A Mean-Field Game network model for urban planning

Luciano Marzufero, Junior Assistant Professor (RTD-a) Free University of Bozen-Bolzano

Workshop

Some Mathematical Approaches to Climate Change and its Impacts
Pisa, 22/04/24
joint work with F. Camilli and A. Festa

Description of the model: evolution of cities

Description of the model: evolution of cities

Inspired by: C. Barilla, G. Carlier, J.-M. Lasry, A mean field game model for the evolution of cities, J. Dyn. Games, 8(3), 299-329, 2021.

Description of the model: evolution of cities

Inspired by: C. Barilla, G. Carlier, J.-M. Lasry, A mean field game model for the evolution of cities, J. Dyn. Games, 8(3), 299-329, 2021.
Two populations: $m_{1}(t, \cdot)$ (workers) and $m_{2}(t, \cdot)$ (firms) where $t \in[0, T]$.

Description of the model: evolution of cities

Inspired by: C. Barilla, G. Carlier, J.-M. Lasry, A mean field game model for the evolution of cities, J. Dyn. Games, 8(3), 299-329, 2021.
Two populations: $m_{1}(t, \cdot)$ (workers) and $m_{2}(t, \cdot)$ (firms) where $t \in[0, T]$.
At any instant t they interact in two ways:

Description of the model: evolution of cities

Inspired by: C. Barilla, G. Carlier, J.-M. Lasry, A mean field game model for the evolution of cities, J. Dyn. Games, 8(3), 299-329, 2021.
Two populations: $m_{1}(t, \cdot)$ (workers) and $m_{2}(t, \cdot)$ (firms) where $t \in[0, T]$.
At any instant t they interact in two ways:

- Rents: they compete for land use, paying a rent $R^{i}\left[m_{1}, m_{2}\right], i=1,2$, for space occupation;

Description of the model: evolution of cities

Inspired by: C. Barilla, G. Carlier, J.-M. Lasry, A mean field game model for the evolution of cities, J. Dyn. Games, 8(3), 299-329, 2021.
Two populations: $m_{1}(t, \cdot)$ (workers) and $m_{2}(t, \cdot)$ (firms) where $t \in[0, T]$.
At any instant t they interact in two ways:

- Rents: they compete for land use, paying a rent $R^{i}\left[m_{1}, m_{2}\right], i=1,2$, for space occupation;
- Labour market: Wages are paid by firms to workers, who choose the residence and the workplace so as to maximize the revenue, i.e. wage minus commuting cost. Instead the strategy of the firms aims to minimize the labour cost.

Description of the model: evolution of cities

Inspired by: C. Barilla, G. Carlier, J.-M. Lasry, A mean field game model for the evolution of cities, J. Dyn. Games, 8(3), 299-329, 2021.
Two populations: $m_{1}(t, \cdot)$ (workers) and $m_{2}(t, \cdot)$ (firms) where $t \in[0, T]$.
At any instant t they interact in two ways:

- Rents: they compete for land use, paying a rent $R^{i}\left[m_{1}, m_{2}\right], i=1,2$, for space occupation;
- Labour market: Wages are paid by firms to workers, who choose the residence and the workplace so as to maximize the revenue, i.e. wage minus commuting cost. Instead the strategy of the firms aims to minimize the labour cost.
We study the model on a network Γ rather than in $\mathbb{T}^{d} \Rightarrow$ more suitable for an urban planning structure.

Description of the model: the network Γ

Description of the model: the network Γ

- $\Gamma \subset \mathbb{R}^{N}$ is a bounded network given by

Description of the model: the network Γ

- $\Gamma \subset \mathbb{R}^{N}$ is a bounded network given by
- a finite collection of vertices $\mathcal{V}:=\left\{\nu_{i}, i \in I\right\}$

Description of the model: the network Γ

- $\Gamma \subset \mathbb{R}^{N}$ is a bounded network given by
- a finite collection of vertices $\mathcal{V}:=\left\{\nu_{i}, i \in I\right\}$
- a finite collection of straight, non intersecting edges $\mathcal{E}:=\left\{\Gamma_{\alpha}, \alpha \in \mathcal{A}\right\}$ parametrized by
$\pi_{\alpha}(y)=\ell_{\alpha}^{-1}\left(y \nu_{j}+\left(\ell_{\alpha}-y\right) \nu_{i}\right), y \in\left[0, \ell_{\alpha}\right]$
with ℓ_{α} is the length of the edge. $\mathcal{A}_{i}=\left\{\alpha \in \mathcal{A}: \nu_{i} \in \Gamma_{\alpha}\right\}$ denotes the set of indices of edges that are adjacent to the vertex ν_{i}

