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Introduction

Look for qualitative features of the inflationary model, e.g. scale of

inflation, speed of propagation etc.

Dissipation

Transfer energy from the inflaton to additional degrees of freedom.

Cold inflation: scalar field with a potential. Coupling to other degrees of

freedom becomes important only at the end, i.e. (pre)heating etc.

“Warm” inflation: class of models in which coupling to other particles are

relevant all the time – Berera ’95, Warm little inflation ’16, Minimal

warm inflation ’19.

They don’t have to thermalize!, e.g. axion coupled to U(1): ϕFF̃ by

Anber and Sorbo ’09.
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Natural inflation, strong backreaction

L = −1

2
(∂ϕ)2 − V (ϕ)− 1

4
FµνF

µν − α

4f
ϕFµν F̃

µν .

One of the photon polarizations grow exponentially due to instability

d2A±

dτ2
+

(
k2 ± 2k

ξ

τ

)
A± = 0 , ξ =

αϕ̇0

2fH
.

Instability starts at |kτ | ≃ 2ξ and continues up to superhorizon scales.

Total amount of enhancement is A ∼ eπξ. Inflaton equation of motion

ϕ′′ + 2aHϕ′ −∇2ϕ+ a2V ′ = a2
α

f
E⃗.B⃗ .

Quntum fluctuations in the E⃗.B⃗ term sources primordial perturbations.

Difficulties: Large power spectrum, non-locality of the response, resonant

instability.

Anber and Sorbo ’09, ’12.
Domcke et al ’20, Caravano et al ’22, Peloso and Sorbo ’22.
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Remark: EFT with dissipation

Single field (clock) models

Single clock with dissipation

Multiple field models

Our model is an example of Effective field theory of inflation with

dissipation, Nacir, Porto, Senatore and Zaldarriaga ’11.
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Outline

1. The Model

2. Linear Perturbations

3. Non-Gaussianity
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The Model



Inflaton + Additional Degrees Of Freedom (ADOF)

S =

∫
d4x

√
−g

[
1

2
M2

PlR− 1

2
(∂ϕ)2 − V (ϕ)− |∂χ|2 +M2|χ|2

− i
∂µϕ

f
(χ∂µχ∗ − χ∗∂µχ)− 1

2
m2(χ2 + χ∗2)

]
.

• For m = 0 the action is U(1) invariant. One can remove the current

coupling by χ → e−iϕ/fχ, which changes M2 → M2 + (∂ϕ)2/f2.

• We consider M2(X) and m2(X). With hindsight, M2 is defined

with the unconventional sign.

• The only shift-symmetry breaking term is the potential V (ϕ).

Bodas, Kumar, and Sundrum ’20
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Dynamics of ADOF

Equation of motion for χ will be

□χ+
2i

f
∇µϕ∇µχ+

(
M2 + i

□ϕ

f

)
χ−m2χ∗ = 0 .

We have ϕ = ϕ0 with ρ ≡ ϕ̇0/f , also define χ = (σ1 + iσ2)/
√
2a3/2

σ̈1 −
∇⃗2σ1

a2
−
(
M2 −m2

)
σ1 − 2ρσ̇2 = 0 ,

σ̈2 −
∇⃗2σ2

a2
−
(
M2 +m2

)
σ2 + 2ρσ̇1 = 0 .

Neglecting expansion one can find the natural modes of the system

assuming, in Fourier space, σ ∼ e−iωt and obtains

ω2
± =

(√
k2 + ρ2 −M2 +

m4

4ρ2
± ρ

)2

− m4

4ρ2
,
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Dynamics of ADOF (cont.)

Figure 1: Dispersion relation

• Complex scalar field, two modes.

• ω− has a minimum located at k = M

controlled by the value of m.

• For m = 0, U(1)−invariant case, the

band closes.

• The location of the band will be

M2 −m2 < k2 < M2 +m2.

• Very large and very small scales are

healthy if

m ≪ M ≲ ρ
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ADOF in expanding universe

Including expansion, momenta gets redshifted k → k/a. Therefore, the

instability is regulated by the limited amount of time spent in the band

controlled by H.

