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Talk overview

Fig. IPCC report, 2001.

1. Towards a definition of (macro)-weather and climate

2. Energy Balance Models (EBMs)

• Intro: 0D-EBMs

• Space heterogeneous 1D-EBM with local bistability

• Early warning indicators
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Weather, climate and macroweather



Weather vs climate

‘The climate is what you expect; the weather is what you

get’ Mark Twain

Weather is the state of the atmosphere during a short period of

time, it involves variables as temperature, humidity, rain, wind.

Climate is a statistical description of relevant quantities over a

period of time ranging from decades to thousands of years.
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Reality - Continuum spectrum

Fig. 1. Periodicities in Earth dynamics.
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Random dynamical systems, Macroweather, Climate

• Weather. Fast scale, deterministic, typical timescale τ = 1

day.

• Macroweather. Weather component has been averaged,

stochastic, τ = 6 months.

• Climate. Long time behaviour, τ = 30− 100 years.

Definition

(i) The macro-weather dynamics is Uq,ω(s, t)

(ii) The climate dynamics is Pq
s,t

(iii) The climate is µq(t)
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Weather dynamics

Definition

(i) The weather dynamics is Uq,ω(s, t)

(X , d) metric space, (Uq,ω(s, t))s≤t non-autonomous random

dynamical system, q = q(εt) (slow) and ω = ω(t) (fast):

• Uq,ω(s, t) : X → X

• Uq,ω(s, s)(x) = x , ∀x ∈ X

• (Uq,ω(r , t) ◦ Uq,ω(s, r)) (x) = Uq,ω(s, t)(x)

Example: u = u(x , t) temperature on monthly timescale

∂tu = κ∆u + q(εt) + Ra(u)− Re(u) + ξ(t, ω)

ξ space-time white noise (fast time-scale), q(εt) greenhouse effect

due to CO2. For s < t, u(x , t) = ut(x) depends on: us , ω, q. Set:

ut = Uq,ω(s, t)(us) 5



EBMs as models for macroweather - Is the timescale correct?

Let’s simplify the models and consider

C
dT

dT
= Qα− A− B(T − 273). (2.15)

Given an initial condition T (0), the solution converges to the

equilibrium with a relaxation time

τ0 = C/B ≈ 30 days.

Fig. 2. Pag. 32, [NK17].
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Climate dynamics

Definition

(ii) Climate dynamics is (Pq
s,t)s≤t

• We call µs ∈ Pr(X ,B(X )) state.

The linear operator Pq
s,t is given by:∫

X
ϕ(y)(Pq

s,tµs)(dy) := E [ϕ (Uq,ω(s, t)(x))µs(dx)] ,

with µs ∈ Pr(X ,B(X )).

• Pq
s,t doesn’t depend on ω.
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What is climate

Definition

(iii) The climate is (µq(t))t≥0

• µq(t) is the invariant measure on (X , d) for Pq
s,t , i.e.

µq(t) = Pq
s,tµq(s), ∀s ≤ t, ∀q

• Existence is easy. Uniqueness is difficult, when it doesn’t hold:

µq(t) = lim
s→−∞

Pq
s,tλ,

where λ is a ”natural measure” (e.g. X = torus, λ = uniform

measure).
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Energy balance Models (EBMs)



Zero-dimensional energy balance model (0D-EBM)

T = T (t) global mean temperature evolves as:

dT

dt
= Ra(T )− Re(T ) = Q0β(T ) + q − ε0σ0T

4, T (0) = T0,

• Q0 solar radiation, β co-albedo, q > 0 CO2 concentration

• The number of fixed points depends on q

• Fixed points are local extremum points of F q s.t

F
′
q = Re − Ra.

Radiation balance, q = 25. Potential F 25.
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Stochastic 0D-EBM

Consider the SDE

dTt =
(
Ra(T )− Re(T )

)
dt+σdWt ,

with (Wt)t BM and σ > 0.

Theorem

Under coercivity and regularity assumptions, ∃! invariant measure

ν(dT ) =
1

Z
exp

(
− 2

σ2
F q(T )

)
dT .

