# Shift Symmetries & AdS/CFT

#### Laura Engelbrecht ETH Zurich Soon to be at Univ. of Pisa

Work in collaboration with Erin Blauvelt and Kurt Hinterbichler

"Shift Symmetries and AdS/CFT", arXiv:2211.02055 [hep-th].

## Outline

Review shift symmetric theories in flat spacetime

✤Introduce shift symmetric theories in AdS

Discuss properties of CFTs duals

Results for AdS/CFT calculations

Summary/Discussion

### Shift Symmetric Fields in Flat Space

Provide useful classifications of low-energy EFTs

Appear in spontaneous symmetry breaking

Lead to non-renormalization theorems

Have enhanced soft limits in scattering amplitudes

In exceptional cases, allows scattering amplitudes to be constructed recursively through soft subtracted recursion

### Shift Symmetric Fields in Flat Space

The simplest example of a shift symmetric theory is a free massless scalar field in flat space.

$$S = \int d^D x \left( -\frac{1}{2} \partial_\mu \phi \partial^\mu \phi \right)$$

◆ It is invariant under an infinite tower of shift symmetries.

$$\begin{split} \delta \phi &= c + c_{\mu} x^{\mu} + c_{\mu_{1}\mu_{2}} x^{\mu_{1}} x^{\nu_{2}} + c_{\mu_{1}\mu_{2}\mu_{3}} x^{\mu_{1}} x^{\nu_{2}} x^{\nu_{3}} + \cdots \\ \uparrow & & \uparrow & \\ \mathbf{C}_{\text{artesian spacetime}} & & C_{\mu_{1}\cdots\mu_{k}} \text{ is a rank-k symmetric} \\ & & \text{coordinates} & & \text{traceless constant tensor} \end{split}$$

We call a symmetry of the form  $c_{\mu_1\cdots\mu_k}x^{\mu_1}\cdots x^{\mu_k}$  a k-level shift.

In flat spacetime, they are always massless.

#### Interacting Scalar Examples in Flat Space

 $\bigstar k = 0$  is a shift by a constant c

Any theory with at least one derivative per field such as P(X) theories where  $X = \partial_{\mu}\phi\partial^{\mu}\phi$ 

$$\bigstar k = 1 \quad \delta \phi = c + c_{\mu} x^{\mu}$$

DBI with the action  

$$S = -\frac{\Lambda^{D}}{\alpha} \int d^{D}x \sqrt{1 + \frac{\alpha}{\Lambda^{D}} (\partial \phi)^{2}}$$

Galileons which have actions of the form  $\mathscr{L}_n \sim \phi S_{n-1}(\partial \partial \phi), \quad n = 1, 2, \dots, D+1$ where  $S_n$  are symmetric polynomials

#### $\bigstar k = 2$

Special Galileons are additionally invariant under  $\delta\phi = c_{\mu\nu} \left( x^{\mu}x^{\nu} + \frac{1}{\Lambda^6} \partial^{\mu}\phi \partial^{\nu}\phi \right)$  $S = \int d^4x \left( -\frac{1}{2} (\partial\phi)^2 + \frac{1}{12\Lambda^6} (\partial\phi)^2 \left[ (\Box\phi)^2 - (\partial_{\mu}\partial_{\nu}\phi)^2 \right] \right)$ 

#### $\bigstar k \geq 3$

There are no known ghost-free interacting theories with higher level shift symmetries.

### Shift Symmetric Fields in AdS

Shift symmetric theories in anti-de Sitter spacetime have masses that depend on the shift level k, spacetime dimension D, AdS radius L, and spin s

$$\begin{cases} m_k^2 = \frac{k(k+D-1)}{L^2}, & s = 0, \\ m_k^2 = \frac{(k+2)(k+D-3+2s)}{L^2}, & s \ge 1, \end{cases} \quad k = 0, 1, 2, \dots$$

 $\bullet$  The equations of motion are the Klein-Gordon equations

$$\begin{cases} \left( \nabla^2 - m^2 \right) \Phi = 0 \ , & s = 0 \ , \\ \left( \nabla^2 + \frac{1}{L^2} \left[ s + D - 2 - (s - 1)(s + D - 4) \right] - m^2 \right) \Phi_{\mu_1 \cdots \mu_s} = 0 \ , & s \ge 1 \ , \end{cases}$$

along with transversality and tracelessness in all the indices.

