From AdS amplitudes to dS cosmology

Adam Bzowski
University of Warsaw

Norway

NARODOWE CENTRUM NAUKI
grants
based mostly on [2207.02872] and [2309.xxxxx] work with Kostas Skenderis and Paul McFadden

From AdS to dS (1/3)

$>\mathrm{dS} /$ CFT correspondence was proposed more than 20 years ago [Strominger (2001)] (with earlier work in [Hull (1998)] [Witten (2001)]).
$>$ The status has remained controversial.
$>$ Different formulations/versions have appeared through the years
num Wavefunction of the universe [Maldacena (2002)] ...
"Int Domain-wall/cosmology correspondence [Skenderis, Townsend (2006)], [AB, McFadden, Skenderis (2009-2013)]
|"II+ Cosmological bootstrap [Arkani-Hamed etal (2018)]
vill ...
$>$ There is a useful and working version of dS/CFT perturbatively in $1 / N$.
$>$ It is unclear whether such dualities exist non-perturbatively in $1 / N$.
$>$ There is no known embedding in/derivation from string theory.

From AdS to dS $(2 / 3)$

CFT data
$\left\langle\mathcal{O}\left(\boldsymbol{k}_{1}\right) \ldots \mathcal{O}\left(\boldsymbol{k}_{n}\right)\right\rangle$
Depends on $N, \lambda, \boldsymbol{k}_{i}$

$$
\begin{gathered}
\text { AdS data } \\
\mathrm{d} s_{A d S}^{2}=\frac{L_{A d S}{ }^{2}}{z^{2}}\left[\mathrm{~d} z^{2}+\mathrm{d} \boldsymbol{x}_{A d S}{ }^{2}\right] \\
Z\left[\varphi_{(0)}^{A d S}\right]
\end{gathered}
$$

Depends on $\ell_{P}^{(A d S)}, L_{A d S}, \boldsymbol{k}_{i}$
analytic continuation

	$\tau \rightarrow 0^{-}$	$\mathrm{d} s_{d S}^{2}=\frac{L_{d S}{ }^{2}}{(-\tau)^{2}}\left[-\mathrm{d} \tau^{2}+\mathrm{d} x_{d S}{ }^{2}\right]$
Cosmology $\left\langle\varphi_{(0)}\left(\overline{\boldsymbol{k}}_{1}\right) \ldots \varphi_{(0)}\left(\overline{\boldsymbol{k}}_{1}\right)\right\rangle$		
Depends on $\bar{N}, \bar{\lambda}, \overline{\boldsymbol{k}}_{i}$		$\begin{gathered} \Psi\left[\varphi_{(0)}^{d S}\right] \\ \text { Depends on } \ell_{P}^{(d S)}, L_{d S}, \overline{\boldsymbol{k}}_{i} \end{gathered}$

Outline

Goals:

(1) Derive continuation formulas valid for renormalized correlators.
(2) Investigate the effect of renormalization on both AdS and dS data.

Outline:

(1) Continuation from AdS to dS:
$>$ The continuation formulas.
(2) Need for regularization and renormalization:
> Dimensional regularization.
> Renormalization in AdS and dS.
> Continuation formulas for renormalized correlators.

- Some implications:
$>$ Weight-shifting operators.
> Tools we developed.

From AdS to dS (3/3)

Metrics:

$$
\mathrm{d} s_{A d S}^{2}=\frac{L_{A d S}{ }^{2}}{z^{2}}\left[\mathrm{~d} z^{2}+\mathrm{d} x_{A d S}{ }^{2}\right] \quad \mathrm{d} s_{d S}^{2}=\frac{L_{d S}{ }^{2}}{\tau^{2}}\left[-\mathrm{d} \tau^{2}+\mathrm{d} x_{d S}{ }^{2}\right]
$$

Actions:

$$
\left.\begin{array}{rl}
S_{A d S}= & \left(\ell_{P}^{(A d S)}\right)^{1-d} \int \mathrm{~d}^{d+1} x \sqrt{g_{A d S}} \times \text { Actions: } S_{d S}= \\
& -\left(\ell_{P}^{(d S)}\right)^{1-d} \int \mathrm{~d}^{d+1} x \sqrt{-g_{d S}} \times \\
& {\left[\frac{1}{2}\left(\partial \varphi_{A d S}\right)^{2}+\frac{1}{2} m_{A d S}{ }^{2} \varphi_{A d S}{ }^{2}\left(\partial \varphi_{d S}\right)^{2}+\frac{1}{2} m_{d S} \varphi_{d S}{ }^{2}\right.} \\
& \left.+\left(\ell_{P}^{(A d S)}\right)^{-2} V_{\text {int }}^{A d S}\left(\varphi_{A d S}\right)\right]
\end{array} \quad+\left(\ell_{P}^{(d S)}\right)^{-2} V_{\text {int }}^{d S}\left(\varphi_{d S}\right)\right] .
$$

States:

Regularity:
$\varphi_{A d S} \sim e^{-k z}$ as $z \rightarrow \infty$

Bunch-Davies vacuum |0〉

$$
\varphi_{d S} \sim e^{\mathrm{i} k \tau} \text { as } \tau \rightarrow \infty
$$

Correlators:

Euclidean (Schwinger)

Analytic continuation in Planck units

We keep

$$
\varphi_{A d S}=\varphi_{d S}, \quad V_{i n t}^{A d S}=V_{i n t}^{d S}, \quad m_{A d S}{ }^{2}=-m_{d S}{ }^{2}
$$

Analytic continuation in Planck units

In Planck units $\ell_{P}^{(A d S)}=\ell_{P}^{(d S)}=1$. Then we continue

$$
L_{A d S}=\mathrm{i} L_{d S}, \quad z=-\mathrm{i} \tau, \quad q_{d S}=q_{A d S}
$$

$>$ In particular $\varphi_{(0)}^{A d S}=(-\mathrm{i})^{d-\Delta} \varphi_{(0)}^{d S}$.
$>$ This is the continuation used in [Maldacena (2002)].

