My experience at LHCb: an ultra-fast clustering algorithm

Giovanni Bassi

SNS@CERN - 27/05/2023

My journey: from Trieste to Genève

2013

Bachelor@UniTS (2013-2016) ALICE experiment MSc@UniTS 2018 (2016-2018) Belle II experiment

PhD@SNS (2018-2022) LHCb experiment PostDoc@SNS (2022-ongoing) LHCb experiment

LHCb data path in a nutshell

Prospects in data handling

- Designing and validating a data handling system takes several year ⇒ it is important to define constraints as early as possible
- High Energy Physics experiments are following a common trend towards collecting more and more data to probe the underlying theory with ever-increasing precision
- It becomes important to investigate all the available possibilities in terms of architectures (CPU, GPU, FPGA) and programming models ⇒ heterogeneous computing

How SNS and INFN Pisa are involved?

- SNS and INFN Pisa are active contributors to the LHCb experiment for more than 10 years, both in the physics analysis side and in the "hardware" side
- One of the main projects in which the Pisa group has been involved is Retina, a R&D project aimed at developing a specialized processor allowing the reconstruction of events with hundreds of charged-particle tracks using modern, high-speed, high-bandwidth FPGA devices

How SNS and INFN Pisa are involved?

- SNS and INFN Pisa are active contributors to the LHCb experiment for more than 10 years, both in the physics analysis side and in the "hardware" side
- One of the main projects in which the Pisa group has been involved is Retina, a R&D project aimed at developing a specialized processor allowing the reconstruction of events with hundreds of charged-particle tracks using modern, high-speed, high-bandwidth FPGA devices

What's an event?

Why charged particles?

- Charged particles interact with matter in many ways (ionization, Cherenkov radiation, ...)
- We can exploit them to study all particle properties (mass, momentum, charge, energy, ...)
- We can study neutral particles also by identifying their charged decay products

What's a track?

What/Why FPGAs?

Why high speed and bandwidth?

- p-p collisions happens at 40 MHz
 (25 ns between two collisions) ⇒
 we need to be very fast at
 reconstructing particle tracks
- 4 TB/s of data out of the detector ⇒
 we need a system that can swallow
 all of them

Why high speed and bandwidth?

- p-p collisions happens at 40 MHz (25 ns between two collisions) ⇒ we need to be very fast at reconstructing particle tracks
- 4 TB/s of data out of the detector ⇒
 we need a system that can swallow
 all of them

Let's get our hands dirty

- A charged particle hitting a (silicon-pixel) detector layer might light up multiple parts (pixels) of the layer, due to the particle interaction itself
- The first step in track reconstruction is putting together pixels on the same detector layer and left by the same particle ⇒ **clustering**

FPGA clustering in a rush

- Isolated pixels are clusters made of a single pixel \Rightarrow no processing required
- Pixels with neighbors fill a set of matrices \Rightarrow pixels close together fill the same matrix

- The clustering project was born as a spin-off the the Retina project
- During my PhD I have:

- The clustering project was born as a spin-off the the Retina project
- During my PhD I have:
 - Developed the first prototype

- The clustering project was born as a spin-off the the Retina project
- During my PhD I have:
 - Developed the first prototype

• Studied its performances

- The clustering project was born as a spin-off the the Retina project
- During my PhD I have:
 - Developed the first prototype

• Studied its performances

• Integrated and deployed it to production

FPGA clustering - development

- The first functioning prototype of the clustering firmware was developed and tested within the LHCb-Pisa INFN laboratory
- The main goals of the development stage were the following:
 - Develop a first working firmware that reconstructs clusters correctly
 - Test the firmware on a prototyping board, to check that it is fast enough
 - Measure the amount of FPGA resources required
- Since the firmware was running fine, at a high speed and requiring a low amount of resources, the collaboration asked us to integrate it within the readout cards ⇒ reduce computational load on trigger

- ⇒ reduce bandwidth
- \Rightarrow reduce power consumption
- ⇒ no extra costs

FPGA clustering - physics performances

- We have developed a new clustering algorithm, running on an FPGA platform ⇒ we need to make sure it has good physics performances
 - Check that FPGA clusters reconstruct the position of the impinging particle precisely
 - Check that tracks produced from FPGA clusters have the same quality wrt the ones produced by more standard algorithms
- These checks have been performed using LHCb simulation where the particles produced by a simulated p-p interaction interact with a simulated detector

FPGA clustering - integration

- Having verified that the clustering has a high enough throughput, while satisfying the very demanding LHCb physics requirements, the clustering firmware has been fully integrated within readout cards
 - Extract the cluster-reconstruction part of the firmware
 - Make input-output interfaces LHCb-compliant
 - Add monitoring and error handling
- The trigger software had to be updated to accept clusters as input instead of single detector pixels

FPGA clustering - deployment

- Deploying the firmware to the production system poses its own issues and challenges:
 - Deal with real detector data
 - Scale up to full system
 - Achieve high data taking efficiencies
 - Coordinate with other LHCb subsystems
 - $\circ \quad \mbox{Wait for beam from LHC}$
 - 0 ...

