Shift Symmetries \& AdS/CFT

Laura Engelbrecht ETH Zurich Soon to be at Univ. of Pisa

Work in collaboration with Erin Blauvelt and Kurt Hinterbichler
"Shift Symmetries and AdS/CFT", arXiv:2211.02055 [hep-th].

Outline

* Review shift symmetric theories in flat spacetime
* Introduce shift symmetric theories in AdS
* Discuss properties of CFTs duals
* Results for AdS/CFT calculations
* Summary/Discussion

Shift Symmetric Fields in Flat Space

* Provide useful classifications of low-energy EFTs
* Appear in spontaneous symmetry breaking
* Lead to non-renormalization theorems
* Have enhanced soft limits in scattering amplitudes
* In exceptional cases, allows scattering amplitudes to be constructed recursively through soft subtracted recursion

Shift Symmetric Fields in Flat Space

* The simplest example of a shift symmetric theory is a free massless scalar field in flat space.

$$
S=\int d^{D} x\left(-\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi\right)
$$

* It is invariant under an infinite tower of shift symmetries.

$$
\begin{array}{cc}
\delta \phi=c+c_{\mu} x^{\mu}+c_{\mu_{1} \mu_{2}} x^{\mu_{1}} x^{\nu_{2}}+c_{\mu_{1} \mu_{2} \mu_{3}} x^{\mu_{1}} x^{\nu_{2}} x^{\nu_{3}}+\cdots \\
\uparrow & c_{\mu_{1} \cdots \mu_{k}} \text { is a rank-k symmetric } \\
\text { Cartesian spacetime } \\
\text { coordinates } & \text { traceless constant tensor }
\end{array}
$$

We call a symmetry of the form $c_{\mu_{1} \cdots \mu_{k}} x^{\mu_{1} \ldots} x^{\mu_{k}}$ a k-level shift.

* In flat spacetime, they are always massless.

Interacting Scalar Examples in Flat Space

* $k=0$ is a shift by a constant c

Any theory with at least one derivative per field such as $P(X)$ theories where $X=\partial_{\mu} \phi \partial^{\mu} \phi$
$k=2$
Special Galileons are
additionally invariant under
$\delta \phi=c_{\mu \nu}\left(x^{\mu} x^{\nu}+\frac{1}{\Lambda^{6}} \partial^{\mu} \phi \partial^{\nu} \phi\right)$
$S=\int d^{4} x\left(-\frac{1}{2}(\partial \phi)^{2}+\frac{1}{12 \Lambda^{6}}(\partial \phi)^{2}\left[(\square \phi)^{2}-\left(\partial_{\mu} \partial_{\nu} \phi\right)^{2}\right]\right)$
$k=1 \quad \delta \phi=c+c_{\mu} x^{\mu}$
DBI with the action

$$
S=-\frac{\Lambda^{D}}{\alpha} \int d^{D} x \sqrt{1+\frac{\alpha}{\Lambda^{D}}(\partial \phi)^{2}}
$$

Galileons which have actions of the form $\mathscr{L}_{n} \sim \phi S_{n-1}(\partial \partial \phi), \quad n=1,2, \cdots, D+1$ where S_{n} are symmetric polynomials

$$
k \geq 3
$$

There are no known ghost-free interacting theories with higher level shift symmetries.

Shift Symmetric Fields in AdS

* Shift symmetric theories in anti-de Sitter spacetime have masses that depend on the shift level k, spacetime dimension D, AdS radius L, and spin s

$$
\left\{\begin{array}{ll}
m_{k}^{2}=\frac{k(k+D-1)}{L^{2}}, & s=0, \\
m_{k}^{2}=\frac{(k+2)(k+D-3+2 s)}{L^{2}}, & s \geq 1,
\end{array} \quad k=0,1,2, \ldots\right.
$$

The equations of motion are the Klein-Gordon equations
$\begin{cases}\left(\nabla^{2}-m^{2}\right) \Phi=0, & s=0, \\ \left(\nabla^{2}+\frac{1}{L^{2}}[s+D-2-(s-1)(s+D-4)]-m^{2}\right) \Phi_{\mu_{1} \cdots \mu_{s}}=0, & s \geq 1,\end{cases}$
along with transversality and tracelessness in all the indices.

