Climate, macroweather and statistical properties for a spatially heterogeneous 1D-EBM

<u>G. Del Sarto</u> ^{1,2} F. Flandoli ²

April 23, 2024

¹Scuola Normale Superiore

²University School for Advanced Studies IUSS Pavia

Talk overview

- 1. Towards a definition of (macro)-weather and climate
- 2. Energy Balance Models (EBMs)
 - Intro: 0D-EBMs
 - Space heterogeneous 1D-EBM with local bistability
 - Early warning indicators

Weather, climate and macroweather

'The climate is what you expect; the weather is what you get' Mark Twain

Weather is the state of the atmosphere during a short period of time, it involves variables as temperature, humidity, rain, wind.

Climate is a statistical description of relevant quantities over a period of time ranging from decades to thousands of years.

Reality - Continuum spectrum

Fig. 1. Periodicities in Earth dynamics.

Random dynamical systems, Macroweather, Climate

- Weather. Fast scale, deterministic, typical timescale $\tau = 1$ day.
- Macroweather. Weather component has been averaged, stochastic, τ = 6 months.
- Climate. Long time behaviour, $\tau = 30 100$ years.

Random dynamical systems, Macroweather, Climate

- Weather. Fast scale, deterministic, typical timescale $\tau = 1$ day.
- Macroweather. Weather component has been averaged, stochastic, τ = 6 months.
- Climate. Long time behaviour, $\tau = 30 100$ years.

Definition

(i) The macro-weather dynamics is $U_{q,\omega}(s,t)$

(ii) The climate dynamics is $\mathbb{P}^{q}_{s,t}$

(iii) The climate is $\mu_q(t)$

Weather dynamics

Definition

(i) The weather dynamics is
$$U_{q,\omega}(s,t)$$

(X, d) metric space, $(U_{q,\omega}(s, t))_{s \leq t}$ non-autonomous random dynamical system, $q = q(\varepsilon t)$ (slow) and $\omega = \omega(t)$ (fast):

•
$$U_{q,\omega}(s,t)\colon X\to X$$

•
$$U_{q,\omega}(s,s)(x) = x, \forall x \in X$$

• $(U_{q,\omega}(r,t) \circ U_{q,\omega}(s,r))(x) = U_{q,\omega}(s,t)(x)$

Example: u = u(x, t) temperature on monthly timescale

$$\partial_t u = \kappa \Delta u + q(\varepsilon t) + R_a(u) - R_e(u) + \xi(t,\omega)$$

 ξ space-time white noise (fast time-scale), $q(\varepsilon t)$ greenhouse effect due to CO_2 . For s < t, $u(x, t) = u_t(x)$ depends on: u_s, ω, q . Set:

$$u_t = U_{q,\omega}(s,t)(u_s)$$

5

EBMs as models for macroweather - Is the timescale correct?

Let's simplify the models and consider

$$C\frac{dT}{dT} = Q\alpha - A - B(T - 273). \tag{2.15}$$

Given an initial condition T(0), the solution converges to the equilibrium with a *relaxation time*

$$\tau_0 = C/B \approx 30$$
 days.

Now imagine that the temperature T(t = 0) is out of equilibrium. The differential equation (2.15) has a solution

$$T(t) = T_{\rm eq} + (T(0) - T_{\rm eq})e^{-t/\tau_0}$$
(2.16)

that can be demonstrated by substitution into (2.15). The decay time constant is given by $\tau_0 = C/B$. The perturbed climate relaxes to the equilibrium solution with a decay time of τ_0 , which, for the all-land planet, is about $2.5 \times 10^7 \text{s} \approx 30 \text{ days}$ as shown in Figure 2.2. It

Fig. 2. Pag. 32, [NK17].

Climate dynamics

Definition

(ii) Climate dynamics is $(\mathbb{P}^q_{s,t})_{s \leq t}$

• We call $\mu_s \in Pr(X, \mathcal{B}(X))$ state.