Analytic continuation in AdS units

Analytic continuation in AdS units

In AdS units $L_{A d S}=L_{d S}=1$. Then

$$
q_{A d S}=\mathrm{i} q_{d S}, \quad \quad \ell_{P}^{(A d S)}=-\mathrm{i} \ell_{P}^{(d S)}
$$

$>$ In particular $\varphi_{(0)}^{A d S}=\varphi_{(0)}^{d S}$.
$>$ This is the continuation used in [McFadden, Skenderis (2009)].
$>$ This continuation can be expressed purely in terms of the CFT data: $q_{A d S}{ }^{2}=-q_{d S}{ }^{2}$ and $N_{A d S}{ }^{2}=-N_{d S}{ }^{2}$ (when the gauge group in $S U(N)$).
$>$ We will use it here and argue this is the form of the AdS/dS dictionary best suited for renormalized correlators.

Set-up

$>$ Fourier transform in the boundary direction: $\boldsymbol{x} \mapsto \boldsymbol{k}$ or \boldsymbol{q} or \boldsymbol{p}.
$>$ Consider scalar fields φ_{i} with generic 3- and 4-point interactions.
> Masses are parameterized as

$$
m_{A d S}^{2}=-m_{d S}^{2}=\Delta(\Delta-d), \quad \frac{d}{2}<\Delta \leq d .
$$

$>$ By $\mathcal{K}_{[\Delta]}$ and $\mathcal{G}_{[\Delta]}$ we denote the associated propagators.
$>$ We are mostly interested in $d=3$ with $\Delta=2$ or 3, i.e., conformally coupled or massless scalars.
$>$ We use notation

$$
\left\langle\mathcal{O}\left(\boldsymbol{k}_{1}\right) \ldots \mathcal{O}\left(\boldsymbol{k}_{n}\right)\right\rangle=(2 \pi)^{d} \delta\left(\sum_{i=1}^{n} \boldsymbol{k}_{i}\right)\left\langle\left\langle\mathcal{O}\left(\boldsymbol{k}_{1}\right) \ldots \mathcal{O}\left(\boldsymbol{k}_{n}\right)\right\rangle\right\rangle .
$$

$>$ Momenta lengths (magnitudes), $k_{j}=\left|\boldsymbol{k}_{j}\right|, s=\left|\boldsymbol{k}_{1}+\boldsymbol{k}_{2}\right|$.

AdS amplitudes (1/2)

> The amplitudes are

$$
\begin{aligned}
& i_{\left[\Delta_{1} \Delta_{2} \Delta_{3}\right]}\left(k_{1}, k_{2}, k_{3}\right)=\int_{0}^{\infty} \mathrm{d} z z^{-d-1} \mathcal{K}_{\left[\Delta_{1}\right]}\left(z, k_{1}\right) \mathcal{K}_{\left[\Delta_{2}\right]}\left(z, k_{2}\right) \mathcal{K}_{\left[\Delta_{3}\right]}\left(z, k_{3}\right) \\
& i_{\left[\Delta_{1} \Delta_{2} ; \Delta_{3} \Delta_{4} x \Delta_{x}\right]}\left(k_{1}, k_{2}, k_{3}, k_{4}, s\right) \\
& =\int_{0}^{\infty} \mathrm{d} z z^{-d-1} \mathcal{K}_{\left[\Delta_{1}\right]}\left(z, k_{1}\right) \mathcal{K}_{\left[\Delta_{2}\right]}\left(z, k_{2}\right) \times \\
& \quad \times \int_{0}^{\infty} \mathrm{d} \zeta \zeta^{-d-1} \mathcal{G}_{\left[\Delta_{x}\right]}(z, s ; \zeta) \mathcal{K}_{\left[\Delta_{3}\right]}\left(\zeta, k_{3}\right) \mathcal{K}_{\left[\Delta_{4}\right]}\left(\zeta, k_{4}\right)
\end{aligned}
$$

AdS amplitudes (2/2)

$>$ One would need an action

$$
\begin{aligned}
S^{\text {asym }=}= & \frac{1}{2}\left(\ell_{P}^{(A d S)}\right)^{-d+1} \int \mathrm{~d}^{d} x \sqrt{g} \sum_{j=1,2,3}\left[\partial_{\mu} \varphi_{j} \partial^{\mu} \varphi_{j}+\frac{1}{2} m_{\Delta_{j}}^{2} \varphi_{j}^{2}\right] \\
& -\left(\ell_{P}^{(A d S)}\right)^{-d-1} \lambda \int \mathrm{~d}^{d} x \sqrt{g} \varphi_{1} \varphi_{2} \varphi_{3}
\end{aligned}
$$

$>$ From action to diagrams:

$$
\begin{aligned}
& \left\langle\left\langle\mathcal{O}_{\left[\Delta_{1}\right]}\left(\boldsymbol{k}_{1}\right) \mathcal{O}_{\left[\Delta_{2}\right]}\left(\boldsymbol{k}_{2}\right) \mathcal{O}_{\left[\Delta_{3}\right]}\left(\boldsymbol{k}_{3}\right)\right\rangle\right\rangle=\left(\ell_{P}^{(A d S)}\right)^{-(d-1)-2 V} \lambda^{V} \times \\
& \quad \times i_{\left[\Delta_{1} \Delta_{2} \Delta_{3}\right]}\left(k_{1}, k_{2}, k_{3}\right)+O\left(\lambda^{2}\right)
\end{aligned}
$$

with $V=1$.
$>$ There exists an AdS action turning a single scalar (no gauge symmetries) AdS amplitude into the full correlator.
$>$ We can work digram by diagram. Also in the context of renormalization.