### Shift Symmetric Fields in AdS

The shift symmetry takes the form

$$\delta \Phi_{\mu_1 \cdots \mu_s} = \frac{S_{A_1 \cdots A_{s+k}, B_1 \cdots B_s} X^{A_1} \cdots X^{A_{s+k}}}{4} \frac{\partial X^{B_1}}{\partial x^{\mu_1}} \cdots \frac{\partial X^{B_s}}{\partial x^{\mu_s}}$$

constant traceless tensor with the symmetries of a two row Young tableau

$$S_{A_1 \cdots A_{s+k}, B_1 \cdots B_s} \in \begin{array}{c} s+k \\ s \end{array}$$

embedding coordinates of
 the AdS<sub>D</sub> into a (D + 1)
-dimensional auxiliary flat
 spacetime

#### Some Interacting Scalar Examples in AdS

$$k = 0$$
 is a shift by a constant  $c$ 

Any scalar with at least one derivative per field such as P(X) theories where  $X = \nabla_{\mu} \phi \nabla^{\mu} \phi$ 

 $\begin{array}{l} \bigstar k = 2 \\ \delta \Phi = S_{AB} \left( X^{A} X^{B} - \frac{1}{\Lambda^{6}} \partial^{A} \Phi \partial^{B} \Phi \right) \\ \\ \frac{\mathscr{L}_{SG}(\phi)}{|G|} = \sum_{j=1}^{D-1} \frac{\psi^{D-j} + (-1)^{j} \psi^{*D-j}}{i^{j} \Lambda^{j(D+2)/2} |\psi|^{D+3} 2 \Gamma(j+3)} \left[ (j+2) f_{l} \left( \frac{X}{|\psi|^{2}} \right) \\ - (j+1) f_{j+1} \left( \frac{X}{|\psi|^{2}} \right) \right] \partial^{\mu} \phi \partial^{\nu} \phi X_{\mu\nu}^{(j)}(\Pi) - \frac{\Lambda^{D+2} L^{2}}{2(D+1)} \left( 1 - \frac{\psi^{*D+1} + \psi^{D+1}}{2 |\psi|^{D+1}} \right) \\ \\ f_{j}(x) \equiv {}_{2}F_{1} \left( \frac{D+3}{2}, \frac{j+1}{2}; \frac{j+3}{2}; -X \right), \quad \psi \equiv 1 + \frac{2i}{\Lambda^{\frac{D}{2}+1} L^{2}} \phi, \quad X \equiv -\frac{1}{\Lambda^{D+2} L^{2}} (\partial \phi)^{2} \end{array}$ 

$$\bigstar k \geq 3$$

There are no known ghost-free interacting theories with higher level shift symmetries.

J. Bonifacio, K. Hinterbichler, A. Joyce, and R. A. Rosen, "Shift Symmetries in (Anti) de Sitter Space," JHEP 02 (2019) 178, arXiv:1812.08167 [hep-th].

#### Interacting k = 0 Vector Examples in AdS

$$\frac{1}{\sqrt{-|G|}}\mathscr{L}(A) = -\frac{1}{2}F_{\mu\nu}^{2} - \frac{6}{L^{2}}A^{2} - \Lambda_{2}^{4}\left(\frac{\alpha_{3}}{2}\epsilon^{\mu_{1}\mu_{2}\mu_{3}\lambda}\epsilon^{\nu_{1}\nu_{2}\nu_{3}}{}_{\lambda}B_{\mu_{1}\nu_{1}}B_{\mu_{2}\nu_{2}}B_{\mu_{3}\nu_{3}} + \frac{\alpha_{4}}{2}\epsilon^{\mu_{1}\mu_{2}\mu_{3}\mu_{4}}\epsilon^{\nu_{1}\nu_{2}\nu_{3}\nu_{4}}B_{\mu_{1}\nu_{1}}B_{\mu_{2}\nu_{2}}B_{\mu_{3}\nu_{3}}B_{\mu_{4}\nu_{4}}\right)$$
$$B_{\mu\nu} = \nabla_{\mu}A_{\nu} + \nabla_{\nu}A_{\mu}$$
$$\delta A_{\mu} = -\xi_{\mu}$$