The linear operator $\mathbb{P}^{q}_{s,t}$ is given by:

$$\int_X \phi(y)(\mathbb{P}^q_{s,t}\mu_s)(dy) := \mathbb{E}\left[\phi\left(U_{q,\omega}(s,t)(x)\right)\mu_s(dx)\right],$$

with $\mu_s \in Pr(X, \mathcal{B}(X))$.

•
$$\mathbb{P}^{q}_{s,t}$$
 doesn't depend on ω .

Definition

(iii) The climate is $(\mu_q(t))_{t\geq 0}$

• $\mu_q(t)$ is the invariant measure on (X, d) for $\mathbb{P}^q_{s,t}$, i.e.

$$\mu_q(t) = \mathbb{P}^q_{s,t} \mu_q(s), \quad \forall s \leq t, \ \forall q$$

• Existence is easy. Uniqueness is difficult, when it doesn't hold:

$$\mu_q(t) = \lim_{s \to -\infty} \mathbb{P}^q_{s,t} \lambda,$$

where λ is a "natural measure" (e.g. $X = \text{torus}, \lambda = \text{uniform}$ measure).

Energy balance Models (EBMs)

Zero-dimensional energy balance model (0D-EBM)

T = T(t) global mean temperature evolves as: $\frac{dT}{dt} = \overline{R}_a(T) - \overline{R}_e(T) = \overline{Q}_0\beta(T) + q - \varepsilon_0\sigma_0T^4, \ T(0) = T_0,$

- \overline{Q}_0 solar radiation, β co-albedo, q > 0 CO₂ concentration
- The number of fixed points depends on q
- Fixed points are local extremum points of \overline{F}_q s.t $\overline{F}'_q = \overline{R}_e \overline{R}_a$.

Radiation balance, q = 25.

Stochastic 0D-EBM

Consider the SDE $dT_t = \left(\overline{R}_a(T) - \overline{R}_e(T)\right) dt + \sigma dW_t,$

with $(W_t)_t$ BM and $\sigma > 0$.

Theorem

Under coercivity and regularity assumptions, $\exists!$ invariant measure

$$\overline{\nu}(dT) = \frac{1}{Z} \exp\left(-\frac{2}{\sigma^2}\overline{F}_q(T)\right) dT.$$

Remark: $\overline{\nu}$ is concentrated on global minimum points of \overline{F}_q .

Problem: this model is useful for paleoclimate, not for current climate change.

• No global bifurcation closeby

• Evidences for local bistability

Fig. 1: Outgoing longwave radition (OLR) as a function of sea-surface temperature (SST) [DG18, Fig. 2].

One-dimensional energy balance model (1D-EBM)

$$\begin{split} u &= u(x,t) \text{ temperature, } x = \sin(\phi), \ \phi = \text{latitude} \\ \\ \partial_t u &= \partial_x \left(\kappa(x)u_x\right) + R_a(x,u) + q - R_e(x,u) \\ \\ u(x,0) &= u_0, \quad \partial_x u(-1,t) = \partial_x u(1,t) = 0, \end{split}$$

- R_e modelling bistability in tropical region
- Three steady-state solution u_S, u_M, u_W .

Bifurcation diagram around u_W in (q, \bar{u}_W) plane, $\bar{u}_W = ||u_W||_1$.

$$R_e = R_e(x, u)$$

Stochastic 1D-EBM

Consider

$$\partial_t u = \partial_x \left(\kappa(x) u_x \right) + R_a(x, u) + q - R_e(x, u) + \sigma dW_t$$
$$u(x, 0) = u_W, \quad \partial_x u(-1, t) = \partial_x u(1, t) = 0,$$

- *u_W* warm climate
- $(W_t)_t$ cylindrical Wiener process
- $\sigma \gg 0$ noise-intensity

Early warning indicators

 $U = (u_{ij})_{ij} \in \mathbb{R}^{n \times m}, (x_i)_{i=1,...,n}, (t_j)_{j=1,...,m}, u_{ij} = u(x_i, t_j)$ numerical approximation of

$$\partial_t u = \partial_x \left(\kappa(x) u_x \right) + R_a(x, u) + q - R_e(x, u) + \sigma dW_t$$
$$u(0, x) = u_W \quad \partial_x u(t, -1) = \partial_x u(t, 1) = 0,$$

uw warm climate.