Description of the model: the network Γ

- $\Gamma \subset \mathbb{R}^{N}$ is a bounded network given by
- a finite collection of vertices $\mathcal{V}:=\left\{\nu_{i}, i \in I\right\}$
- a finite collection of straight, non intersecting edges $\mathcal{E}:=\left\{\Gamma_{\alpha}, \alpha \in \mathcal{A}\right\}$ parametrized by

$$
\pi_{\alpha}(y)=\ell_{\alpha}^{-1}\left(y \nu_{j}+\left(\ell_{\alpha}-y\right) \nu_{i}\right), y \in\left[0, \ell_{\alpha}\right]
$$

with ℓ_{α} is the length of the edge. $\mathcal{A}_{i}=\left\{\alpha \in \mathcal{A}: \nu_{i} \in \Gamma_{\alpha}\right\}$ denotes the set of indices of edges that are adjacent to the vertex ν_{i}

- For a function $v: \Gamma \longrightarrow \mathbb{R}$, we denote

Description of the model: the network Γ

- $\Gamma \subset \mathbb{R}^{N}$ is a bounded network given by
- a finite collection of vertices $\mathcal{V}:=\left\{\nu_{i}, i \in I\right\}$
- a finite collection of straight, non intersecting edges $\mathcal{E}:=\left\{\Gamma_{\alpha}, \alpha \in \mathcal{A}\right\}$ parametrized by

$$
\pi_{\alpha}(y)=\ell_{\alpha}^{-1}\left(y \nu_{j}+\left(\ell_{\alpha}-y\right) \nu_{i}\right), y \in\left[0, \ell_{\alpha}\right]
$$

with ℓ_{α} is the length of the edge. $\mathcal{A}_{i}=\left\{\alpha \in \mathcal{A}: \nu_{i} \in \Gamma_{\alpha}\right\}$ denotes the set of indices of edges that are adjacent to the vertex ν_{i}

- For a function $v: \Gamma \longrightarrow \mathbb{R}$, we denote
- $v_{\alpha}(y):=\left.v\right|_{\Gamma_{\alpha}} \circ \pi_{\alpha}(y)$ the restriction of v to Γ_{α}.

Description of the model: the network Γ

- $\Gamma \subset \mathbb{R}^{N}$ is a bounded network given by
- a finite collection of vertices $\mathcal{V}:=\left\{\nu_{i}, i \in I\right\}$
- a finite collection of straight, non intersecting edges $\mathcal{E}:=\left\{\Gamma_{\alpha}, \alpha \in \mathcal{A}\right\}$ parametrized by

$$
\pi_{\alpha}(y)=\ell_{\alpha}^{-1}\left(y \nu_{j}+\left(\ell_{\alpha}-y\right) \nu_{i}\right), y \in\left[0, \ell_{\alpha}\right]
$$

with ℓ_{α} is the length of the edge. $\mathcal{A}_{i}=\left\{\alpha \in \mathcal{A}: \nu_{i} \in \Gamma_{\alpha}\right\}$ denotes the set of indices of edges that are adjacent to the vertex ν_{i}

- For a function $v: \Gamma \longrightarrow \mathbb{R}$, we denote
- $v_{\alpha}(y):=\left.v\right|_{\Gamma_{\alpha}} \circ \pi_{\alpha}(y)$ the restriction of v to Γ_{α}.
- $\partial_{\alpha} v(x)=\frac{d v_{\alpha}}{d y}(y)$ for $y=\pi_{\alpha}^{-1}(x)$ the derivative inside the $\operatorname{arc} \Gamma_{\alpha}$.