Instability band

• Length of the band

H∆t ∼ m2

M2
≪ 1 .

• Total growth

πξ ≡
∫ t2

t1

dt |ω−| ∼
m4

HρM2
.

• Exponential enhancement of

the fields χ ∼ eπξ.

Demanding H ≪ m ≪ M ≲ ρ we get ξ = O(1).
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Canonical quantization of ADOF

Quantization of χ field

σi(t, x⃗) =

∫
d3k⃗

(2π)3/2
eik⃗·x⃗

[
(Fk(t))ij âj(k⃗) + (F ∗

k (t))ij â
†
j(−k⃗)

]
.

The matrix F plays the role of mode functions. It has to be a matrix

since the two fields are strongly coupled by presence of ρσ̇ term. Mode

functions satisfy

F̈k +

(
0 −2ρ

2ρ 0

)
· Ḟk +

(
k2

a2 −M2 +m2 0

0 k2

a2 −M2 −m2

)
· Fk = 0 .

Bunch–Davies initial condition implies

Fk(t → −∞) → e−ikτ√
2k/a

(
1 0

0 1

)
.
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WKB solution

Focusing on each column

F⃗column = Q⃗(t) exp

(
−i

∫
dt ω(t)

)
,

with D(ω).Q⃗ = 0. For Nontrivial solutions detD(ω±) = 0. In addition,

Q⃗ is the null vector of D(ω). Normalization is fixed by looking at NLO

WKB
d

dt

[
Q⃗†

±

(
ω± −iρ

iρ ω±

)
Q⃗±

]
= 0 .

General solution is addition of F± and F ∗
±. WKB is valid if ω̇

ω2 ≪ 1,

therefore it breaks down at ω2(t1,2) = 0. Need to do matching at t1,2:

Weinberg 1961, Dufaux, et al ’06, Landau QM
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WKB solution (cont.)
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Figure 2: Comparison of numeric (solid) and analytic (dashed) solution. Gray

region is the instability band. 12



Inflaton dynamics

Equation of motion for the inflaton is

∇µ

[(
1+

(M2
X − 2ρ2)

ρ2f2
|χ|2 − m2

X

2ρ2f2
(χ2 + χ∗2)

)
∇µϕ

]
−V ′(ϕ)+

im2

f
(χ2−χ∗2) = 0 .

Define O ≡ −i(χ2 − χ∗2), neglect ϕ̈0, Ḣ at the background level

3Hϕ̇0 + V ′ +
m2

f
⟨O⟩ ≃ 0 .

• Backreaction could be large since ⟨O⟩ ≃ m2

2π2 e
2πξ.

• For moderate values of f (≫ M) we get 2πξ ∼ log fV ′/m4

• For Ḣ/H2 ≪ 1 we require V ≫ kinetic of ϕ and χ and therefore,

3M2
PlH

2 ≈ V .
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Inflaton dynamics (cont.)

• We can neglect the other terms in the equation

m2
X

〈
χ2 + χ∗2〉

(M2
X − 2ρ2) ⟨|χ|2⟩

≃ m4

ρ4
≪ 1 ,

Hϕ̇0

f2

〈
|χ|2

〉
im2

f ⟨χ2 − χ∗2⟩
≃ Hρ3

m4
≃ 1

8ξ
≲ 1 .

• The sign of the backreaction term is correct

ϕ̇0 > 0 =⇒ −i
〈
χ2 − χ∗2〉 > 0 .

• Require an attractor solution: dξ

dϕ̇0
> 0. We have seen that

ξ ≃ m(ϕ̇0)
4

8H
(

ϕ̇0

f

)
M(ϕ̇0)2

.

• Without M2(X) and m2(X) tends to move away from the desired

solution. Sign of M2 can be a consequence of inflating background.
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Linear Perturbations



General remarks

Much easier to perturb the equations of motion. Parametrize deviations

ϕ = ϕ0 + δϕ and O = ¯⟨O⟩+ δO and assume decoupling limit.