dS amplitudes (1/3)

$>$ Use Schwinger-Keldysh formalism to implement the in-in calculations,

$$
\begin{aligned}
\left\langle\varphi\left(\tau, \boldsymbol{x}_{1}\right) \ldots \varphi\left(\tau, \boldsymbol{x}_{n}\right)\right\rangle=\int & \mathcal{D} \varphi_{+} \mathcal{D} \varphi_{-}\left(\prod_{i=1}^{n} \varphi_{+}\left(\tau, \boldsymbol{x}_{i}\right)\right) \times \\
& \times \exp \left(i S_{+}\left[\varphi_{+}\right]-i S_{-}\left[\varphi_{-}\right]\right),
\end{aligned}
$$

where both fields $\varphi_{ \pm}$coincide at late times.
$>$ The boundary (cosmological) field is

$$
\varphi_{(0)}(\boldsymbol{x})=\lim _{\tau_{0} \rightarrow 0}\left[\left(-\tau_{0}\right)^{\Delta-d} \varphi(\tau, \boldsymbol{x})\right] .
$$

$>$ Apply correct integration contours to make sure we use the Bunch-Davies vacuum.

dS amplitudes (2/3)

$$
\left\langle\left\langle\varphi_{1(0)}\left(\boldsymbol{k}_{1}\right) \varphi_{2(0)}\left(\boldsymbol{k}_{2}\right) \varphi_{3(0)}\left(\boldsymbol{k}_{3}\right)\right\rangle\right\rangle=\left(\ell_{P}^{(d S)}\right)^{-(d-1)-2 V} \lambda d s_{\left[\Delta_{1} \Delta_{2} \Delta_{3}\right]}+O\left(\lambda^{2}\right) .
$$

$$
d s_{\left[\Delta_{1} \Delta_{2} \Delta_{3}\right]}=2 \operatorname{Re}\left[-\mathrm{i} \int_{-\infty(1-\mathrm{i} \epsilon)}^{0} \frac{\mathrm{~d} \tau}{(-\tau)^{d+1}} G_{+}^{\left[\Delta_{1}\right]}\left(q_{1}, \tau\right) G_{+}^{\left[\Delta_{2}\right]}\left(q_{2}, \tau\right) G_{+}^{\left[\Delta_{3}\right]}\left(q_{3}, \tau\right)\right]
$$

dS amplitudes (3/3)

Analytic continuations:

$$
\begin{aligned}
> & \int_{-\infty(1-\mathrm{i} \epsilon)}^{0} \frac{\mathrm{~d} \tau}{(-\tau)^{d+1}}=e^{\frac{\mathrm{i} \pi d}{2}} \int_{0}^{\infty} \frac{\mathrm{d} z}{z^{d+1}} \\
> & G_{ \pm}^{[\Delta]}(q, \pm \mathrm{i} z)=e^{ \pm \frac{\mathrm{i} \pi}{2}(\Delta-d)} d s_{[\Delta \Delta]}(q) \mathcal{K}_{[\Delta]}(q, z)
\end{aligned}
$$

$$
d s_{\left[\Delta_{1} \Delta_{2} \Delta_{3}\right]}=2 \sin \left[\frac{\pi}{2}\left(\Delta_{t}-2 d\right)\right] \prod_{j=1}^{3} d s_{\left[\Delta_{j} \Delta_{j}\right]}\left(q_{j}\right) \times i_{\left[\Delta_{1} \Delta_{2} \Delta_{3}\right]}
$$

$>$ where $\Delta_{t}=\Delta_{1}+\Delta_{2}+\Delta_{3}$.
$>$ Since $\operatorname{Im}(\mathrm{i} q)^{D}=\sin (\pi D / 2) q^{D}$ and $\Delta_{t}-2 d$ is the total dimension of $i_{\left[\Delta_{1} \Delta_{2} \Delta_{3}\right]}$ we can write

$$
\sin \left[\frac{\pi}{2}\left(\Delta_{t}-2 d\right)\right] i_{\left[\Delta_{1} \Delta_{2} \Delta_{3}\right]}\left(q_{1}, q_{2}, q_{3}\right)=\operatorname{Im} i_{\left[\Delta_{1} \Delta_{2} \Delta_{3}\right]}\left(\mathrm{i} q_{1}, \mathrm{i} q_{2}, \mathrm{i} q_{3}\right)
$$