Shift Symmetric Fields in AdS

* The shift symmetry takes the form

$$
\begin{aligned}
& \delta \Phi_{\mu_{1} \cdots \mu_{s}}=S_{A_{1} \cdots A_{s+k}, B_{1} \cdots B_{s}} X^{A_{1} \cdots X^{A_{s+k}} \frac{\partial X^{B_{1}}}{\partial x^{\mu_{1}}} \cdots \frac{\partial X^{B_{s}}}{\partial x^{\mu_{s}}}} \begin{array}{cl}
\text { constant traceless tensor } & \text { embedding coordinates of } \\
\text { with the symmetries of a } & \text { the } \mathrm{AdS}_{D} \text { into a }(D+1) \\
\text { two row Young tableau } & \text {-dimensional auxiliary flat } \\
S_{A_{1} \cdots A_{s+k}, B_{1} \cdots B_{s}} \in \frac{s+k}{s} & \text { spacetime }
\end{array}
\end{aligned}
$$

Some Interacting Scalar Examples in AdS

* $k=0$ is a shift by a constant c

Any scalar with at least one derivative per field such as $P(X)$ theories where $X=\nabla_{\mu} \phi \nabla^{\mu} \phi$

AdS special Galileon

$$
\delta \Phi=S_{A B}\left(X^{A} X^{B}-\frac{1}{\Lambda^{6}} \partial^{A} \Phi \partial^{B} \Phi\right)
$$

$$
\frac{\mathscr{I}_{s G}(\phi)}{|G|}=\sum_{j=1}^{D-1} \frac{\psi^{D-j}+(-1)^{i} \psi^{*} \psi^{D-j}}{i \Lambda^{(i D+2) / 2}|\psi|^{D+3} 2 \Gamma(j+3)}\left[(j+2) f_{i}\left(\frac{x}{|\psi|^{2}}\right)\right.
$$

$$
\left.-(j+1) f_{j+1}\left(\frac{X}{|\psi|^{2}}\right)\right] \partial^{\mu} \phi \partial^{\nu} \phi X_{\mu \nu}^{(j)}(\Pi)-\frac{\Lambda^{D+2} L^{2}}{2(D+1)}\left(1-\frac{\psi^{* D+1}+\psi^{D+1}}{2|\psi|^{D+1}}\right)
$$

$$
f_{j}(x) \equiv{ }_{2} F_{1}\left(\frac{D+3}{2}, \frac{j+1}{2} ; \frac{j+3}{2} ;-x\right), \psi \equiv 1+\frac{2 i}{\Lambda^{\frac{D}{2}+L^{2}}} \phi, \quad X \equiv-\frac{1}{\Lambda^{D+2} L^{2}}(\partial \phi)^{2}
$$

* $k=1 \quad \delta \phi=S_{A} X^{A} \quad$ AdS Galileons

$$
\begin{aligned}
& \mathscr{S}_{2}(\phi)=\sqrt{-|G|}\left[-\frac{1}{2}(\partial \phi)^{2}-\frac{2}{L^{2}} \phi^{2}\right], \\
& \mathscr{S}_{3}(\phi)=\sqrt{-|G|}\left[-\frac{1}{2}(\partial \phi)^{2}[\Pi]+\frac{3}{L^{2}}(\partial \phi)^{2} \phi+\frac{4}{L^{4}} \phi^{3}\right],
\end{aligned}
$$

$$
\mathscr{S}_{4}(\phi)=\sqrt{-|G|}\left[-\frac{1}{2}(\partial \phi)^{2}\left([\Pi)^{2}-\left[\Pi^{2}\right]-\frac{1}{2 L^{2}}(\partial \phi)^{2}-\frac{6}{L^{2}} \phi[\Pi]+\frac{18}{L^{4}} \phi^{2}\right)-\frac{6}{L^{\sigma^{\phi}}} \phi^{4}\right],
$$

$$
\mathscr{S}_{s}(\phi)=\sqrt{-|G|}\left[-\frac{1}{2}\left((\partial \phi)^{2}-\frac{1}{5 L^{2}} \phi^{2}\right)\left([\Pi]^{3}-3\left[\Pi \mid\left[\Pi^{2}\right]+2\left[\Pi^{3}\right]\right)\right.\right.
$$

$$
+\frac{12}{5 L^{2}} \phi(\partial \phi)^{2}\left([\Pi)^{2}-\left[\Pi \Pi^{2}\right]-\frac{27}{12 L^{2}}\left[\Pi \left\lvert\, \phi+\frac{5}{L^{4}} \phi^{2}\right.\right)+\frac{24}{5 L^{\phi}} \phi^{5}\right]
$$

$$
\Pi_{\mu \nu} \equiv \nabla_{\mu} \nabla_{\nu} \phi \quad[\cdots] \text { means take the trace }
$$

