

Examples:

• Testing identity of a collection of m states, scaling in m of the sample complexity

• Testing membership to a set of m states, scaling in m of the sample complexity.
Use a regularized least square measurement!
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