Continuation formulas

$$
\begin{gathered}
d s_{[\Delta \Delta]}(q)=-\frac{1}{2 \operatorname{Im} i_{[\Delta \Delta]}(\mathrm{i} q)}, \\
d s_{\left[\Delta_{1} \Delta_{2} \Delta_{3}\right]}\left(q_{1}, q_{2}, q_{3}\right)=-\frac{1}{4} \frac{\operatorname{Im} i_{\left[\Delta_{1} \Delta_{2} \Delta_{3}\right]}\left(\mathrm{i} q_{1}, \mathrm{i} q_{2}, \mathrm{i} q_{3}\right)}{\prod_{j=1}^{3} \operatorname{Im} i_{\left[\Delta_{j} \Delta_{j}\right]}\left(\mathrm{i} q_{j}\right)}, \\
d s_{\left[\Delta_{1} \Delta_{2} \Delta_{3} \Delta_{4}\right]}\left(q_{i}\right)=-\frac{1}{8} \frac{\operatorname{Im} i_{\left[\Delta_{1} \Delta_{2} \Delta_{3} \Delta_{4}\right]}\left(\mathrm{i} q_{i}\right)}{\prod_{j=1}^{4} \operatorname{Im} i_{\left[\Delta_{j} \Delta_{j}\right]}\left(\mathrm{i} q_{j}\right)}, \\
d s_{\left[\Delta_{1} \Delta_{2} ; \Delta_{3} \Delta_{4} x \Delta_{x}\right]}\left(q_{i}, s\right)=\frac{1}{8} \prod_{j=1}^{4} \frac{1}{\operatorname{Im} i_{\left[\Delta_{j} \Delta_{j}\right]}\left(\mathrm{i} q_{j}\right)}\left[\operatorname{Im} i_{\left[\Delta_{1} \Delta_{2} ; \Delta_{3} \Delta_{4} x \Delta_{x}\right]}\left(\mathrm{i} q_{i}, \mathrm{i} s\right)\right. \\
\left.-\frac{\operatorname{Im} i_{\left[\Delta_{1} \Delta_{2} \Delta_{x}\right]}\left(\mathrm{i} q_{1}, \mathrm{i} q_{2}, \mathrm{is}\right) \operatorname{Im} i_{\left[\Delta_{x} \Delta_{3} \Delta_{4}\right]}\left(\mathrm{i} s, \mathrm{i} q_{3}, \mathrm{i} q_{4}\right)}{\operatorname{Im} i_{\left[\Delta_{x} \Delta_{x}\right]}(\mathrm{is})}\right]
\end{gathered}
$$

$>$ Various forms of these exist in the literature，［Maldacena（2002）］ ［McFadden，Skenderis（2010－11）］［AB，McFadden，Skenderis（2011－13）］ ［Pimentel，Maldacena（2011）］［Hartle，Hawking，Hertog（2012）］［Anninos， Denef，Harlow（2012）］［Anninos，Hartman，Strominger（2012）］［Mata， Raju，Trivedi（2012）］［Kundu，Shukla，Trivedi（2014）］［Arkani－Hamed，Maldacena （2015）］［Sleight，Toronna（2018－2022）］［Arkani－Hamed，Baumann，Lee， Pimentel（2018）］［Baumann et al（2019－21）］［Pajer et al（2021－23）］［Melville et al（2020）］［Di Petro，Gorbenko，Komatsu（2021）］［Raju et al（2023）］［Wang， Dimentel A～－hinn（つคつつ）1

Example

$>$ We are interested in $d=3$ and scalars with $\Delta=2,3$, i.e., conformally coupled and massless scalars
$>$ Propagators simplify to elementary functions.
$>\operatorname{In} d=3$ we have $\mathcal{K}_{[2]}(z, \boldsymbol{k})=z e^{-k z}$ and thus

$$
i_{[222]}=\int_{0}^{\infty} \frac{e^{-k_{t} z}}{z} \mathrm{~d} z=\infty
$$

where $k_{t}=k_{1}+k_{2}+k_{3}$.
$>$ On the dS side $\Delta_{t}-2 d=0$ and thus the sine vanishes. Does the amplitude vanish?
> Must regulate and renormalize.

Divergences in AdS amplitudes

$>$ We are mostly interested in $d=3$ with $\Delta=2$ or 3 , i.e., conformally coupled or massless scalars.

3-point amplitude	$\hat{i}_{\left[\Delta_{1} \Delta_{2} \Delta_{3}\right]}$
$[222]$	1
$[322]$	1
$[332]$	1
$[333]$	1

External operators	Contact	$\Delta_{x}=2$	$\Delta_{x}=3$
$\left[22 ; 22 x \Delta_{x}\right]$	0	0	0
$\left[32 ; 22 x \Delta_{x}\right]$	1	2	1
$\left[33 ; 22 x \Delta_{x}\right]$	1	1	2
$\left[32 ; 32 x \Delta_{x}\right]$	1	2	1
$\left[33 ; 32 x \Delta_{x}\right]$	1	2	2
$\left[33 ; 33 x \Delta_{x}\right]$	1	1	2

Divergences in derivative amplitudes

$\Delta_{x}=$	C	2	3
${ }_{\left[22 ; 22 x \Delta_{x}\right]}$	0	0	0
${ }_{\left[22 ; 32 x \Delta_{x}\right]}$	1	2	1
${ }_{\left[22 ; 33 x \Delta_{x}\right]}$	1	1	2
${ }^{11} 32 ; 22 x \Delta_{x}$]	0	1	0
${ }^{1} 32 ; 32 x \Delta_{x}$]	0	1	0
${ }^{11} 32 ; 33 x \Delta_{x}$]	1	1	2
${ }^{1} 33 ; 22 x \Delta_{x}$]	0	0	0
${ }^{11} 33 ; 32 x \Delta_{x}$]	1	2	1
$\left.{ }^{\text {[}} 33 ; 33 x \Delta_{x}\right]$	0	0	1

$\boldsymbol{\Delta}_{\boldsymbol{x}}=$	\mathbf{C}	$\mathbf{2}$	$\mathbf{3}$
$\left[22 ; 22 x \Delta_{x}\right]$	0	0	0
$\left[32 ; 22 x \Delta_{x}\right]$	0	1	0
$\left[33 ; 11,22 x \Delta_{x}\right]$	0	0	0
$\left[32 ; 32 x \Delta_{x}\right]$	0	0	0
$\left[33 ; 32 x \Delta_{x}\right]$	0	1	0
$\left[33 ; 33 x \Delta_{x}\right]$	0	0	0