$k \geq 3$

There are no known ghost-free interacting theories with higher level shift symmetries.
J. Bonifacio, K. Hinterbichler, A. Joyce, and R. A. Rosen, "Shift Symmetries in (Anti) de Sitter Space," JHEP 02 (2019) 178, arXiv:1812.08167 [hep-th].

Interacting $k=0$ Vector Examples in AdS

$$
\begin{gathered}
\frac{1}{\sqrt{-|G|}} \mathscr{L}(A)=-\frac{1}{2} F_{\mu \nu}^{2}-\frac{6}{L^{2}} A^{2}-\Lambda_{2}^{4}\left(\frac{\alpha_{3}}{2} \epsilon^{\mu_{1} \mu_{2} \mu_{3} \lambda} \epsilon^{\left.\nu_{1} \nu_{2} \nu_{3}{ }_{\lambda} B_{\mu_{1} \nu_{1}} B_{\mu_{2} \nu_{2}} B_{\mu_{3} \nu_{3}}+\frac{\alpha_{4}}{2} \epsilon^{\mu_{1} \mu_{2} \mu_{3} \mu_{4}} \epsilon^{\nu_{1} \nu_{2} \nu_{3} \nu_{4}} B_{\mu_{1} \nu_{1}} B_{\mu_{2} \nu_{2}} B_{\mu_{3} \nu_{3}} B_{\mu_{4} \nu_{4}}\right)}\right. \\
B_{\mu \nu}=\nabla_{\mu} A_{\nu}+\nabla_{\nu} A_{\mu} \\
\delta A_{\mu}=-\xi_{\mu}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{1}{\sqrt{-|G|}} \mathscr{L}(A)=-\frac{1}{2} F_{\mu \nu}^{2}-\frac{6}{L^{2}} A^{2}+\frac{1}{\Lambda_{2}^{2}}\left[\frac{\alpha_{3}}{2} S_{3}(B)-\frac{1}{2} F^{\mu \alpha} F_{\alpha}^{\nu} X_{\mu \nu}^{(1)}(B)-\frac{3}{L^{2}} A^{2} B\right] \\
&+ \frac{1}{\Lambda_{2}^{4}}\left[\frac{1}{8}\left(\left(F_{\mu \nu} F^{\mu \nu}\right)^{2}-F_{\mu \nu} F^{\nu \alpha} F_{\alpha \beta} F^{\beta \mu}\right)+\frac{\alpha_{4}}{2} S_{4}(B)-\frac{3 \alpha_{3}}{4} F^{\mu \alpha} F_{\alpha}^{\nu} X_{\mu \nu}^{(2)}(B)\right. \\
&+ \frac{1}{4} F^{\mu \alpha} F^{\nu \beta} B_{\mu \nu} B_{\alpha \beta}+\frac{1}{4} F^{\mu \alpha} F^{\nu}{ }_{\alpha} B_{\mu \nu}^{2}-\frac{1}{2} F^{\mu \alpha} F^{\nu \alpha} B B_{\mu \nu} \\
&-\frac{1+6 \alpha_{3}}{L^{2}} A^{2} S_{2}(B)+\frac{1+3 \alpha_{3}}{L^{2}} A^{\mu} A^{\nu} X_{\mu \nu}^{(2)}(B) \\
&\left.+\frac{2}{L^{2}}\left(A^{2} F_{\mu \nu} F^{\mu \nu}-A^{\mu} A^{\nu} B_{\mu \alpha} F_{\nu}^{\alpha}+\frac{1}{2} A^{\mu} A^{\nu} F_{\mu \alpha} F_{\nu}^{\alpha}\right)+\frac{12}{L^{4}} A^{4}\right]+\cdots \\
& S_{n}(M)=n!M_{\mu_{1}}^{\left[\mu_{1}\right.} M_{\mu_{2}}^{\mu_{2} \ldots M_{\mu_{n}}^{\left.\mu_{n}\right]}} X_{\nu}^{(n){ }_{\nu}^{\mu}(M)=(n+1)!\delta_{\nu}^{[\mu} M_{\mu_{2}}^{\mu_{2}} \ldots M_{\mu_{n}}^{\left.\mu_{n}\right]}} \quad \delta A_{\mu}=-\frac{2}{\Lambda_{2}^{2}} \nabla_{\mu} \xi^{\nu} A_{\nu}-\xi_{\mu} \sqrt{1+\frac{4 A^{2}}{\left(\Lambda_{2}^{2} L\right)^{2}}}
\end{aligned}
$$