$$\begin{split} \frac{1}{\sqrt{-|G|}} \mathscr{L}(A) &= -\frac{1}{2} F_{\mu\nu}^2 - \frac{6}{L^2} A^2 + \frac{1}{\Lambda_2^2} \bigg[ \frac{\alpha_3}{2} S_3(B) - \frac{1}{2} F^{\mu\alpha} F^{\nu}{}_{\alpha} X^{(1)}_{\mu\nu}(B) - \frac{3}{L^2} A^2 B \bigg] \\ &+ \frac{1}{\Lambda_2^4} \bigg[ \frac{1}{8} ((F_{\mu\nu} F^{\mu\nu})^2 - F_{\mu\nu} F^{\nu\alpha} F_{\alpha\beta} F^{\beta\mu}) + \frac{\alpha_4}{2} S_4(B) - \frac{3\alpha_3}{4} F^{\mu\alpha} F^{\nu}{}_{\alpha} X^{(2)}_{\mu\nu}(B) \\ &+ \frac{1}{4} F^{\mu\alpha} F^{\nu\beta} B_{\mu\nu} B_{\alpha\beta} + \frac{1}{4} F^{\mu\alpha} F^{\nu}{}_{\alpha} B_{\mu\nu}^2 - \frac{1}{2} F^{\mu\alpha} F^{\nu\alpha} B B_{\mu\nu} \\ &- \frac{1 + 6\alpha_3}{L^2} A^2 S_2(B) + \frac{1 + 3\alpha_3}{L^2} A^{\mu} A^{\nu} X^{(2)}_{\mu\nu}(B) \\ &+ \frac{2}{L^2} (A^2 F_{\mu\nu} F^{\mu\nu} - A^{\mu} A^{\nu} B_{\mu\alpha} F_{\nu}{}^{\alpha} + \frac{1}{2} A^{\mu} A^{\nu} F_{\mu\alpha} F_{\nu}{}^{\alpha}) + \frac{12}{L^4} A^4 \bigg] + \cdots \\ S_n(M) &= n! M_{\mu_1}^{[\mu_1} M_{\mu_2}^{\mu_2} \cdots M_{\mu_n}^{\mu_n]} \qquad \qquad X^{(n)\mu}_{\nu}(M) = (n+1)! \delta_{\nu}^{[\mu} M_{\mu_2}^{\mu_2} \cdots M_{\mu_n}^{\mu_n]} \qquad \qquad \delta A_{\mu} &= -\frac{2}{\Lambda_2^2} \nabla_{\mu} \xi^{\nu} A_{\nu} - \xi_{\mu} \sqrt{1 + \frac{4A^2}{(\Lambda_2^2 L)^2}} \end{split}$$

C. De Rham, K. Hinterbichler, and L. A. Johnson, "On the (A)dS Decoupling Limits of Massive Gravity," JHEP 09 (2018) 154, arXiv:1807.08754 [hep-th]J. Bonifacio, K. Hinterbichler, L. A. Johnson, and A. Joyce, "Shift-Symmetric Spin-1 Theories," JHEP 09 (2019) 029, arXiv:1906.10692 [hep-th].

## Parent Fields

Shift symmetric theories can be constructed as the decoupled longitudinal mode of a massive field as it approaches a partially massless value.

Partially massless values occur for spins  $\geq 1$  at the mass values

$$\bar{m}_t^2 = -\frac{1}{L^2}(s-t-1)(s+t+D-4), \quad t = 0, 1, \dots, s-1$$

where t is called the field depth, with a massless field occurring at t = s - 1 for D > 2.

### Spin-1 Parent Fields Example

Starting with a massive vector

$$S = \int d^4 x \sqrt{|G|} \left[ -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} m^2 A^2 \right]$$

Taking the depth t = 0 massless limit  $(m \to 0)$  using the Stückelberg trick to preserve the number of degrees of freedom leads to

$$S = \int d^4x \sqrt{|G|} \left[ -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \nabla_{\mu} \phi \nabla^{\mu} \phi \right]$$

parent field

shift symmetric longitudinal mode

• The scalar field is shift symmetric under a k = 0 shift.