$\boldsymbol{\Delta}_{\boldsymbol{x}}=$	$\mathbf{2}$	$\mathbf{3}$
$\left[22 ; \overrightarrow{22 x} \Delta_{x}\right]$	0	0
$\left[32 ; \stackrel{\rightharpoonup 2 x \Delta_{x}}{ }\right]$	1	0
$\left[33 ; \overrightarrow{22 x} \Delta_{x}\right]$	0	0
$\left[32 ; \overrightarrow{32 x} \Delta_{x}\right]$	0	0
$\left[\vec{~} 3 ; \overrightarrow{32 x} \Delta_{x}\right]$	1	1
$\left[33 ; \overrightarrow{33 x} \Delta_{x}\right]$	0	0

Divergences in dS amplitudes

	dS	AdS
$[222]$	0	1
$[322]$	1	1
$[332]$	0	1
$[333]$	1	1

	de Sitter			Anti-de Sitter		
$\boldsymbol{\Delta}_{\boldsymbol{x}}=$	\mathbf{C}	$\mathbf{2}$	$\mathbf{3}$	\mathbf{C}	$\mathbf{2}$	$\mathbf{3}$
$\left[22 ; 22 x \Delta_{x}\right]$	0	0	2	0	0	0
$\left[32 ; 22 x \Delta_{x}\right]$	0	1	1	1	2	$\mathbf{1}$
$\left[33 ; 22 x \Delta_{x}\right]$	1	1	2	1	1	2
$\left[32 ; 32 x \Delta_{x}\right]$	1	2	1	1	2	1
$\left[33 ; 32 x \Delta_{x}\right]$	0	1	1	1	2	2
$\left[33 ; 33 x \Delta_{x}\right]$	1	1	2	1	1	2

Dimensional regularization

> We use dimensional regularization

$$
d \longmapsto \hat{d}=d+2 u \epsilon, \quad \Delta_{j} \longmapsto \hat{\Delta}_{j}+\left(u+v_{j}\right) \epsilon,
$$

where ϵ is the regulator and u, v fixed parameters.
$>$ Things simplify considerably in the beta scheme: $u=1$ and $v_{j}=0$ since

$$
\hat{\beta}_{j}=\hat{\Delta}_{j}-\frac{\hat{d}}{2}=\Delta_{j}-\frac{d}{2}=\beta_{j} .
$$

> Regulated amplitude

$$
\begin{aligned}
\hat{i}_{[222]} & =\int_{0}^{\infty} \frac{e^{-k_{t} z}}{z^{1-\epsilon}} \mathrm{d} z=k_{t}^{-\epsilon} \Gamma(\epsilon) \\
& =\frac{1}{\epsilon}-\log k_{t}-\gamma_{E}+O(\epsilon) .
\end{aligned}
$$

- There is no cut-off.

Renormalization (1/2)

$>$ Renormalize by adding boundary counterterms built up with the sources $\varphi_{(0) i}$ and operators \mathcal{O}_{i}.
$>$ In our example

$$
S_{\mathrm{ct}}=-\lambda \Gamma(\epsilon) \mathfrak{a} \int \mathrm{d}^{\hat{d}} x \sqrt{\gamma} \varphi_{1(0)} \varphi_{2(0)} \varphi_{3(0)} \mu^{-\epsilon},
$$

where
) $\Gamma(\epsilon)=\frac{1}{\epsilon}-\gamma_{E}+O(\epsilon)$ is the required divergence.
nult $\mathfrak{a}=1+\epsilon \mathfrak{a}^{(1)}+\epsilon^{2} \mathfrak{a}^{(2)}+O\left(\epsilon^{3}\right)$ keeps scheme-dependence.
num μ is the renormalization scale, due to the shift in dimensions.
nult $\varphi_{j(0)}$ is the source for $\mathcal{O}_{\left[\Delta_{j}\right]}$.
$>$ In total

$$
\begin{aligned}
i_{[222]}^{\mathrm{ren}} & =\lim _{\epsilon \rightarrow 0}\left[\hat{i}_{[222]}-\Gamma(\epsilon) \mathfrak{a} \mu^{-\epsilon}\right] \\
& =-\log \left(\frac{k_{t}}{\mu}\right)-\mathfrak{a}^{(1)}
\end{aligned}
$$

Renormalization (2/2)

> Condition for divergences at each subdiagram:

$$
\left\{\begin{array}{c}
d-\Delta_{i_{1}} \\
\Delta_{i_{1}}
\end{array}\right\}+\ldots+\left\{\begin{array}{c}
d-\Delta_{i_{V}} \\
\Delta_{i_{V}}
\end{array}\right\}+2 r=d
$$

$$
\text { for } r \in\{0,1,2, \ldots\}
$$

$>$ The condition is of type n if the bottom row is chosen n times.
$>$ Divergences accumulate from each subdiagram.
$>$ The corresponding counterterm:

$$
S_{c t} \sim \int \mathrm{~d}^{\hat{d}} x \sqrt{\gamma} \mu^{(2-V) \epsilon} \partial^{2 r}\left\{\begin{array}{c}
\varphi_{i_{1}(0)} \\
\mathcal{O}_{i_{1}}
\end{array}\right\} \times \ldots \times\left\{\begin{array}{c}
\varphi_{i_{V}(0)} \\
\mathcal{O}_{i_{V}}
\end{array}\right\}
$$

Example 1: $\hat{i}_{[222]}$

$>$ All Δ_{j} are such that $\frac{d}{2}<\Delta_{j}<d$: only type- 0 divergences appear.
$>$ Type-0 condition: the total dimension $D=\Delta_{t}-(n-1) d$ satisfies $D=2 r, r \in\{0,1,2, \ldots\}$
$>$ The counterterm generates anomaly

$$
S_{c t} \sim \int \mathrm{~d}^{\hat{d}} x \sqrt{\gamma} \mu^{(2-V) \epsilon} \partial^{2 r} \varphi_{1(0)} \ldots \varphi_{i_{n}(0)}
$$

$>$ Btw: the sine $\sin (\pi D / 2)$ in the continuation formulas vanishes when $D=2 n$ for integral n.
$>$ Almost always the vanishing sine implies divergence of the amplitude.