C. De Rham, K. Hinterbichler, and L. A. Johnson, "On the (A)dS Decoupling Limits of Massive Gravity," JHEP 09 (2018) 154, arXiv:1807.08754 [hep-th]
J. Bonifacio, K. Hinterbichler, L. A. Johnson, and A. Joyce, "Shift-Symmetric Spin-1 Theories," JHEP 09 (2019) 029, arXiv:1906.10692 [hep-th].

Parent Fields

* Shift symmetric theories can be constructed as the decoupled longitudinal mode of a massive field as it approaches a partially massless value.
*Partially massless values occur for spins ≥ 1 at the mass values

$$
\bar{m}_{t}^{2}=-\frac{1}{L^{2}}(s-t-1)(s+t+D-4), \quad t=0,1, \ldots, s-1
$$

where t is called the field depth, with a massless field occurring at $t=s-1$ for $\mathrm{D}>2$.

Spin-1 Parent Fields Example

* Starting with a massive vector

$$
S=\int d^{4} x \sqrt{|G|}\left[-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2} m^{2} A^{2}\right]
$$

Taking the depth $t=0$ massless limit $(m \rightarrow 0)$ using the Stückelberg trick to preserve the number of degrees of freedom leads to

$$
S=\int d^{4} x \sqrt{|G|}\left[-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2} \nabla_{\mu} \phi \nabla^{\mu} \phi\right] \underset{\text { parent field }}{\uparrow} \begin{gathered}
\text { shift symmetric } \\
\text { longitudinal mode }
\end{gathered}
$$

- The scalar field is shift symmetric under a $k=0$ shift.

$$
\delta \phi=c
$$

Spin-2 Parent Fields Examples

* Starting with a massive graviton

$$
S=\int d^{4} x\left[\mathscr{L}_{m=0}(h)-\frac{1}{2} m^{2} \sqrt{|G|}\left(h_{\mu \nu} h^{\mu \nu}-\left(h_{\mu}^{\mu}\right)^{2}\right)\right]
$$

Taking the depth $t=1$ massless limit ($m \rightarrow 0$)

$$
S=\int d^{4} x\left[\mathscr{L}_{m=0}(h)+\sqrt{|G|}\left(-\frac{1}{2} F_{\mu \nu} F^{\mu \nu}-\frac{6}{L^{2}} A^{2}\right)\right]
$$

- The vector field is shift symmetric under a $k=0$ shift.

$$
\delta A_{\mu}=-\xi_{\mu}, \quad \nabla_{\mu} \xi_{\nu}+\nabla_{\nu} \xi_{\mu}=0
$$

Spin-2 Parent Fields Examples

* Starting with a massive graviton

$$
S=\int d^{4} x\left[\mathscr{L}_{m=0}(h)-\frac{1}{2} m^{2} \sqrt{|G|}\left(h_{\mu \nu} h^{\mu \nu}-\left(h_{\mu}^{\mu}\right)^{2}\right)\right]
$$

* Taking the depth $t=0$ partially massless limit $\left(m^{2} \rightarrow-\frac{2}{L^{2}}\right)$

$$
S=\int d^{4} x\left[\mathscr{L}_{m=0}(h)+\frac{2}{L^{2}} \sqrt{|G|}\left(h_{\mu \nu} h^{\mu \nu}-h^{2}\right)+3 \sqrt{|G|}\left(-\frac{1}{2} \nabla_{\mu} \phi \nabla^{\mu} \phi-\frac{2}{L^{2}} \phi^{2}\right)\right]
$$

- The scalar field is shift symmetric under a $k=1$ shift.

$$
\delta \phi=S_{A} X^{A}
$$

Our Question

Does the shift symmetry in AdS manifest itself in the dual CFT, and if so how?