$$\delta \phi = c$$

### Spin-2 Parent Fields Examples

Starting with a massive graviton

$$S = \int d^4x \left[ \mathscr{L}_{m=0}(h) - \frac{1}{2} m^2 \sqrt{|G|} \left( h_{\mu\nu} h^{\mu\nu} - (h^{\mu}_{\mu})^2 \right) \right]$$

Taking the depth t = 1 massless limit  $(m \to 0)$ 

$$S = \int d^4x \left[ \mathcal{L}_{m=0}(h) + \sqrt{|G|} \left( -\frac{1}{2} F_{\mu\nu} F^{\mu\nu} - \frac{6}{L^2} A^2 \right) \right]$$

• The vector field is shift symmetric under a k = 0 shift.

$$\delta A_{\mu} = -\xi_{\mu}, \qquad \nabla_{\mu}\xi_{\nu} + \nabla_{\nu}\xi_{\mu} = 0$$

### Spin-2 Parent Fields Examples

Starting with a massive graviton

$$S = \int d^4x \left[ \mathscr{L}_{m=0}(h) - \frac{1}{2} m^2 \sqrt{|G|} \left( h_{\mu\nu} h^{\mu\nu} - (h^{\mu}_{\mu})^2 \right) \right]$$

Taking the depth t = 0 partially massless limit  $\left(m^2 \rightarrow -\frac{2}{L^2}\right)$ 

$$S = \int d^4x \left[ \mathscr{L}_{m=0}(h) + \frac{2}{L^2} \sqrt{|G|} \left( h_{\mu\nu} h^{\mu\nu} - h^2 \right) + 3\sqrt{|G|} \left( -\frac{1}{2} \nabla_{\mu} \phi \nabla^{\mu} \phi - \frac{2}{L^2} \phi^2 \right) \right]$$

• The scalar field is shift symmetric under a k = 1 shift.

$$\delta\phi = S_A X^A$$

## Our Question

Does the shift symmetry in AdS manifest itself in the dual CFT, and if so how?

#### CFT duals to Shift Symmetric Theories

A field in  $AdS_D$  of mass *m* and spin *s* has a dual CFT operator on the d = D - 1dimensional boundary with a scaling dimension related to the AdS mass by

$$\begin{cases} m^2L^2 = \Delta(\Delta - d) , & s = 0 , \\ m^2L^2 = (\Delta + s - 2)(\Delta - s - d + 2) , & s \ge 1 . \end{cases}$$

Or solving for the conformal dimensions,

$$\begin{cases} \Delta_{\pm} = \frac{d}{2} \pm \sqrt{\frac{d^2}{4} + m^2 L^2} , & s = 0 , \\ \\ \Delta_{\pm} = \frac{d}{2} \pm \sqrt{\frac{(d+2(s-2))^2}{4} + m^2 L^2} , & s \ge 1 . \end{cases}$$

There are two different scaling dimensions for the dual CFT,  $\Delta_+$  and  $\Delta_-$ .

 $\clubsuit$  For the shift symmetric fields, the scaling dimensions dictated by the masses are

$$\Delta_+ = d + s + k \,, \quad \Delta_- = -s - k$$

Operator Dimensions For Shift Symmetric and PM Fields



### Review of CFT Properties

There is a unitarity bound for conformal primary operators.

$$\Delta \ge \begin{cases} \frac{d}{2} - 1, & s = 0\\ s + d - 2, & s \ge 1 \end{cases}$$

For shift-symmetric theories,  $\Delta_+$  values lie above the unitarity bound, and the  $\Delta_-$  values lie below the unitarity bound.

The two-point functions are completely fixed (up to an overall constant)

$$\langle \phi_{i_1 \cdots i_s}(x) \phi^{j_1 \cdots j_s}(0) \rangle = \frac{1}{x^{2\Delta}} I^{(j_1}_{(i_1} \cdots I^{j_s)_T}_{i_s)_T}, \quad I_{ij} \equiv \eta_{ij} - 2 \frac{x_i x_j}{x^2}$$

where  $(\cdots)_T$  denotes the symmetric traceless part.