Example 2: $\hat{i}_{[33 ; 22 x 3]}$

The counterterms

$$
\begin{aligned}
& \mathfrak{c}_{1} \mu^{-\epsilon} \int \varphi_{[3]} \varphi_{[2]} \mathcal{O}_{[2]} \\
& \mathfrak{c}_{2} \mu^{-\epsilon} \int \varphi_{[3]}^{2} \mathcal{O}_{[3]} \\
& \mathfrak{c}_{3} \mu^{-2 \epsilon} \int \varphi_{[3]}^{2} \varphi_{[2]} \mathcal{O}_{[2]}
\end{aligned}
$$

- If $\frac{d}{2}<\Delta_{j} \leq d$ only type- 0 and type- 1 conditions can be satisfied.
- Source renormalization

$$
\begin{aligned}
\varphi_{[2]} \mapsto \varphi_{[2]}\left[1+\mathfrak{c}_{1} \mu^{-\epsilon} \varphi_{[3]}+\mathfrak{c}_{3} \mu^{-2 \epsilon} \varphi_{[3]}^{2}+O\left(\varphi_{[3]}^{3}\right)\right], \\
\varphi_{[3]} \mapsto \varphi_{[3]}\left[1+\mathfrak{c}_{2} \mu^{-\epsilon} \varphi_{[3]}+O\left(\varphi_{[3]}^{2}\right)\right] .
\end{aligned}
$$

- Induces beta functions.

Renormalization in dS

$>$ Renormalize dS amplitudes by introducing counterterm living at

$$
\tau=0 .
$$

$>$ In the Schwinger-Keldysh formalism we renormalize both actions $S_{ \pm}$,

$$
S_{ \pm}\left[\varphi_{ \pm}\right] \longmapsto S_{ \pm}\left[\varphi_{ \pm}\right]+S_{\mathrm{ct}}\left[\varphi_{(0)}, J_{ \pm}\right]
$$

$>$ Counterterms with no J cancel.
$>$ No anomalies in de Sitter.
$>$ Only source renormalization: only beta functions.

$$
S_{\mathrm{ct}}^{d S}\left[\varphi_{(0)},\left(J_{+}-J_{-}\right) ; \epsilon, \mu, \mathfrak{a}_{j}^{d S}\right]=\int d^{d} x\left(J_{+}-J_{-}\right) f\left(\varphi_{(0)} ; \epsilon, \mu, \mathfrak{a}_{j}^{d S}\right)
$$

Continuation formulas

$>$ When the dust settles the continuation formulas hold except that the map $A_{i j}: \mathfrak{a}_{i}^{A d S} \mapsto \mathfrak{a}_{j}^{d S}$ may be non-trivial.

$$
\begin{aligned}
& d s_{\left[\Delta_{1} \Delta_{2} \Delta_{3}\right]}^{\mathrm{ren}}\left(q_{i} ; \mu, \mathfrak{a}_{i}\right)=-\frac{1}{4} \frac{\operatorname{Im} i_{\left[\Delta_{1} \Delta_{2} \Delta_{3}\right]}^{\mathrm{ren}}\left(\mathrm{i} q_{i} ; \mu, A\left(\mathfrak{a}_{i}\right)\right)}{\prod_{j=1}^{3} \operatorname{Im} i_{\left[\Delta_{j} \Delta_{j}\right]}^{\mathrm{ren}}\left(\mathrm{i} q_{j}\right)}, \\
& d s_{\left[\Delta_{1} \Delta_{2} \Delta_{3} \Delta_{4}\right]}^{\mathrm{ren}}\left(q_{i} ; \mu, \mathfrak{a}_{i}\right)=-\frac{1}{8} \frac{\operatorname{Im} i_{\left[\Delta_{1} \Delta_{2} \Delta_{3} \Delta_{4}\right]}^{\mathrm{ren}}\left(\mathrm{i} q_{i} ; \mu, A\left(\mathfrak{a}_{i}\right)\right)}{\prod_{j=1}^{4} \operatorname{Im} i_{\left[\Delta_{j} \Delta_{j}\right]}^{\mathrm{ren}}\left(\mathrm{i} q_{j}\right)},
\end{aligned}
$$

$$
d s_{\left[\Delta_{1} \Delta_{2} ; \Delta_{3} \Delta_{4} x \Delta_{x}\right]}^{\mathrm{ren}}\left(q_{i}, s ; \mu, \mathfrak{a}_{i}\right)=\frac{1}{8} \prod_{j=1}^{4} \frac{1}{\operatorname{Im} i_{\left[\Delta_{j} \Delta_{j}\right]}^{\mathrm{ren}}\left(\mathrm{i} q_{j}\right)}[
$$

$$
\operatorname{Im} i_{\left[\Delta_{1} \Delta_{2} ; \Delta_{3} \Delta_{4} x \Delta_{x}\right]}^{\mathrm{ren}}\left(\mathrm{i} q_{i}, \mathrm{i} s ; \mu, A\left(\mathfrak{a}_{i}\right)\right)
$$