CFT duals to Shift Symmetric Theories

A field in $\mathrm{AdS}_{\mathrm{D}}$ of mass m and spin s has a dual CFT operator on the $d=D-1$ dimensional boundary with a scaling dimension related to the AdS mass by

$$
\begin{cases}m^{2} L^{2}=\Delta(\Delta-d), & s=0 \\ m^{2} L^{2}=(\Delta+s-2)(\Delta-s-d+2), & s \geq 1\end{cases}
$$

* Or solving for the conformal dimensions,

$$
\begin{cases}\Delta_{ \pm}=\frac{d}{2} \pm \sqrt{\frac{d^{2}}{4}+m^{2} L^{2}}, & s=0 \\ \Delta_{ \pm}=\frac{d}{2} \pm \sqrt{\frac{(d+2(s-2))^{2}}{4}+m^{2} L^{2}}, & s \geq 1\end{cases}
$$

*There are two different scaling dimensions for the dual CFT, Δ_{+}and Δ_{-}.
*For the shift symmetric fields, the scaling dimensions dictated by the masses are

$$
\Delta_{+}=d+s+k, \quad \Delta_{-}=-s-k
$$

Operator Dimensions For Shift Symmetric and PM Fields

Review of CFT Properties

* There is a unitarity bound for conformal primary operators.

$$
\Delta \geq \begin{cases}\frac{d}{2}-1, & s=0 \\ s+d-2, & s \geq 1\end{cases}
$$

* For shift-symmetric theories, Δ_{+}values lie above the unitarity bound, and the Δ_{-}values lie below the unitarity bound.
* The two-point functions are completely fixed (up to an overall constant)

$$
\left\langle\phi_{i_{1} \cdots i_{s}}(x) \phi^{j_{1} \cdots j_{s}}(0)\right\rangle=\frac{1}{x^{2 \Delta}} I_{\left(i_{1}\right.}^{\left(j_{1} \cdots I_{i_{s}}\right)_{T}}, \quad I_{i j} \equiv \eta_{i j}-2 \frac{x_{i} x_{j}}{x^{2}}
$$

where $(\cdots)_{T}$ denotes the symmetric traceless part.

Near Boundary Expansion

* The near boundary Fefferman-Graham expansion of a spin-s field of generic mass contains two leading fall-off behaviours. In Poincaré coordinates $d s^{2}=\frac{L^{2}}{z^{2}}\left(d z^{2}+\delta_{i j} d x^{i} d x^{j}\right)$, it is given by:

$$
\Phi_{i_{1} \cdots i_{s}}(x, z)=z^{\Delta_{-}-s}\left[\phi_{(0) i_{1} \cdots i_{s}}(x)+\cdots\right]+z^{\Delta_{+}-s}\left[\Psi_{(0) i_{1} \cdots i_{s}}(x)+\cdots\right]
$$

*In standard quantization, $\phi_{(0)}$ is proportional to the source in the CFT's generating functional, while in alternate quantization, $\psi_{(0)}$ is proportional to the source.

In standard quantization

$$
\phi_{(0)} \propto J
$$

$$
\begin{gathered}
\text { In alternate } \\
\text { quantization } \\
\psi_{(0)} \propto J
\end{gathered}
$$

Near Boundary Expansion of Shift-Symmetric Fields

* For shift-symmetric spinning fields, $\Delta_{+}=d+k+s, \quad \Delta_{-}=-k-s$, the near boundary Fefferman-Graham expansion is:

$$
\begin{aligned}
\Phi(z, x)_{i_{1} \cdots i_{s}}= & \frac{1}{z^{k+2 s}}\left[\phi_{(0) i_{i} \cdots i_{s}}(x)+z^{2} \phi_{(2) i_{i} \cdots i_{s}}(x)+\cdots\right] \\
& +z^{d+k}\left[\Psi_{(0) i_{i} \cdots i_{s}}(x)+z^{2} \psi_{(2) i_{i} \cdots i_{s}}(x)+z^{4} \Psi_{(4) i_{i} \cdots i_{s}}(x)+\cdots\right]
\end{aligned}
$$

* The z-directed field components can be related to this one by the EOM and the transversality and tracelessness constraints.

