DNA-driven Nanoparticle assemblies tailored to early detection of Prostate Cancer

Giulia Matteoli 20/10/2020

Internal Supervisor (@NEST): Prof. S. Luin

External Supervisor (@FPS): Dr. G. Signore

Early diagnosis Late diagnosis (STAGE I+STAGE II)(STAGE III+STAGE IV)

Cancer research UK, 2013 Limitation in current diagnostics

Chemical equilibrium Sensitivity depends on K_{eq} independent by volume

Irreversible recognition Sensitivity depends also on absolute number of target molecule and is dependent by volume

Importance of early cancer detection and limitations in current diagnostic

Early diagnosis Late diagnosis (STAGE I+STAGE II)(STAGE III+STAGE IV)

Cancer research UK, 2013

Chemical equilibrium Sensitivity depends on K_{eq} independent by volume

Irreversible recognition Sensitivity depends also on absolute number of target molecule and is dependent by volume

Prostate Cancer, target of choice

Prostate Specific Antigen (PSA)

PSA is a secreted protein

Serum Level

zero in non-recurrent resected patients

Prostate Specific Membrane Antigen (PSMA)

PSMA is enriched in PCa tissue, exosomes and in aggressive PCa

Serum level

- 6 nM patients with PC
- 2 nM physiologic level
- 50 pM in resected patients

Exosomes (urine)

PSMA positive exosomes detected only in PCa urine samples

Nanoparticle aggregates: the working principle

NPs are represented with a single strand per particle to illustrate the dissassembly principle

Nanoparticle aggregates: the working principle

Aptamer recogniction of the protein lowers down melting temperature between B strand and red portion of aptameric strand

NPs are represented with a single strand per particle to illustrate the dissassembly principle

Nanoparticle aggregates: the working principle

Aptamer recogniction of the protein lowers down melting temperature between B strand and red portion of aptameric strand

NPs are represented with a single strand per particle to illustrate the dissassembly principle

Disassembly of nanoparticles

PSMA responsive Gold NanoClusters

Melting Temperatures Melting Curve 400antiPSMA dimer Size (Number Mean) 300-200 Single NPs 100--100 32.5 62.5 31.5 42.5 21,5 **Temperature (°C)** Tmelt Tmelt Tmelt Sequence In silico In vitro (260 Nanoscluster (DINAMelt) nm abs) (DLS) antiPSMA 56 °C 53 °C 52.5°C dimer antiPSMA 46.5°C 41 °C 35°C trimer Scrambled 56°C 58°C 50°C

Cluster sensing response to purified protein

- -

--

-

DLS size measurment (Count Rate and Size are normalized)

UV-Vis (plasmon peak variation)

PSMA responsive Clusters were incubated with LNCaP and PC3 derived exosomes

PSA responsive Clusters, ultrasmall and renal clearable

- ✓ Melting temperatures
- ✓ Chemico-physical caracherisation of Clusters
- □ *In cuvette* PSA sensing response

Sequence	Tmelt In silico (DINAMelt)	Tmelt In vitro (260 nm abs)	Tmelt Nanocluster (DLS)
antiPSA	55.6	58 °C	55°C
Scrambled	55.6°C	58°C	57.5°C

	Diameter (number) (nm)	St. Dev.
AuNP 2 nm	6.1	0.4
AuNP 2 nm: oligo	13.2	1.7
Scrambled cluster	263.9	125.2
aPSA cluster	151.7	64.6

Last year prospect

PSMA sensing with 13 nm \checkmark **Gold NPs clusters**

- Ongoing experiments Implementation of the sequences on Ultrasmall (Clearable) Nanostructures
- 2 nm Gold NPs •
- Polymeric NPs ٠

0

This work has been presented with an oral presentation at ANNIC2019

In Preparation

Review: "Tumor early detection and localization: an assessment of the role of nanomedicine"

Paper: "Prostate Cancer early detection with PSMA responsive NanoClusters " (submission in December 2020)

PCa Exosome Isolation and Characterisation

Ladder

PC-3 cells

LNCaP cells

PC-3 exosome

LNCap exosome

Exosome characterisation DLS

LNCaP exosomes (PSMA

Exosome characterisation WESTERN BLOT