$$
\left.-\frac{\operatorname{Im} i_{\left[\Delta_{1} \Delta_{2} \Delta_{x}\right]}^{\mathrm{ren}}\left(\mathrm{i} q_{1}, \mathrm{i} q_{2}, \mathrm{i} s ; \mu, A\left(\mathfrak{a}_{i}\right)\right) \operatorname{Im} i_{\left[\Delta_{x} \Delta_{3} \Delta_{4}\right]}^{\mathrm{ren}}\left(\mathrm{i} s, \mathrm{i} q_{3}, \mathrm{i} q_{4} ; \mu, A\left(\mathfrak{a}_{i}\right)\right)}{\operatorname{Im} i_{\left[\Delta_{x} \Delta_{x}\right]}^{\mathrm{ren}}(\mathrm{i} s)}\right] .
$$

Example 1: $i_{[222]}^{\mathrm{ren}}$

$>$ We found

$$
i_{[222]}^{\mathrm{ren}}=-\log \left(\frac{k_{t}}{\mu}\right)-\mathfrak{a}^{(1)}
$$

$>$ Use

$$
\log \left(\frac{q}{\mu}\right) \longmapsto \log \left(\frac{\mathrm{i} q}{\mu}\right)=\log \left(\frac{q}{\mu}\right)+\frac{\mathrm{i} \pi}{2} .
$$

$>$ We get

$$
\begin{aligned}
d s_{[222]}^{\mathrm{ren}} & =-\frac{1}{4} \frac{\operatorname{Im} i_{[222]}^{\mathrm{ren}}\left(\mathrm{i} q_{1}, \mathrm{i} q_{2}, \mathrm{i} q_{3}\right)}{\prod_{j=1}^{3} \operatorname{Im} i_{[22]}^{\mathrm{ren}}\left(\mathrm{i} q_{j}\right)} \\
& =-\frac{\pi}{8 q_{1} q_{2} q_{3}} .
\end{aligned}
$$

Example 2: $i_{[33 ; 22 x 3]}^{\mathrm{ren}}$

$$
\begin{aligned}
& \begin{array}{l}
\ln (1)=\operatorname{dS4} \operatorname{ptX}[3,\{3,3,2,2,3\}] \\
\text { Outt }]=\frac{1}{8 k_{1}^{3} k_{2}^{3} k_{3} k_{4}}\left(\frac{\log \left[\frac{s+k_{1}+k_{2}}{s+k_{3}+k_{4}}\right]\left(s^{3}+k_{1}^{3}+k_{2}^{3}\right)}{3 s^{2}}+\frac{1}{24} \pi^{2}\left(k_{3}+k_{4}\right)+\frac{1}{12} \log \left[\frac{s+k_{1}+k_{2}}{s+k_{3}+k_{4}}\right]^{2}\left(k_{3}+k_{0}\left(-\frac{1}{6} \log \left[\frac{s+k_{3}+k_{4}}{\mu}\right]^{2}\left(k_{3}+k_{4}\right)-\right.\right.\right.
\end{array} \\
& \frac{1}{6}\left(\frac{1}{2} \log \left[\frac{s+k_{1}+k_{2}}{k_{1}+k_{2}+k_{3}+k_{4}}\right]^{2}-\frac{1}{2} \log \left[\frac{s+k_{3}+k_{4}}{k_{1}+k_{2}+k_{3}+k_{4}}\right]^{2}-\operatorname{Poly} \log \left[2, \frac{-s+k_{1}+k_{2}}{k_{1}+k_{2}+k_{3}+k_{4}}\right]+\text { PolyLog }\left[2, \frac{-s+k_{3}+k_{4}}{k_{1}+k_{2}+k_{3}+k_{4}}\right]+\right. \\
& \left.\frac{\left(-\frac{\pi^{2}}{6}+\log \left[\frac{s+k_{1}+k_{2}}{k_{1}+k_{2}+k_{3}+k_{4}}\right] \log \left[\frac{s+k_{3}+k_{4}}{k_{1}+k_{2}+k_{3}+k_{4}}\right]+\operatorname{PolyLog}\left[2, \frac{-s+k_{2}+k_{2}}{k_{1}+k_{2}+k_{3}+k_{4}}\right]+\operatorname{PolyLog}\left[2, \frac{-s+k_{3}+k_{4}}{k_{1}+k_{2}+k_{3}+k_{4}}\right]\right)\left(k_{1}^{3}+k_{2}^{3}\right)}{s^{3}}\right)\left(k_{3}+k_{4}\right)- \\
& \frac{\log \left[\frac{k_{1}+k_{2}+k_{3}+k_{4}}{s+k_{3}+k_{4}}\right]\left(k_{1}^{2}-k_{1} k_{2}+k_{2}^{2}\right)\left(k_{1}+k_{2}+k_{3}+k_{4}\right)}{3 s^{2}}+\frac{1}{3}\left(-\frac{7 s}{3}-k_{1}-k_{2}-\frac{k_{1}^{2}-k_{1} k_{2}+k_{2}^{2}}{s}-\frac{43}{18}\left(k_{3}+k_{4}\right)\right)+ \\
& \frac{1}{3} \log \left[\frac{s+k_{3}+k_{4}}{\mu}\right]\left(s+\left(k_{3}+k_{4}\right)\left(\frac{4}{3}-a[333][1]\right)\right)+\frac{1}{3} s(1+o[333][1])+\frac{1}{3 s^{3}}\left(-s+\left(k_{3}+k_{4}\right)\left(-1+\log \left[\frac{s+k_{3}+k_{4}}{\mu}\right]+a[322][1]\right)\right) \\
& \left(4 s k_{1} k_{2}-\left(s+k_{1}+k_{2}\right)\left(s k_{1}+s k_{2}+k_{1} k_{2}\right)+\left(s^{3}+k_{1}^{3}+k_{2}^{3}\right)\left(-\frac{4}{3}+\log \left[\frac{s+k_{1}+k_{2}}{\mu}\right]+0[333][1]\right)\right)+ \\
& \frac{1}{3}\left(\mathbf{k}_{3}+\mathbf{k}_{4}\right)\left(1+\mathrm{o}[333][1]+a[333][2]-\frac{1}{2} a[33223][2]\right)
\end{aligned}
$$

