# Cosmological Phonon Collider

Sadra Jazayeri Institut d'Astrophysique de Paris

Disclaimer: incomplete references







Established by the European Commission





#### SJ, S Renaux-Petel 2022

#### SJ, S Renaux-Petel, D Werth 2023

<u>SJ, S Renaux-Petel, X Tong,</u> <u>D Werth, Y Zhu 2023</u>



Sébastien Renaux-Petel (IAP)



Xi Tong (DAMTP)



Denis Werth (IAP)



Yuhang Zhu (IBS)

- $\circ\,$  Correlators as Particle Detectors
- $\circ$  Cosmological Phonon Collider
- $\circ\,$  Non-Local EFT for Phonons
- $\circ\,$  Correlators from the Non-Local EFT
- o Future Outlook



### Correlators as Particle Detectors

• EFT and particle production in de Sitter



### Correlators as Particle Detectors

• EFT and particle production in de Sitter

 $\langle \phi(\mathbf{k}_1) \phi(\mathbf{k}_2) \phi(\mathbf{k}_3) \phi(\mathbf{k}_4) \rangle = analytic \text{ in } \{s, k_i\} + \exp(-\pi m/H) \times non-analytic$ 

• Corresponds to the EFT expansion

$$\sum_{n} \frac{c_n}{m^{2n}} \partial^{2n} \phi^4$$

• Unlike the 2-to-2 amplitude, the expansion in  $1/m^2$  is asymptotic

$$\langle \phi^4 \rangle \sim \sum_n \frac{n!}{m^{2n}} \frac{\operatorname{Poly}_{2n+2}(k_i, s)}{k_T^{2n-1}}$$

 $\circ \text{ Encodes non-perturbative pp in dS}$   $\frac{i}{\sqrt{2k}} \frac{1}{a(t)} \exp(i \int_{-\infty}^{t} dt' \omega(t')) \quad \begin{array}{l} \text{Bunch-Davies} \\ \text{vacuum} \end{array}$   $\rightarrow \alpha_{k} \frac{1}{a(t)^{3/2}} \exp(imt) + \\ \beta_{k} \frac{1}{a(t)^{3/2}} \exp(-imt) \quad \begin{array}{l} \text{Particle} \\ \text{Production} \end{array}$ 



non-Gaussian shape

Arkani-Hamed, Maldacen 2014 Lee, Baumann, Pimentel 2016





Cosmological Collider $H \sim 10^{14} {\rm Gev}$ 



### "You're good, Spaniard, but you're not that good. You could be magnificent"

Gladiator 2000



### "You're good, Spaniard, but you're not that good. You could be magnificent"

Gladiator 2000



Break de Sitter boosts!

## Cosmological Phonon Collider

• During inflation **time translation symmetry** is spontaneously broken. The long wavelength fluctuations of the system can be described with the associated **Goldstone boson** 

$$\phi = t + \pi(t, \mathbf{x})$$
  $\zeta \sim -H\pi$  Cheung et al 2007

$$S_{\pi} = \int d\eta \, d^3 \mathbf{x} \, a^2 \epsilon H^2 \underbrace{M_{\pi \eta}^2 h^3}_{\pi \eta h^3} \left[ \frac{1}{c_s^2} \underbrace{M_{\pi \eta}^2 h^2}_{c_s^2} \left[ \frac{2}{\pi} (\partial_i \pi \partial_s^2 \frac{\partial_i \pi}{a^2} \frac{h}{a^2} a \left( \frac{1}{c_s^3} - c_s^2 \right) \left( \frac{\pi^3}{(a^2 \pi)^2} \frac{\partial_i \pi}{a^2} \frac{h}{a^2} \frac{\pi^2 a}{c_s^3} \right) I_3^{\pm} \frac{c_s^2}{M_{\text{pl}}^2 |\dot{H}|} \pi^3 \right]$$
(speed of sound) (large boost breaking interactions)  
Non-linearly realised symmetry 
$$f_{\text{NL}}^{\text{eq}} \sim \frac{1}{c_s^2} - 1$$

$$\underbrace{f_{\text{NL}}^{\text{eq}} = -26 \pm 47}_{\text{Planck 2018}} \left( \frac{68\% \text{CL}}{10} \right) I_{\text{Planck 2018}} \right) = \frac{100}{10} \int_{10}^{10} \frac{100}{10} \int_{10}^$$

## Cosmological Phonon Collider

• During inflation **time translation symmetry** is spontaneously broken. The long wavelength fluctuations of the system can be described with the associated **Goldstone boson** 

$$\phi = t + \pi(t, \mathbf{x})$$
  $\zeta \sim -H\pi$ 

$$S_{\pi} = \int d\eta \, d^3 \mathbf{x} \, a^2 \epsilon H^2 M_{\rm Pl}^2 \left[ \frac{1}{c_s^2} \left( \pi'^2 - c_s^2 (\partial_i \pi)^2 \right) - \frac{1}{a} \left( \frac{1}{c_s^2} - 1 \right) \left( \pi' (\partial_i \pi)^2 + \frac{A}{c_s^2} \pi'^3 \right) + \dots \right]$$

(speed of sound)

(large boost breaking interactions )

$$S_{\sigma}^{(2)} = \int d\eta d^3 \boldsymbol{x} \, a^2 \left( \frac{1}{2} \sigma'^2 - \frac{1}{2} (\partial_i \sigma)^2 - \frac{1}{2} m^2 a^2 \sigma^2 \right)$$
  