Remark: ν is concentrated on global minimum points of F q.
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Problem: this model is useful for paleoclimate, not for current

climate change.

• No global bifurcation

closeby

• Evidences for local

bistability

Fig. 1: Outgoing longwave radition (OLR) as a

function of sea-surface temperature (SST) [DG18,

Fig. 2]. 11



One-dimensional energy balance model (1D-EBM)

u = u(x , t) temperature, x = sin(ϕ), ϕ = latitude

∂tu = ∂x (κ(x)ux) + Ra(x , u) + q − Re(x , u)

u(x , 0) = u0, ∂xu(−1, t) = ∂xu(1, t) = 0,

• Re modelling bistability in tropical region

• Three steady-state solution uS , uM , uW .

Bifurcation diagram around uW in

(q, ūW ) plane, ūW = ∥uW ∥1.
Re = Re(x , u)
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Stochastic 1D-EBM

Consider

∂tu = ∂x (κ(x)ux) + Ra(x , u) + q − Re(x , u) + σdWt

u(x , 0) = uW , ∂xu(−1, t) = ∂xu(1, t) = 0,

• uW warm climate

• (Wt)t cylindrical Wiener process

• σ ≫ 0 noise-intensity
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Early warning indicators

U = (uij)ij ∈ Rn×m, (xi )i=1,...,n, (tj)j=1,...,m, uij = u(xi , tj)

numerical approximation of

∂tu = ∂x (κ(x)ux) + Ra(x , u) + q − Re(x , u) + σdWt

u(0, x) = uW ∂xu(t,−1) = ∂xu(t, 1) = 0,

uw warm climate.

Time variance

σ2
t (xi ) =

1

m

m∑
j=1

(uij − ui )
2 ,

where ui =
1
m

∑m
j=1 uij .
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Time variance

σ2
t (xi ) =

1

m

m∑
j=1

(uij − ui )
2
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Relaxation time

Set R(x , u) = Ra + q − Re . Define the relaxation time as:

τq(xi ) :=
1

∂uR|u=uW (xi )
x=xi

.

Radiation balance, q = 25. Potential F 25.
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Conclusions

• Macroweather as solution of stochastic equation (SDE or

SPDE).

• Climate as invariant measure

• Space heterogeneous 1D-EBM is a dynamical system (DS)

given by a continuum of interlaced DSs.

• The global system tends to a stable fixed point.

• The restriction of the stable fixed point can be locally

unstable w.r.t. the uncoupled part.

• Instability areas ←→ variance increase.
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Open problems

• Trichotmoy is a simplification.

• Rigorous mathematical analysis of the space-heterogeneous

1D-EBM.

• Explain why some areas lose stability.
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Thanks for the attention!
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1D-EBM: variational setting

Let R s.t. ∂uR = Re − Ra − q. Consider the functional

Fq(u) :=
κ

2

∫ 1

−1

[
u′(x)

]2
dx +

∫ 1

−1
R(x , u(x))dx ,

and the space

H1 :=

{
u(x) = u−1 +

∫ x

−1
v(y)dy , u, v ∈ L2(−1, 1)

}
.

The variational problem consists in studying

inf
{
Fq(u) | u ∈ H1, u ≥ 0

}
.

Key fact: minimum points of Fq are steady-state solutions for the

1D-EBM, i.e.

0 = κ∆u + Q0(x)β(u) + q − σ0ε0u
4,

0 = u′(−1) = u′(1), u ≥ 0.



Stochastic 1D-EBM: invariant measure

Consider the stochastic 1D-EBM

∂tu = κ∆u + Ra(x , u)− Re(u) + εηt ,

where ε > 0 and (ηt)t≥0 is a space-time white noise.

Theorem (Da Prato, 2004)

If R = R(x , u) is regular and coercive, then there exists an

unique invariant measure ν. It is formally given by:

ν(du) =
1

Z
exp

(
− 2

ε2
Fq(u)

)
du

Remark: the invariant measure is concentrated on global

minimum points of Fq.
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