Description of the model: the network Γ

- $\Gamma \subset \mathbb{R}^{N}$ is a bounded network given by
- a finite collection of vertices $\mathcal{V}:=\left\{\nu_{i}, i \in I\right\}$
- a finite collection of straight, non intersecting edges $\mathcal{E}:=\left\{\Gamma_{\alpha}, \alpha \in \mathcal{A}\right\}$ parametrized by

$$
\pi_{\alpha}(y)=\ell_{\alpha}^{-1}\left(y \nu_{j}+\left(\ell_{\alpha}-y\right) \nu_{i}\right), y \in\left[0, \ell_{\alpha}\right]
$$

with ℓ_{α} is the length of the edge. $\mathcal{A}_{i}=\left\{\alpha \in \mathcal{A}: \nu_{i} \in \Gamma_{\alpha}\right\}$ denotes the set of indices of edges that are adjacent to the vertex ν_{i}

- For a function $v: \Gamma \longrightarrow \mathbb{R}$, we denote
- $v_{\alpha}(y):=\left.v\right|_{\Gamma_{\alpha}} \circ \pi_{\alpha}(y)$ the restriction of v to Γ_{α}.
- $\partial_{\alpha} v(x)=\frac{d v_{\alpha}}{d y}(y)$ for $y=\pi_{\alpha}^{-1}(x)$ the derivative inside the $\operatorname{arc} \Gamma_{\alpha}$.

$$
\partial_{\alpha} v\left(\pi^{-1}\left(\nu_{i}\right)\right):= \begin{cases}\lim _{h \rightarrow 0^{+}} \frac{v_{\alpha}(0)-v_{\alpha}(h)}{h}, & \text { if } \nu_{i}=\pi_{\alpha}(0) \\ \lim _{h \rightarrow 0^{+}} \frac{v_{\alpha}\left(\ell_{\alpha}\right)-v_{\alpha}\left(\ell_{\alpha}-h\right)}{h}, & \text { if } \nu_{i}=\pi_{\alpha}\left(\ell_{\alpha}\right)\end{cases}
$$

the outward derivative at the vertices.

Description of the model: the eq. condition for the labour market

Description of the model: the eq. condition for the labour market

The labour market. Firms, located at y, propose a wage $w(t, y)$ to workers.

Description of the model: the eq. condition for the labour market

The labour market. Firms, located at y, propose a wage $w(t, y)$ to workers. There is a monetary commuting cost $c(x, y)$ for workers commuting from their residence location x to a job location y.

Description of the model: the eq. condition for the labour market

The labour market. Firms, located at y, propose a wage $w(t, y)$ to workers. There is a monetary commuting cost $c(x, y)$ for workers commuting from their residence location x to a job location y. Since the workers are rational, they choose their job location so as to maximize the wage net of commuting cost, which gives the following form for the revenue $r(t, x)$:

$$
r(t, x)=\max _{y \in \Gamma}\{w(t, y)-c(x, y)\} .
$$

Description of the model: the eq. condition for the labour market

The labour market. Firms, located at y, propose a wage $w(t, y)$ to workers. There is a monetary commuting cost $c(x, y)$ for workers commuting from their residence location x to a job location y. Since the workers are rational, they choose their job location so as to maximize the wage net of commuting cost, which gives the following form for the revenue $r(t, x)$:

$$
r(t, x)=\max _{y \in \Gamma}\{w(t, y)-c(x, y)\} .
$$

In the same way, at time t firms located at y hire workers to minimize the wage, i.e.

$$
w(t, y)=\min _{x \in \Gamma}\{r(t, x)+c(x, y)\} .
$$

Description of the model: the eq. condition for the labour market
Equilibrium condition: a configuration where there is no incentive for workers to change the living place and for firms to move in another place.

Description of the model: the eq. condition for the labour market

Equilibrium condition: a configuration where there is no incentive for workers to change the living place and for firms to move in another place.

This condition can be expressed in the following way: the couple of continuous functions $(w(t, \cdot), r(t, \cdot))$ induces an equilibrium in the labour market at time $t \in(0, T)$ if there is a transport plan γ between m_{1} and m_{2}, i.e. γ has marginals m_{1} and m_{2} such that

$$
w(t, y)-r(t, x)=c(x, y) \quad \text { on } \operatorname{supp}(\gamma)
$$

Description of the model: the eq. condition for the labour market

Equilibrium condition: a configuration where there is no incentive for workers to change the living place and for firms to move in another place.