Looking forward

- LHCb offers the unique opportunity to learn and actively contribute to leading edge particle physics research
- LHCb is currently on an upgrade path towards High Luminosity LHC (2030s)
 ⇒ many opportunities to contribute for every taste, from detector design and construction, to readout planning and development, from coding fast and efficient trigger to detailed simulations

QUESTIONS?

Field Programmable Gate Arrays

- FPGAs are integrated circuits that can be **configured by the user**
- FPGAs contain an **array of programmable logic blocks**, that can be programmed to perform different logic functions
- I/O ports, PLLs, memory blocks and clock distribution lines are integrated within the FPGA
- Configuration is done using a hardware description language (HDL)

LHCb trigger

- Run 2 trigger
 - hardware Level-0 stage: 40 MHz → 1 MHz
 - HLT1 fast tracking: $1MHz \rightarrow 100kHz$
 - HLT2 full event reconstruction: 100 kHz → 12.5 kHz
- Moving from Run 2 to Run 3 we need to categorise different "signals" → access as much of the event as possible, as early as possible
- Run 3 trigger:
 - Full 30 MHz and x5 pileup
 - \circ HLT1: 30 MHz \rightarrow 1 MHz
 - HLT2: 10GB/s to permanent storage

Event building (EB)

• Each sub detector sends raw data, asynchronously, to a unique EB node, that receives data through DAQ cards

LHCb-DP-2021-003

- EB nodes exchange detector data using an EB network
- All detector data for an event are sent to a specific EB node that builds the event
- GPU cards run HLT1 within the EB servers, reducing the data rate at the output of the EB by a factor of 30-60
- An array of disk servers buffers the HLT1 output data
- A separate server farm runs HLT2

The VELO detector

- The clustering algorithm has been tailored for the LHCb Vertex Locator (**VELO**):
 - 26 layers each made of 2 modules
 - Each module consists of 4 sensors
 - 1 DAQ card per module
 - 41 M pixels in total
- Pixels are read in groups of 2x4 pixels (SuperPixels)
- VELO clusters are typically made of few pixels (1-4)
- The first step of the cluster reconstruction is to flag isolated SuperPixels (isolated = none of the 8 neighbors SPs have any active pixel)

VELO clustering - algorithm overview

- Isolated SPs are resolved with a Look Up Table (LUT) allowing for an extremely fast processing of isolated SPs, with a very limited amount of logic resources within the FPGA
- LUT connects each of the 256 (2⁸) possibile pixel configurations inside a SP to the center of mass of the cluster/s (if two clusters are generated)

VELO clustering - algorithm overview

- SPs with neighbors fill a set of matrices, 3x3 SPs each (6x12 pixels)
- First SP filling a matrix determines position of the matrix in the detector set of coordinates of SPs that can fill the matrix
 - If a SP belongs to a matrix it fills it, otherwise it moves forward, checking the
- next matrix or filling a blank one in the center

VELO clustering - algorithm overview

- At the end of each event, in a fully parallel way, each pixel checks if it belongs to one of the following patterns, if so a cluster candidate is identified
- Each cluster candidate is resolved using a LUT

- Algorithm parameters:
 - Matrix shape and size \leftarrow average number of neighbor SPs and their arrangement
 - Number of matrices \leftarrow distribution of total number of not isolated SPs per event
 - Cluster maximum dimension (3x3 pixels) \leftarrow distribution of cluster sizes

VELO clustering - firmware overview

computes isolation

Having defined the algorithm behavior, the corresponding firmware has been developed in VHDL

VELO clustering - firmware overview

Fitting inside the FPGA

100%

34

0					
0	1	1	1		
0	0	0	1		
		0	0	1	1
			0	0	0

Anchor pixel

Left out

Pixel of **cluster** Pixel of

cluster

pixel

Cluster