## Near Boundary Expansion

The near boundary Fefferman-Graham expansion of a spin-s field of generic mass contains two leading fall-off behaviours. In Poincaré coordinates  $ds^2 = \frac{L^2}{z^2} \left( dz^2 + \delta_{ij} dx^i dx^j \right)$ , it is given by:

$$\Phi_{i_1\cdots i_s}(x,z) = z^{\Delta_--s} \left[ \phi_{(0)i_1\cdots i_s}(x) + \cdots \right] + z^{\Delta_+-s} \left[ \psi_{(0)i_1\cdots i_s}(x) + \cdots \right]$$

In standard quantization,  $\phi_{(0)}$  is proportional to the source in the CFT's generating functional, while in alternate quantization,  $\psi_{(0)}$  is proportional to the source.

In standard quantization  $\phi_{(0)} \propto J$  In alternate quantization  $\psi_{(0)} \propto J$ 

#### Near Boundary Expansion of Shift-Symmetric Fields

For shift-symmetric spinning fields,  $\Delta_{+} = d + k + s$ ,  $\Delta_{-} = -k - s$ , the near boundary Fefferman-Graham expansion is:

$$\Phi(z,x)_{i_1\cdots i_s} = \frac{1}{z^{k+2s}} \left[ \phi_{(0)i_1\cdots i_s}(x) + z^2 \phi_{(2)i_1\cdots i_s}(x) + \cdots \right] + z^{d+k} \left[ \psi_{(0)i_1\cdots i_s}(x) + z^2 \psi_{(2)i_1\cdots i_s}(x) + z^4 \psi_{(4)i_1\cdots i_s}(x) + \cdots \right]$$

The z-directed field components can be related to this one by the EOM and the transversality and tracelessness constraints.

#### Shift Symmetries and the Fefferman-Graham Expansion

Applying a shift symmetry  $\delta \Phi = S_{A_1 \cdots A_k} X^{A_1} \cdots X^{A_k}$  to the near boundary expansion,

$$\Phi_{i_1\cdots i_s}(x,z) = \frac{1}{z^{k+2s}} \left[ \phi_{(0)i_1\cdots i_s}(x) + \cdots \right] + z^{d+k} \left[ \psi_{(0)i_1\cdots i_s}(x) + \cdots \right]$$

we find that  $\phi_{(0)}$  is shifted by the transformation, while  $\psi_{(0)}$  is unaffected.

$$\delta\phi_{(0)i_1\cdots i_s} = L^{k+2s} S_{A_1\cdots A_{s+k}, B_1\cdots B_s} \tilde{X}^{A_1}\cdots \tilde{X}^{A_{s+k}} \frac{\partial \tilde{X}^{B_1}}{\partial x^{i_1}}\cdots \frac{\partial \tilde{X}^{B_s}}{\partial x^{i_s}}$$

$$\delta \psi_{(0)i_1\cdots i_s} = 0$$

#### Holographic Renormalization Procedure

- 1. Asymptotic Solution: Use the EOM to find the asymptotic solution in terms of two pieces of boundary data  $\phi_{(0)}$  and  $\psi_{(0)}$ , which are then determined by the choice of boundary conditions and requiring the solution to be regular in the bulk.
- 2. Regularization: Regularize the action by cutting off the integral near the boundary at  $z = \epsilon$ . In general there will be terms that diverge in the limit  $z \to 0$ .
- 3. Counterterms: Construct the counterterm action from all possible local functions of  $\Phi$  and the induced metric  $\gamma_{ij} = \frac{L^2}{\epsilon^2} \eta_{ij}$  with arbitrary coefficients, evaluated on the  $z = \epsilon$  boundary.
- 4. Renormalized On-shell Action: Add the counterterm action to the regularized action and tune the coefficients of the counterterm action to remove divergences giving the finite renormalized action.

### Renormalized Action

 $\clubsuit$  The renormalization procedure leads to the renormalized action

$$S_{\text{ren}} = \lim_{\epsilon \to 0} (S_{\epsilon} + S_{\text{c.t.}}) = \int \frac{d^d p}{(2\pi)^d} \left[ -\left(k + \frac{d}{2}\right) \phi_{(0)}(p) \psi_{(0)}(-p) \right]$$

For standard quantization, we identify  $\phi_{(0)} = J$  and for alternate quantization, we identify  $\psi_{(0)} = J$ .