This condition can be expressed in the following way: the couple of continuous functions $(w(t, \cdot), r(t, \cdot))$ induces an equilibrium in the labour market at time $t \in(0, T)$ if there is a transport plan γ between m_{1} and m_{2}, i.e. γ has marginals m_{1} and m_{2} such that

$$
w(t, y)-r(t, x)=c(x, y) \quad \text { on } \operatorname{supp}(\gamma) .
$$

[Villani et. al, works on optimal transport]: the equilibrium condition above is related to the following Optimal Transport problem:

$$
C\left(m_{1}(t, \cdot), m_{2}(t, \cdot)\right)=\inf _{\gamma \in \Pi\left(m_{1}, m_{2}\right)} \int_{\Gamma \times \Gamma} c(x, y) d \gamma(x, y) .
$$

Description of the model: the eq. condition for the labour market

Kantorovich duality: since Γ is compact, the cost $C\left(m_{1}(t, \cdot), m_{2}(t, \cdot)\right)$ can be equivalently rewritten in the dual form as

$$
\begin{gathered}
C\left(m_{1}(t, \cdot), m_{2}(t, \cdot)\right)=\sup \left\{\int_{\Gamma} w(t, y) d m_{2}(t)(y)-\int_{\Gamma} r(t, x) d m_{1}(t)(x):\right. \\
w, r \text { continuous and } w(t, y)-r(t, x) \leq c(x, y) \text { for every } x, y \in \Gamma\}
\end{gathered}
$$

Description of the model: the eq. condition for the labour market

Kantorovich duality: since Γ is compact, the cost $C\left(m_{1}(t, \cdot), m_{2}(t, \cdot)\right)$ can be equivalently rewritten in the dual form as

$$
\begin{aligned}
& C\left(m_{1}(t, \cdot), m_{2}(t, \cdot)\right)=\sup \left\{\int_{\Gamma} w(t, y) d m_{2}(t)(y)-\int_{\Gamma} r(t, x) d m_{1}(t)(x):\right. \\
& w, r \text { continuous and } w(t, y)-r(t, x) \leq c(x, y) \text { for every } x, y \in \Gamma\}
\end{aligned}
$$

\Rightarrow at any t, the equilibrium condition in the labour market is equivalent to find a pair of continuous functions $\left(g_{1}, g_{2}\right)=(-r(t, \cdot), w(t, \cdot))$ satisfying $g_{1}(x)+g_{2}(y) \leq c(x, y)$ and optimal for the dual problem.

Description of the model: workers optimal control problem

Description of the model: workers optimal control problem

Workers. The dynamics of the representative agent of the workers population m_{1} is given by a Markov process $\left(X_{s}, \alpha_{s}\right)$ with $X_{s} \in \Gamma_{\alpha_{s}}$, characterized by the SDE

$$
d X_{s}=u_{\alpha_{s}}^{1}\left(X_{s}\right) d s+\sqrt{2 \mu_{\alpha_{s}}^{1}} d B_{s}^{1}, \quad X_{t}=x \in \Gamma,
$$

Description of the model: workers optimal control problem

Workers. The dynamics of the representative agent of the workers population m_{1} is given by a Markov process $\left(X_{s}, \alpha_{s}\right)$ with $X_{s} \in \Gamma_{\alpha_{s}}$, characterized by the SDE

$$
d X_{s}=u_{\alpha_{s}}^{1}\left(X_{s}\right) d s+\sqrt{2 \mu_{\alpha_{s}}^{1}} d B_{s}^{1}, \quad X_{t}=x \in \Gamma,
$$

where $u_{\alpha_{s}}^{1}$ is an adapted control process (with value in a compact set U_{α}^{1})

Description of the model: workers optimal control problem

Workers. The dynamics of the representative agent of the workers population m_{1} is given by a Markov process $\left(X_{s}, \alpha_{s}\right)$ with $X_{s} \in \Gamma_{\alpha_{s}}$, characterized by the SDE

$$
d X_{s}=u_{\alpha_{s}}^{1}\left(X_{s}\right) d s+\sqrt{2 \mu_{\alpha_{s}}^{1}} d B_{s}^{1}, \quad X_{t}=x \in \Gamma
$$

where $u_{\alpha_{s}}^{1}$ is an adapted control process (with value in a compact set $\left.U_{\alpha}^{1}\right), B_{s}^{1}$ is a one dimensional Wiener process and $\mu_{\alpha}^{1}>0$ is the diffusivity parameter of the workers.