Our repository

Repository of AdS amplitudes

You can find all regulated and renormalized 2-, 3-, and 4-point amplitudes for $d=3$ and $\Delta=2$ or 3 in the HAndbooK Mathematica package.
$>$ The package is attached to the arXiv paper at https://arxiv.org/abs/2207.02872.
$>$ The package provides all regulated and renormalized $2-$, 3- and 4-point amplitudes for $d=3$ and $\Delta=2,3$.
$>$ Regulated amplitudes are evaluated in an arbitrary (u, v)-scheme.

Raising/lowering operators (1/2)

$>$ Explicit expressions for amplitudes give us opportunity to test implicit results.
$>$ Raising/lowering operators $\mathcal{W}_{12}^{\sigma_{1} \sigma_{2}}$ were introduced in [Karateev, Kravchuk, Simmons-Duffin (2017)] [Arkani-Hamed, Maldacena (2018)] [Baumann et al (2019)],

$$
\Delta_{1,2} \longmapsto \Delta_{1,2}+\sigma_{1,2}, \quad \quad \sigma_{1,2}= \pm 1
$$

$>$ For example, $\mathcal{W}_{12}^{++} i_{[22,22 x 3]} \sim i_{[33,22 x 3]}$? Impossible!
$>$ The lowering operator is $\mathcal{W}_{12}^{--}=\frac{1}{2}\left(\frac{\partial}{\partial k_{1}^{\mu}}+\frac{\partial}{\partial k_{2}^{\mu}}\right)^{2}$.
$>$ The raising operator uses inversion,

$$
\mathcal{S}_{i}(f)=k_{i}^{-2 \Delta_{i}+d} f, \quad \mathcal{W}_{12}^{++}=\mathcal{S}_{1}^{-1} \mathcal{S}_{2}^{-1} \mathcal{W}_{12}^{--} \mathcal{S}_{1} \mathcal{S}_{2}
$$

Raising/lowering operators (2/2)

Resolution

Combinations of exchange and contact diagrams,

$$
\begin{aligned}
\mathcal{W}_{12}^{\sigma_{1} \sigma_{2}} \hat{i}_{\left[\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4} x \Delta_{x}\right]}= & \mathcal{N}_{\text {exch. }}^{\sigma_{1} \sigma_{2}} \hat{i}_{\left[\Delta_{1}+\sigma_{1}, \Delta_{2}+\sigma_{2}, \Delta_{3}, \Delta_{4} x \Delta_{x}\right]} \\
& +\mathcal{N}_{\text {cont. }}^{\sigma_{1} \sigma_{2}} \hat{i}_{\left[\Delta_{1}+\sigma_{1}, \Delta_{2}+\sigma_{2}, \Delta_{3}, \Delta_{4}\right]}
\end{aligned}
$$

$>$ Sometimes $\mathcal{W}_{12}^{\sigma_{1} \sigma_{2}}$ can yield an amplitude associated with a derivative vertex in the action, such as $\partial_{\mu} \varphi_{1} \partial^{\mu} \varphi_{2} \varphi_{3}$. This requires a special condition to be satisfied.
$>$ Action of $\mathcal{W}_{12}^{\sigma_{1} \sigma_{2}}$ on renormalized correlators can yield additional, local contributions, e.g.,

$$
\begin{aligned}
\mathcal{W}_{12}^{++} i_{[22,22 x 2]}^{\mathrm{ren}}=- & i_{[33,22 x 2]}^{\mathrm{ren}}-\frac{1}{2} i_{[3322]}^{\mathrm{ren}} \\
& +\frac{k_{3}+k_{4}}{8}\left(3+2 \mathfrak{a}_{[3322]}^{(1)}-2 \mathfrak{a}_{[33,22 x 2]}^{(1)}\right)
\end{aligned}
$$

$>$ For $\mathcal{W}_{12}^{++} \hat{i}_{[22,22 x 3]}$ we have $\mathcal{N}_{\text {exch. }}^{\sigma_{1} \sigma_{2}}=-\frac{1}{2}(-3+\epsilon) \epsilon$. One cannot obtain $\hat{i}_{[33,22 x 3]}$ from $\hat{i}_{[22,22 x 3]}$ at all.

Summary

$>$ We present the detailed renormalization procedure for $2-, 3-$, and 4-point dS and AdS amplitudes.
$>$ This includes most of the amplitudes involving conformally coupled and massless scalars.
$>$ Our continuation formulas hold for renormalized amplitudes (up to scheme-dependence).
$>$ Be very careful when using raising/lowering operators: they mix exchange and contact amplitudes.
$>$ Continuation formulas are not just the shadow transform.
$>$ You don't have to renormalize every time: use renormalized amplitudes.
$>$ Use our package HANDBOOK from [2207.02872] for 2-, 3- and 4-point amplitudes.