Time variance

$$\sigma_t^2(x_i) = \frac{1}{m} \sum_{j=1}^m \left(u_{ij} - \overline{u}_i \right)^2,$$

where $\overline{u}_i = \frac{1}{m} \sum_{j=1}^m u_{ij}$.

Time variance

15

Relaxation time

Set $R(x, u) = R_a + q - R_e$. Define the *relaxation time* as:

$$\tau_q(x_i) := \frac{1}{\partial_u R_{|u=u_W(x_i)}}.$$

Conclusions

- Macroweather as solution of stochastic equation (SDE or SPDE).
- Climate as invariant measure
- Space heterogeneous 1D-EBM is a dynamical system (DS) given by a continuum of interlaced DSs.
- The global system tends to a stable fixed point.
- The restriction of the stable fixed point can be locally unstable w.r.t. the uncoupled part.
- Instability areas \longleftrightarrow variance increase.

• Trichotmoy is a simplification.

• Rigorous mathematical analysis of the space-heterogeneous 1D-EBM.

• Explain why some areas lose stability.

M. Dewey and C. Goldblatt.

Evidence for radiative-convective bistability in tropical atmospheres.

Geophysical Research Letters, 45(19), October 2018.

- Gianmarco Del Sarto, Jochen Bröcker, Franco Flandoli, and Tobias Kuna.
 - Variational techniques for a one-dimensional energy balance model.

Nonlinear Processes in Geophysics, 31(1):137–150, March 2024.

- Franco Flandoli, Umberto Pappalettera, and Elisa Tonello.
 Nonautonomous attractors and young measures.
 Stochastics and Dynamics, 22(02), November 2021.
- 🔋 Gerald R North and Kwang-Yul Kim.

Energy balance climate models.

Wiley Series in Atmospheric Physics and Remote Sensing. Wiley-VCH Verlag, Weinheim, Germany, September 2017.

Thanks for the attention!

1D-EBM: variational setting

Let
$$\mathcal{R}$$
 s.t. $\partial_u \mathcal{R} = R_e - R_a - q$. Consider the functional

$$F_q(u) := \frac{\kappa}{2} \int_{-1}^{1} \left[u'(x) \right]^2 dx + \int_{-1}^{1} \mathcal{R}(x, u(x)) dx,$$

and the space

$$H^1 := \left\{ u(x) = u_{-1} + \int_{-1}^x v(y) dy, \quad u, v \in L^2(-1, 1) \right\}.$$

The variational problem consists in studying

$$\inf\left\{F_q(u) \mid u \in H^1, \ u \ge 0\right\}.$$

Key fact: minimum points of F_q are steady-state solutions for the 1D-EBM, i.e.

$$0 = \kappa \Delta u + Q_0(x)\beta(u) + q - \sigma_0\varepsilon_0 u^4,$$

$$0 = u'(-1) = u'(1), \quad u \ge 0.$$

Stochastic 1D-EBM: invariant measure

Consider the stochastic 1D-EBM

$$\partial_t u = \kappa \Delta u + R_a(x, u) - R_e(u) + \varepsilon \eta_t,$$

where $\varepsilon > 0$ and $(\eta_t)_{t>0}$ is a space-time white noise.

Theorem (Da Prato, 2004)

If $\mathcal{R} = \mathcal{R}(x, u)$ is regular and coercive, then there exists an unique invariant measure ν . It is formally given by:

$$\nu(du) = \frac{1}{Z} \exp\left(-\frac{2}{\varepsilon^2} F_q(u)\right) du$$

Remark: the invariant measure is concentrated on global minimum points of F_q .