Shift Symmetries and the Fefferman-Graham Expansion

Applying a shift symmetry $\delta \Phi=S_{A_{1} \cdots A_{k}} X^{A_{1}} \ldots X^{A_{k}}$ to the near boundary expansion,

$$
\Phi_{i_{1} \cdots i_{s}}(x, z)=\frac{1}{z^{k+2 s}}\left[\phi_{(0) i_{1} \cdots i_{s}}(x)+\cdots\right]+z^{d+k}\left[\psi_{(0) i_{1} \cdots i_{s}}(x)+\cdots\right]
$$

we find that $\phi_{(0)}$ is shifted by the transformation, while $\psi_{(0)}$ is unaffected.

$$
\delta \phi_{(0) i_{1} \cdots i_{s}}=L^{k+2 s} S_{A_{1} \cdots A_{s+k} B_{1} \cdots B_{s}} \tilde{X}^{A_{1}} \ldots \tilde{X}^{A_{s+k}} \frac{\partial \tilde{X}^{B_{1}}}{\partial x^{i_{1}}} \cdots \frac{\partial \tilde{X}^{B_{s}}}{\partial x^{i_{s}}}
$$

Holographic Renormalization Procedure

1. Asymptotic Solution: Use the EOM to find the asymptotic solution in terms of two pieces of boundary data $\phi_{(0)}$ and $\psi_{(0)}$, which are then determined by the choice of boundary conditions and requiring the solution to be regular in the bulk.
2. Regularization: Regularize the action by cutting off the integral near the boundary at $z=\epsilon$. In general there will be terms that diverge in the limit $z \rightarrow 0$.
3. Counterterms: Construct the counterterm action from all possible local functions of Φ and the induced metric $\gamma_{i j}=\frac{L^{2}}{\epsilon^{2}} \eta_{i j}$ with arbitrary coefficients, evaluated on the $z=\epsilon$ boundary.
4. Renormalized On-shell Action: Add the counterterm action to the regularized action and tune the coefficients of the counterterm action to remove divergences giving the finite renormalized action.

Renormalized Action

* The renormalization procedure leads to the renormalized action

$$
S_{\text {ren }}=\lim _{\epsilon \rightarrow 0}\left(S_{\epsilon}+S_{\text {c.t. }}\right)=\int \frac{d^{d} p}{(2 \pi)^{d}}\left[-\left(k+\frac{d}{2}\right) \phi_{(0)}(p) \psi_{(0)}(-p)\right]
$$

*For standard quantization, we identify $\phi_{(0)}=J$ and for alternate quantization, we identify $\psi_{(0)}=J$.

Result for Standard Quantization

For standard quantization of shift symmetric scalars

$$
S_{\mathrm{ren}}=\int \frac{d^{d} p}{(2 \pi)^{d}}\left[-\frac{\left(k+\frac{d}{2}\right)}{4^{\left(k+\frac{d}{2}\right)}} \frac{\Gamma\left(-k-\frac{d}{2}\right)}{\Gamma\left(k+\frac{d}{2}\right)} p^{2 k+d}|J(p)|^{2}\right]
$$

leading to the position space correlation function for the CFT dual to take the form

$$
\langle\mathcal{O}(0) \mathcal{O}(x)\rangle \propto \frac{1}{x^{2(d+k)}}
$$

which has the canonical structure of a 2-point correlation function of a primary field.

Ward Identities

The Noether procedure leads to an integral constraints

$$
S_{\text {ren }}=\int d^{d} x \sqrt{-\gamma}\langle Q\rangle_{s} S_{A_{1} \cdots A_{k}} \tilde{X}^{4} \ldots \tilde{X}^{A_{k}}=0
$$

which can be differentiated to give a constraint for any n-point correlation function.

For 2-point functions, the Ward identity is

$$
\int d^{d} x\langle\mathcal{O}(x) \mathcal{O}(0)\rangle S_{A_{1} \cdots A_{k}} \tilde{X}^{A_{1} \ldots \tilde{X}^{A_{k}}}=0 .
$$

[^0]
Ward Identities

* For example, considering the scalar with $k=0$, the Ward identity becomes

$$
\int d^{d} x\langle\mathcal{O}(x) \mathcal{O}(0)\rangle=0
$$

This becomes a soft limit in momentum space, which is satisfied by the momentum space correlator.

$$
\lim _{p \rightarrow 0}\langle\mathcal{O}(p) \mathcal{O}(-p)\rangle \sim \lim _{p \rightarrow 0} p^{d}=0
$$

Result for Alternate Quantization

For alternate quantization of shift symmetric theories,

$$
S_{\text {ren }}=\int \frac{d^{d} p}{(2 \pi)^{d}}\left[-\left(k+\frac{d}{2}\right) 4^{\left(k+\frac{d}{2}\right)} \frac{\Gamma\left(k+\frac{d}{2}\right)}{\Gamma\left(-k-\frac{d}{2}\right)} \frac{1}{p^{2 k+d}}|J(p)|^{2}\right]
$$

leading to the position space correlation function for the CFT dual to take the form

$$
\langle\mathcal{O}(0) \mathcal{O}(x)\rangle \propto x^{2 k} \log \left(x^{2}\right)
$$

which violates the canonical structure of a 2-point correlation function for a primary field.