It is single-clock inflation and the main observable is ζ = −Hδϕ/ϕ̇0.

For any operator O, deviations from ¯⟨O⟩ can be decomposed into

intrinsic noise and induced response fluctuations

δO = δOS + δOR .

By suitable assumptions it is enough to focus on O = −i(χ2 − χ∗2) in

the equation of motion

δ̈ϕ+ 3H ˙δϕ− ∇⃗2δϕ

a2
+ V ′′δϕ = −m2

f
(δOS + δOR) ,

while other operators like |χ|2, χ2 + χ∗2 etc. could be neglected.
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Response and Locality

At leading order, response is the change in ⟨O⟩ as a result of

perturbation δϕ, i.e. δOR = ⟨O⟩ϕ − ⟨O⟩ϕ0
.

• Hierarchy of scales variation of δϕ is much slower/longer than χ,

WKB solution can be extended to include δϕ.

• Local operator certain class of operators that ⟨O⟩ is dominated by

modes around the instability band.

The response in this case is local

δOR ≃ ∂ ⟨O⟩
∂ϕ̇0

˙δϕ .

The equation will become

δ̈ϕ+ (3H + γ) ˙δϕ− ∇⃗2δϕ

a2
+ V ′′δϕ = −m2

f
δOS ,

with γ/H ∼ ξ2e2πξM2/f2 ≫ 1.
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Local vs Non-Local

For a generic operator of the form O = 1
a3Aijσiσj we have

⟨O⟩ = 1

a3

∫
d3k⃗

(2π)3
Tr
(
ATFkF

†
k

)
.

For a homogeneous perturbation, each mode is mostly sensitive to the

value ϕ̇ at the moment of instability.

50 100 200 500
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

50 100 200 500
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

non-local local

We get rid of non-locality for ξ ≳ 1, fine tuning, etc.
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Statistics of the Noise

Noise is quantum mechanical fluctuation δOS = O − ⟨O⟩. Eventually we

are interested in correlation functions〈
δOS(t, k⃗)δOS(t

′, k⃗′)
〉′

=

∫
2 d3p⃗

(2π)3a3a′3
TrF †

q (t)AFp(t)F
†
p (t

′)AFq(t
′) ,

in which A =

(
0 1

1 0

)
and q = |⃗k − p⃗|.

The integrand is dominated by the instability band. We are interested in

long distance correlations k ≪ p ∼ q. This is delta function in real space.

In addition, the correlation decrease for large temporal separations,

t− t′ ≫ m−1, due to oscillations after the instability band.

〈
δOS(t, k⃗)δOS(t

′, k⃗′)
〉
≃ (2π)3δ(k⃗ + k⃗′)

δ(t− t′)

a3
νO

with νO = M e4πξ/4π2m.

18



δ̈ϕ+ (3H + γ) ˙δϕ− ∇⃗2δϕ

a2
+ V ′′δϕ = −m2

f
δOS

18



Linear perturbations

δ̈ϕ+ (3H + γ) ˙δϕ+

(
k2

a2
+ V ′′

)
δϕ = −m2

f
δOS .

The generic solution is a linear combination of homogeneous and the

sourced part. In the limit that γ ≳ H, vacuum fluctuations becomes

exponentially suppressed. Therefore, the main source for fluctuations

come from the noise

δϕ(τ, k⃗) = −m2

f

∫
dτ ′a′2Gk(τ, τ

′)δOS(τ
′, k⃗) .

Eventually power spectrum can be written〈
ζk⃗ζk⃗′

〉
= (2π)3δ(k⃗ + k⃗′)

H2m4

ρ2f4
νO

∫
dτ ′Gk(0, τ

′)2 .

The amplitude

∆2
s ≃ 1

32ξ2

( γ

πH

)3/2 MH4

m5
∼ 10−9
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Non-Gaussianity



Beyond linear order

Genuine test of the model is provided by the non-Gaussian features of

perturbations. We need to expand the e.o.m beyond linear order.

Two types of non-Gaussianities:

• Non-Gaussian statistics of the noise term δOS . It can be shown

• Non-linear dynamics of the system, i.e. quadratic terms in the

e.o.m. The relevant contribution is the non-linear response: δOR up

to quadratic order.