#### Result for Standard Quantization

For standard quantization of shift symmetric scalars

$$S_{\text{ren}} = \int \frac{d^d p}{(2\pi)^d} \left[ -\frac{\left(k + \frac{d}{2}\right)}{4^{\left(k + \frac{d}{2}\right)}} \frac{\Gamma\left(-k - \frac{d}{2}\right)}{\Gamma\left(k + \frac{d}{2}\right)} p^{2k+d} |J(p)|^2 \right]$$

leading to the position space correlation function for the CFT dual to take the form

$$\langle \mathcal{O}(0)\mathcal{O}(x)\rangle \propto \frac{1}{x^{2(d+k)}}$$

which has the canonical structure of a 2-point correlation function of a primary field.

#### Ward Identities

The Noether procedure leads to an integral constraints \*

$$S_{\rm ren} = \int d^d x \sqrt{-\gamma} \langle \mathcal{O} \rangle_s S_{A_1 \cdots A_k} \tilde{X}^{A_1} \cdots \tilde{X}^{A_k} = 0$$

which can be differentiated to give a constraint for any n-point correlation function.

For 2-point functions, the Ward identity is

$$\int d^d x \langle \mathcal{O}(x) \mathcal{O}(0) \rangle S_{A_1 \cdots A_k} \tilde{X}^{A_1} \cdots \tilde{X}^{A_k} = 0.$$

\* M. M. Caldarelli, A. Christodoulou, I. Papadimitriou, and K. Skenderis, "Phases of planar AdS black holes with axionic charge," JHEP 04 (2017) 001, arXiv:1612.07214 [hep-th].

#### Ward Identities

For example, considering the scalar with k = 0, the Ward identity becomes

$$\int d^d x \langle \mathcal{O}(x) \mathcal{O}(0) \rangle = 0$$

This becomes a soft limit in momentum space, which is satisfied by the momentum space correlator.

$$\lim_{p \to 0} \langle \mathcal{O}(p) \mathcal{O}(-p) \rangle \sim \lim_{p \to 0} p^d = 0$$

#### Result for Alternate Quantization

For alternate quantization of shift symmetric theories,

$$S_{ren} = \int \frac{d^d p}{(2\pi)^d} \left[ -\left(k + \frac{d}{2}\right) 4^{\left(k + \frac{d}{2}\right)} \frac{\Gamma\left(k + \frac{d}{2}\right)}{\Gamma\left(-k - \frac{d}{2}\right)} \frac{1}{p^{2k+d}} |J(p)|^2 \right]$$

leading to the position space correlation function for the CFT dual to take the form

$$\langle \mathcal{O}(0)\mathcal{O}(x)\rangle \propto x^{2k}\log(x^2)$$

which violates the canonical structure of a 2-point correlation function for a primary field.

Analogous to the Case of a Free Massless Scalar in 2d

For this familiar case (which is shift-symmetric)

$$S_{CFT} = \int d^2 x \left( -\frac{1}{2} \partial_\mu \phi \partial^\mu \phi \right)$$

where the two-point function is given in complex coordinates z, w by

$$\langle \phi(z,\bar{z})\phi(w,\bar{w})\rangle \propto \log(z-w) + \log(\bar{z}-\bar{w})$$

This indicates that  $\phi$  is not a primary operator. However,  $\partial_z \phi$  is a primary operator of spin 1 and conformal dimension 1, the two-point function of which is given by

$$\langle \partial_z \phi(z, \bar{z}) \partial_w \phi(w, \bar{w}) \rangle \propto \frac{1}{(z-w)^2}$$

#### Result for Alternate Quantization

We find an analogous result for the alternately quantized CFTs from shift symmetric theories.

The logarithmic structure implies that  $\mathcal{O}$  is not a primary field. However, we can construct a primary field by taking

$$F_{i_1\cdots i_{k+1}} = \partial_{(i_1}\cdots \partial_{i_{k+1})_T} \mathcal{O}$$

This leads to a correlation function corresponding to a primary field with spin k + 1 and conformal dimension  $\Delta = 1$ .

$$\langle F_{i_1\cdots i_{k+1}}(x)F^{j_1\cdots j_{k+1}}(0)\rangle = \frac{1}{x^2}I^{(j_1}_{(i_1}\cdots I^{j_{k+1})_T}_{i_{k+1})_T} \qquad I_{ij} \equiv \delta_{ij} - 2\frac{x_i x_j}{x^2}$$