Analogous to the Case of a Free Massless Scalar in 2d

*or this familiar case (which is shift-symmetric)

$$
S_{C F T}=\int d^{2} x\left(-\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi\right)
$$

where the two-point function is given in complex coordinates z, w by

$$
\langle\phi(z, \bar{z}) \phi(w, \bar{w})\rangle \propto \log (z-w)+\log (\bar{z}-\bar{w})
$$

*This indicates that ϕ is not a primary operator. However, $\partial_{z} \phi$ is a primary operator of spin 1 and conformal dimension 1 , the two-point function of which is given by

$$
\left\langle\partial_{z} \phi(z, \bar{z}) \partial_{w} \phi(w, \bar{w})\right\rangle \propto \frac{1}{(z-w)^{2}}
$$

Result for Alternate Quantization

We find an analogous result for the alternately quantized CFTs from shift symmetric theories.

The logarithmic structure implies that \mathcal{O} is not a primary field. However, we can construct a primary field by taking

$$
F_{i_{1} \cdots i_{k+1}}=\partial_{\left(i_{1}\right.} \cdots \partial_{\left.i_{k+1}\right)_{T}} \mathcal{O}
$$

This leads to a correlation function corresponding to a primary field with spin $k+1$ and conformal dimension $\Delta=1$.
$\left.\left\langle F_{i_{1} \cdots i_{k+1}}(x) F^{j_{1} \cdots j_{k+1}}(0)\right\rangle=\frac{1}{x^{2}} I_{\left(i_{1}\right.}^{\left(j_{1} \cdots i_{i_{k+1}}\right)_{T}} j_{k+1}^{j_{2}}\right)_{T} \quad I_{i j} \equiv \delta_{i j}-2 \frac{x_{i} x_{j}}{x^{2}}$

Operator Dimensions For Shift Symmetric and PM Fields

Near Boundary Expansion

*For shift-symmetric scalars, $\Delta_{+}=d+k, \quad \Delta_{-}=-k$, the near boundary Fefferman-Graham expansion splits into two cases:

$$
\begin{aligned}
\Delta_{+}-\frac{d}{2} & =k+\frac{d}{2} \neq \mathbb{Z}, \text { corresponding to odd dimensions } \\
\Phi(z, x) & =\frac{1}{z^{k}}\left[\phi_{(0)}(x)+z^{2} \phi_{(2)}(x)+\cdots\right]+z^{d+k}\left[\psi_{(0)}(x)+z^{2} \psi_{(2)}(x)+\cdots\right]
\end{aligned}
$$

$$
\begin{aligned}
\Delta_{+} & -\frac{d}{2}=k+\frac{d}{2} \in \mathbb{Z}, \text { corresponding to even dimensions } \\
\Phi(z, x)= & \frac{1}{z^{k}}\left[\phi_{(0)}(x)+z^{2} \phi_{(2)}(x)+\cdots+z^{d+2 k-2} \phi_{(d+2 k-2)}(x)\right] \\
& +z^{d+k}\left[\left(\psi_{(0)}(x)+\phi_{(d+2 k)}(x) \log (\mu z)\right)+z^{2}\left(\psi_{(2)}(x)+\phi_{(d+2 k+2)}(x) \log (\mu z)\right)+\cdots\right]
\end{aligned}
$$

Results for even dimensions

* For standard quantization of shift symmetric theories

$$
S_{\text {ren }}=\int \frac{d^{d} p}{(2 \pi)^{d}} \frac{(-1)^{\left(k+\frac{d}{2}\right)}}{2^{2 k+d-1} \Gamma\left(k+\frac{d}{2}\right)^{2}} p^{2 k+d} \log (p / \mu)|J(p)|^{2}, \quad \nu \in \mathbb{Z}
$$

leading to the position space correlation function for the CFT dual to take the form

$$
\langle\mathcal{O}(0) \mathcal{O}(x)\rangle \propto \frac{1}{x^{2(d+k)}}
$$

which has the canonical structure of a 2-point correlation function for a primary field.