20



Non-Gaussian Noise

Similar to the two point function we get

⟨δOS(1)δOS(2)δOS(3)⟩ ≃ (2π)3δ(k⃗1+k⃗2+k⃗3)δ(τ1−τ2)δ(τ1−τ3)H
8τ81 νO3 ,

with νO3 ≃ e6πξ /π2m2. The three point function of the inflaton will be

⟨δϕk⃗1
δϕk⃗2

δϕk⃗3
⟩ = −

(
m2

f

)3 ∫ (
dτ i a

2
iGki

(0, τi)
)3

⟨δOS(1)δOS(2)δOS(3)⟩ ,

which leads to

f eq
NL =

5

18

∫
dy y2G̃(0, y)3(∫
dy G̃(0, y)2

)2 νO3H2

H
ρf

m2

f ν2O
≃ 40π

9
ξ
m2

M2
.
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Non-linear Response

We expect that local approximation remains valid up to higher orders.

In the Gaussian approximation, two parameters that can change

influenced by δϕ: mean and variance

δOR ≃ ∂ ⟨O⟩
∂ϕ̇0

(
˙δϕ− (∂iδϕ)

2

2ϕ̇0a2

)
+

1

2

∂2 ⟨O⟩
∂ϕ̇2

0

˙δϕ
2
+

1

2νO

∂νO

∂ϕ̇0

˙δϕδOS +. . . ,

The first two terms: δ ⟨O⟩ (
√
∂µϕ∂µϕ), the last term is the change in〈

δO2
〉
.

Therefore, one would obtain

δ̈ϕ+ (3H + γ) ˙δϕ− ∇⃗2δϕ

a2
+ V ′′δϕ =

γ

2ρf

[
(∇⃗δϕ)2

a2
− 2πξ ˙δϕ

2

]

− m2

f

(
1 + 2πξ

˙δϕ

ρf

)
δOS .
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− m2

f
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˙δϕ

ρf

)
δOS .
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Bispectrum

δϕNLO(τ, k⃗) = −
∫

dτ̃ Gk(τ, τ̃)

∫
d3p⃗

(2π)3/2

[
γ

2ρf

(
p⃗.q⃗ δϕpδϕq + 2πξδϕ′

pδϕ
′
q

)
+ 2πξã2

m2

ρf2
δϕ′

qδOS(τ̃ , p)

]
,

with q⃗ = k⃗ − p⃗ and δϕ the is linear order solution, i.e. δϕ ∼
∫
GδOS .

The 3-point function of curvature perturbation is given by〈
ζk⃗1

ζk⃗2
ζk⃗3

〉
NL

= −
(
H

ρf

)3 [〈
δϕNLO

k⃗1
δϕk⃗2

δϕk⃗3

〉
+ k⃗1 ↔ k⃗2 + k⃗1 ↔ k⃗3

]
≡ (2π)3δ(k⃗1 + k⃗2 + k⃗3)B(k1, k2, k3) .
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fNL

We parametrize the 3-point function with the magnitude at equilateral

triangle

B(k, k, k) =
1

k6
18

5
fNL(2π

2∆2
s)

2 .
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Plot with ξ = 2.
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fNL (cont.)

• The coefficient of (∇⃗δϕ)2 is fixed by nonlinear realization of Lorentz

symmetry and f eq
NL ≃ −γ/4H . Same sign as the reduced speed of

sound contribution.

• In the limit of small friction the only remaining term is ˙δϕδOS with

f eq
NL ≃ −5.7ξ.
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Shapes

Shapes corresponding to (from left to right) terms (∇δϕ)2, ξ ˙δϕ
2
and

ξ ˙δϕδOS .
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Shapes (cont.)

• The peak is at the equilateral configuration.

• Squeezed limit vanishes since the model is single clock.

• Partial enhancement in the collinear configuration.
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Summary
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Future directions

• Gravitational Waves

• Thermalization

• Fermions (Adshead, et. al. 18)
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Thank you