(unit sound speed)



#### • Colliding phonons



• Colliding phonons

$$S_{\pi\sigma} = \int d\eta d^3 \mathbf{x} \, a^2 \, \left( \rho a \pi_c' \sigma + \frac{1}{\Lambda_1} \pi_c'^2 \sigma + \frac{c_s^2}{\Lambda_2} (\partial_i \pi_c)^2 \sigma \right) \qquad \pi_c = \sqrt{2\epsilon} H M_{\rm Pl} c_s^{-1} \pi$$



• Colliding phonons

$$S_{\pi\sigma} = \int d\eta d^3 \mathbf{x} \, a^2 \, \left( \rho a \pi_c' \sigma + \frac{1}{\Lambda_1} \pi_c'^2 \sigma + \frac{c_s^2}{\Lambda_2} (\partial_i \pi_c)^2 \sigma \right) \qquad \pi_c = \sqrt{2\epsilon} H M_{\rm Pl} c_s^{-1} \pi$$



• All single-exchange diagrams can be mapped onto a seed four-point through bespoke weight-shifting operators and appropriate soft limits

SJ, Renaux-Petel 2022 Arkani-Hamed, Baumann, Lee, Pimentel, 2018 Baumann, Duaso Pueyo, Joyce, Pimentel 2019

• Despite breaking boosts this four-point function can be derived from the analytical continuation of the de Sitter four-point outside the unit disk



$$u = \frac{s}{k_1 + k_2} \le 1$$

$$v = \frac{s}{k_3 + k_4} \le 1$$



# Low-Speed Collider Signal $3H/2 < m < H/c_s$











• When  $c_s \ll c_{\sigma} = 1$ , the following hierarchy of scales emerges



• In this limit, the <u>time derivative</u> of the *off-shell* heavy fields are small compared to its <u>gradient</u>

 $|\dot{\sigma}| \ll |\partial_i \sigma|$ 

• A simple illustration of this limit: consider a toy model in flat space and the associated 2-to-2 scattering of phonons through the single-exchange process

$$p_i^{\mu} = (c_s |\mathbf{p}_i|, \mathbf{p}_i)$$

$$p_i^{\mu} = (c_s |\mathbf{p}_i|, \mathbf{p}_i)$$

$$= \frac{-g^2}{E_{\sigma}^2 - \mathbf{k}_{\sigma}^2 - m^2} = \frac{-g^2}{c_s^2(|\mathbf{p}_1| + |\mathbf{p}_2|)^2 - (\mathbf{p}_1 + \mathbf{p}_2)^2 - m^2}$$

• For generic momentum configurations we can approximate this amplitude by

$$\mathcal{A}_4 \sim \frac{g^2}{(\mathbf{p}_1 + \mathbf{p}_2)^2 + m^2} \qquad \qquad \qquad \mathcal{D}_{\mathrm{F}}(\mathbf{x}, t; \mathbf{y}, t') \rightarrow \delta(t - t') \, \frac{e^{-m|\mathbf{x} - \mathbf{y}|}}{4\pi |\mathbf{x} - \mathbf{y}|}$$

• In this regime, the heavy field can be solved as an auxillary field, resulting in a non-local effective action for the phonons

$$(\partial_i \sigma)^2 + g\dot{\pi}^2 \sigma \to \frac{1}{2}g^2 \dot{\pi}^2 \frac{1}{\nabla^2 + m^2} \dot{\pi}^2$$

### Correlators from the Non-Local EFT

• Similar simplification occurs for cosmological correlators induced by the exchange of the heavy field



• **Retardation effects** can be treated perturbatively by adding operators with higher order time derivatives

$$\mathcal{D}^{-1} = \frac{1}{a^{-2}(t)\nabla^2 + m^2} \sum_n (-1)^n \left[ (\partial_t^2 + 3H\partial_t)(a^{-2}(t)\nabla^2 + m^2)^{-1} \right]^n.$$



• An interesting application: parity violation in the scalar trispectrum



Cabass, SJ, Stefanyszyn, Pajer 2022 Liu, Tong, Wang, Xianyu 2019 • An interesting application: parity violation in the scalar trispectrum

$$B_4^{PO} \propto \operatorname{Im}\left(\int_C d\eta \, F(\mathbf{k}_i, \eta) \prod_{i=1}^4 \partial_{\eta}^{n_i} \pi_+(k_i, \eta)\right)$$

 $\pi_{+} = \frac{H}{\sqrt{2k^{3}}}(1 - ik\eta) \exp(ik\eta) \qquad \text{bulk-to-boundary propagator}$ 

e.g. 
$$F \sim rac{1}{(s^2\eta^2+m^2)^2-4\mu^2s^2\eta^2}$$

Im  $\tau$   $\tau_c \times$ 0 Re  $\tau$ 

Parity violating term



# Future Outlook

Maximus: "Whatever comes out of these gates, we've got a better chance of survival if we work together."

Gladiator 2000



# Future Outlook

- Cosmological Collider Physics: beyond weakly coupled massive fields? What is the appropriate EFT?
- Non-local EFT: integrating out at one-loop level. Relevance: e.g. fermionic fields. Same low-speed collider signal?
- Constructing non-local EFT from bottom up?