Results even dimensions

*For alternate quantization of shift symmetric theories

$$
S_{\mathrm{ren}}=\int \frac{d^{d} p}{(2 \pi)^{d}} \frac{\left.(-1)^{\left(k+\frac{d}{2}\right.}\right) 2^{2 k+d-1} \Gamma\left(k+\frac{d}{2}\right)^{2}}{p^{2 k+d}(\log (p / \mu)+c)}|J(p)|^{2}
$$

which is not conformally invariant and neither are any of its derivatives.

* We suspect this is due to needing an alternate regularization procedure for these cases.

Vector Case

* We also looked at holographic renormalization for shift-symmetric vectors. The procedure is the same, but with more complicated expressions.

Standard in Odd Dimensions

$$
\left\langle\mathcal{O}_{i}(0) \mathcal{O}_{j}(x)\right\rangle \propto \frac{1}{x^{2(d+k+1)}}\left(\eta_{i j}-2 \frac{x_{i} x_{j}}{x^{2}}\right)
$$

Alternate in Odd Dimension

$$
\left\langle\mathcal{O}_{i}(0) \Theta_{j}(x)\right\rangle \propto x^{2(k+1)}\left(\eta_{i j}-2 \frac{x_{i} x_{j}}{x^{2}}\right) \log \left(x^{2}\right)
$$

Create primary operator of spin $k+2$ and $\Delta=0$

$$
\begin{gathered}
F_{i_{1} \cdots i_{k+2}}=\partial_{\left(i_{i}\right.} \cdots \partial_{i_{k+1}} \hat{i}_{\left.i_{k+2}\right)_{T}} \\
\left\langle F_{i_{1} \cdots i_{k+2}} F_{1}^{\left.j_{1} \cdots j_{k+2}\right\rangle} \sim I_{\left(i_{1}\right.}^{\left(j_{1} \cdots I_{i_{k+2}}^{\left.j_{k+2}\right)_{T}}\right.}\right.
\end{gathered}
$$

Standard in Even Dimensions

$$
\left\langle\mathcal{O}_{i}(0) \mathcal{O}_{j}(x)\right\rangle \propto \frac{1}{x^{2(d+k+1)}}\left(\eta_{i j}-2 \frac{x_{i} x_{j}}{x^{2}}\right)
$$

Alternate in Even Dimension

$$
\text { Same issue with } \frac{1}{\log (p / \mu)+c}
$$

* We expect higher spin theories to follow the same pattern.

Summary

* The CFT dual obtained by standard quantization is affected by the shift symmetry.
- It has 2-point correlation functions in position space with the canonical form for primary operators.
- We find Ward identities that take the form of integral constraints.
* The CFT dual obtained by alternate quantization preserves the shift symmetry.
- In odd dimensions, this leads to two-point correlation functions in position space with logarithmic behavior violating the canonical form for primary operators.
- The shift invariant field strength can be constructed by taking $k+1$ traceless symmetrized derivatives of the operator giving a primary operator of spin $s+k+1$ and conformal dimension $1-s$.

Discussion

* There are some AdS flux vacua where the dual operators have integer conformal dimensions.
- F. Apers, J. P. Conlon, S. Ning, and F. Revello, "Integer conformal dimensions for type IIa flux vacua," Phys. Rev. D 105 no. 10, (2022) 106029, arXiv:2202.09330 [hep-th].
- E. Plauschinn, "Mass spectrum of type IIB flux compactifications - comments on AdS vacua and conformal dimensions," arXiv:2210.04528 [hep-th].
- F. Apers, "Aspects of AdS flux vacua with integer conformal dimensions," arXiv:2211.04187 [hep-th].
* Some interesting things to look at in the future would be
- Consider interacting shift symmetric theories, which we expect to exhibit interesting behavior.
- Understand what is happening with alternate quantization of shift symmetric theories in even dimensions.

[^0]: * M. M. Caldarelli, A. Christodoulou, I. Papadimitriou, and K. Skenderis, "Phases of planar AdS black holes with axionic charge," JHEP 04 (2017) 001, arXiv:1612.07214 [hep-th].

