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Over the past decade, we have seen scattering amplitudes emerge from

new mathematical structures in boundary kinematic space.

amplituhedron associahedron cosmological polytopes

conceptual advantage: focuses directly on boundary observables

practical advantage: simplifies calculations



We can't directly observe the pre-Big Bang evolution of the universe,

but instead must infer it from spatial correlations on the future boundary.

time

How can we see “time evolution” from boundary correlators?



In de Sitter space, boundary conformal correlators satisty

local differential equations that reflect bulk time evolution.

Is there a deeper reason for their existence beyond de Sitter?



Outline

Correlators as Time Evolution as

Twisted Integrals Kinematic Flow

Beyond Single Graphs

Today, I'll present a new mathematical perspective on cosmological time evolution.



|. Correlators as Twisted Integrals



Cosmological Wavefunction

We'll be interested in the wavefunction (coefficients) in FRW cosmology.

VAAVAVAAVARVARES

Specifically, we'll consider conformally-coupled scalars with (non-conformal)

polynomial interactions and a power-law scale factor.
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Cosmological Wavefunction

We'll be interested in the wavefunction (coefficients) in FRW cosmology.

VAAVAVAAVARVARES

This can be mapped to the action of massless scalars with time-dependent

couplings.
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Cosmological Wavefunction

The wavefunction in FRW is related to the flat-space one as
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rational function

“twist”

(tree level)

It's convenient to consider graphs with all external propagators truncated.




Wavefunction in Flat Space

Flat-space wavefunction is described by rational functions with simple poles.
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There is a simple combinatorial prescription for constructing the flat-space

wavefunction.



Case Study: Two-Site Chain

The simplest nontrivial example in FRW is the two-site chain graph:
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Modern approaches to compute integrals of this type include

» the method of differential equations

» twisted cohomology

Similar techniques can be applied to our cosmology problem.



Family of Integrals

Consider a family of integrals with the same singularities.
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These integrals form a finite-dimensional vector space.

Twisted cohomology provides a geometric way to determine the size of this

vector space.



Master Integrals

The number of master integrals equals the number of bounded regions defined

by the singular factors of the integrand.
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Master Integrals

A good choice for the basis of integrals is given by the canonical forms of

bounded regions.
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Differential Equations

The basis of master integrals satisfy differential equations.

For instance, taking an X1 derivative of the wavefunction gives
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Differential Equations

The basis of master integrals satisfy differential equations.

For instance, taking an X1 derivative of the wavefunction gives
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Differential Equations

The basis of master integrals satisfy differential equations.

For instance, taking an X1 derivative of the wavefunction gives
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Differential Equations

The basis of master integrals satisfy differential equations.

For instance, taking an X1 derivative of the wavefunction gives
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This can be expressed in terms of the total differential as
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Differential Equations

Taking the total differential of the basis vector gives
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Locality and Time Evolution

The equations can also be combined into a local second-order equation.
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General Tree Graphs

There are several challenges for the conventional approach:

(!) Hard to visualize higher-dimensional planes.
(1) Finding an optimal basis is a bit of an art.

(1) The derivatives are not automatically expressible in terms of the

original basis.

Remarkably, there are hidden combinatorial and structures underlying

these differential equations that allow us to bypass these challenges.



ll. Time Evolution as Kinematic Flow



Two-Site Chain Revisited

For the two-site chain, we had
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Graphical Representation

It's natural to represent the basis integrals by (disconnected) tubings that

enclose at least one cross
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and the letters by connected tubings as
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Under the action of “d”, these tubings grow according to simple graphical rules.



Graphical Rules for All Trees

» Enumerate all possible tubings for the basis functions.
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» Taking the differential, these tubings grow and merge according to

four graphical rules:
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Growth of Tubings

L et's see these rules in action for the two-site chain:
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Taking derivatives nucleates a pair of tubings around each vertex, which

correspond to letters with = sign.



Growth of Tubings

L et's see these rules in action for the two-site chain:
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When a vertex is inside the parent tubing, then the tubing gets

If two tubings overlap, then they merge to form a bigger tubing.



Growth of Tubings

L et's see these rules in action for the two-site chain:

The growth ends when all vertices are enclosed inside a tubing.

No new source functions appear, and the system closes.



Differential Equations

The differential equations for the two-site chain can be represented as
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The rules are local and completely general — no more artistic choices of

basis integrals and their IBP reduction are needed.



Three-Site Chain

A similar pattern holds for a three-site graph:

Y Y’

X1 Xo X3

There are 16 basis functions, less than the 25 we get from twisted cohomology.
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Three-Site Chain

A similar pattern holds for a three-site graph:

Y Y’

X1 X2 X3

There are 13 letters, less than the naive counting of 19.
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Graphical Rules

Taking the differential of one of the source functions gives
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The equation can be predicted using simple graphical rules.



Graphical Rules

Taking the differential of one of the source functions gives
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The equation can be predicted using simple graphical rules.



Graphical Rules

Taking the differential of one of the source functions gives
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The equation can be predicted using simple graphical rules.



Graphical Rules

Taking the differential of one of the source functions gives
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Graphical Rules

Taking the differential of one of the source functions gives
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The equation can be predicted using simple graphical rules.




Graphical Rules

Taking the differential of one of the source functions gives

nucleation
- ~ R
dQl:Q1°”‘*‘+(Q1—Q1)@""_’_"_°‘|‘(Q1—é]v3)’_"_’_"_@
(v" N ~ Ty
+ q1 (——x—e| + (3+Q2)°—"—’—@j

_ A~

merger — (2 R
. y

absorption

The graphical rules are local and can be used to predict the differential

equations for arbitrary tree graphs with different topologies.




Time Evolution as Kinematic Flow

Taking successive partial derivatives, the tubings grow as
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The growth ends, and the system closes, when all vertices are enclosed.



lll. Beyond Single Graphs



Beyond Single Graphs

A single graph corresponds to a specific triangulation of a polygon.

Distinct triangulations a pentagon correspond to different permutations.

OO00O0

I IT I11




Kinematic Polygons

Letters are now represented by subpolygons with (dashed) internal edges.

O

Sources are given by subpolygons with at least one dashed internal edge.
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Growth of Kinematic Polygons

For example, taking the ki derivative of the 5-point function gives
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Growth of Kinematic Polygons

The system of equations closes when the subpolygon is fully grown.



Conclusions



Conclusions

We have developed a systematic way of deriving the differential equations for

the FRW wavefunction of conformally-coupled scalars at tree level.
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The differential equations can be predicted in terms of the dynamics of graphs.

The sum over graphs is captured by a kinematic polygon.



Extra Slides



Simplex Forms

The previous example suggests that the canonical forms of simplices are

natural objects to consider.
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The differential of a (
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An Algorithm for All Trees

» Define all by substituting twisted planes in the wavefunction.

N, source — 4n—1
» Take the differential of the using the formula

d[Ly -+ Lp) = —& » dlogdet( T.) x 8[Ly - -+ LT,

» Express the result back in terms of the