Operator Dimensions For Shift Symmetric and PM Fields



## Near Boundary Expansion

For shift-symmetric scalars,  $\Delta_{+} = d + k$ ,  $\Delta_{-} = -k$ , the near boundary Fefferman-Graham expansion splits into two cases:

$$\begin{split} \Delta_{+} - \frac{d}{2} &= k + \frac{d}{2} \neq \mathbb{Z}, \text{ corresponding to odd dimensions} \\ \Phi(z, x) &= \frac{1}{z^{k}} \left[ \phi_{(0)}(x) + z^{2} \phi_{(2)}(x) + \cdots \right] + z^{d+k} \left[ \psi_{(0)}(x) + z^{2} \psi_{(2)}(x) + \cdots \right] \end{split}$$

$$\begin{split} \Delta_{+} &- \frac{d}{2} = k + \frac{d}{2} \in \mathbb{Z}, \text{ corresponding to even dimensions} \\ \Phi(z, x) &= \frac{1}{z^{k}} \bigg[ \phi_{(0)}(x) + z^{2} \phi_{(2)}(x) + \dots + z^{d+2k-2} \phi_{(d+2k-2)}(x) \bigg] \\ &+ z^{d+k} \bigg[ \Big( \psi_{(0)}(x) + \phi_{(d+2k)}(x) \log(\mu z) \Big) + z^{2} \Big( \psi_{(2)}(x) + \phi_{(d+2k+2)}(x) \log(\mu z) \Big) + \dotsb \bigg] \end{split}$$

### Results for even dimensions

For standard quantization of shift symmetric theories

$$S_{\text{ren}} = \int \frac{d^d p}{(2\pi)^d} \frac{(-1)^{\left(k + \frac{d}{2}\right)}}{2^{2k+d-1}\Gamma\left(k + \frac{d}{2}\right)^2} p^{2k+d} \log(p/\mu) |J(p)|^2, \quad \nu \in \mathbb{Z}$$

leading to the position space correlation function for the CFT dual to take the form

$$\langle \mathcal{O}(0)\mathcal{O}(x)\rangle \propto \frac{1}{x^{2(d+k)}}$$

which has the canonical structure of a 2-point correlation function for a primary field.

### Results even dimensions

For alternate quantization of shift symmetric theories

$$S_{\rm ren} = \int \frac{d^d p}{(2\pi)^d} \frac{(-1)^{\left(k+\frac{d}{2}\right)} 2^{2k+d-1} \Gamma\left(k+\frac{d}{2}\right)^2}{p^{2k+d} (\log(p/\mu)+c)} |J(p)|^2$$

which is not conformally invariant and neither are any of its derivatives.

We suspect this is due to needing an alternate regularization procedure for these cases.

### Vector Case

We also looked at holographic renormalization for shift-symmetric vectors. The procedure is the same, but with more complicated expressions.



 $\clubsuit$  We expect higher spin theories to follow the same pattern.

### Summary

The CFT dual obtained by standard quantization is affected by the shift symmetry.

- It has 2-point correlation functions in position space with the canonical form for primary operators.
- We find Ward identities that take the form of integral constraints.

The CFT dual obtained by alternate quantization preserves the shift symmetry.

- In odd dimensions, this leads to two-point correlation functions in position space with logarithmic behavior violating the canonical form for primary operators.
- The shift invariant field strength can be constructed by taking k + 1 traceless symmetrized derivatives of the operator giving a primary operator of spin s + k + 1 and conformal dimension 1 s.

### Discussion

There are some AdS flux vacua where the dual operators have integer conformal dimensions.

- F. Apers, J. P. Conlon, S. Ning, and F. Revello, "Integer conformal dimensions for type IIa flux vacua," Phys. Rev. D 105 no. 10, (2022) 106029, arXiv:2202.09330 [hep-th].
- E. Plauschinn, "Mass spectrum of type IIB flux compactifications comments on AdS vacua and conformal dimensions," arXiv:2210.04528 [hep-th].
- F. Apers, "Aspects of AdS flux vacua with integer conformal dimensions," arXiv:2211.04187 [hep-th].

Some interesting things to look at in the future would be

- Consider interacting shift symmetric theories, which we expect to exhibit interesting behavior.
- Understand what is happening with alternate quantization of shift symmetric theories in even dimensions.