Description of the model: workers optimal control problem

Workers. The dynamics of the representative agent of the workers population m_{1} is given by a Markov process $\left(X_{s}, \alpha_{s}\right)$ with $X_{s} \in \Gamma_{\alpha_{s}}$, characterized by the SDE

$$
d X_{s}=u_{\alpha_{s}}^{1}\left(X_{s}\right) d s+\sqrt{2 \mu_{\alpha_{s}}^{1}} d B_{s}^{1}, \quad X_{t}=x \in \Gamma
$$

where $u_{\alpha_{s}}^{1}$ is an adapted control process (with value in a compact set $\left.U_{\alpha}^{1}\right), B_{s}^{1}$ is a one dimensional Wiener process and $\mu_{\alpha}^{1}>0$ is the diffusivity parameter of the workers.
The worker living at $x \in \Gamma$ at time t minimizes the cost functional

$$
\mathbb{E}_{x, t} \int_{t}^{T}\left[L^{1}\left(u_{\alpha_{s}}^{1}, X_{s}\right)-r\left(s, X_{s}\right)+R^{1}\left[m_{1}(t), m_{2}(t)\right]\left(X_{s}\right)\right] d s
$$

Description of the model: workers optimal control problem

Workers. The dynamics of the representative agent of the workers population m_{1} is given by a Markov process $\left(X_{s}, \alpha_{s}\right)$ with $X_{s} \in \Gamma_{\alpha_{s}}$, characterized by the SDE

$$
d X_{s}=u_{\alpha_{s}}^{1}\left(X_{s}\right) d s+\sqrt{2 \mu_{\alpha_{s}}^{1}} d B_{s}^{1}, \quad X_{t}=x \in \Gamma,
$$

where $u_{\alpha_{s}}^{1}$ is an adapted control process (with value in a compact set $\left.U_{\alpha}^{1}\right), B_{s}^{1}$ is a one dimensional Wiener process and $\mu_{\alpha}^{1}>0$ is the diffusivity parameter of the workers.
The worker living at $x \in \Gamma$ at time t minimizes the cost functional

$$
\mathbb{E}_{x, t} \int_{t}^{T}\left[L^{1}\left(u_{\alpha_{s}}^{1}, X_{s}\right)-r\left(s, X_{s}\right)+R^{1}\left[m_{1}(t), m_{2}(t)\right]\left(X_{s}\right)\right] d s
$$

where L^{1} represents the cost of motion

Description of the model: workers optimal control problem

Workers. The dynamics of the representative agent of the workers population m_{1} is given by a Markov process $\left(X_{s}, \alpha_{s}\right)$ with $X_{s} \in \Gamma_{\alpha_{s}}$, characterized by the SDE

$$
d X_{s}=u_{\alpha_{s}}^{1}\left(X_{s}\right) d s+\sqrt{2 \mu_{\alpha_{s}}^{1}} d B_{s}^{1}, \quad X_{t}=x \in \Gamma,
$$

where $u_{\alpha_{s}}^{1}$ is an adapted control process (with value in a compact set $\left.U_{\alpha}^{1}\right), B_{s}^{1}$ is a one dimensional Wiener process and $\mu_{\alpha}^{1}>0$ is the diffusivity parameter of the workers.
The worker living at $x \in \Gamma$ at time t minimizes the cost functional

$$
\mathbb{E}_{x, t} \int_{t}^{T}\left[L^{1}\left(u_{\alpha_{s}}^{1}, X_{s}\right)-r\left(s, X_{s}\right)+R^{1}\left[m_{1}(t), m_{2}(t)\right]\left(X_{s}\right)\right] d s
$$

where L^{1} represents the cost of motion, r the revenue (that individuals bring home) and $R^{1}\left[m_{1}, m_{2}\right]$ the rent cost.

Description of the model: firms optimal control problem

Description of the model: firms optimal control problem

Firms. The dynamics of the representative agent of the firms population m_{2} is given by a Markov process $\left(Y_{s}, \alpha_{s}\right)$ with $Y_{s} \in \Gamma_{\alpha_{s}}$, characterized by the SDE

$$
d Y_{s}=u_{\alpha_{s}}^{2}\left(Y_{s}\right) d s+\sqrt{2 \mu_{\alpha_{s}}^{2}} d B_{s}^{2}, \quad Y_{t}=y \in \Gamma,
$$

Description of the model: firms optimal control problem

Firms. The dynamics of the representative agent of the firms population m_{2} is given by a Markov process $\left(Y_{s}, \alpha_{s}\right)$ with $Y_{s} \in \Gamma_{\alpha_{s}}$, characterized by the SDE

$$
d Y_{s}=u_{\alpha_{s}}^{2}\left(Y_{s}\right) d s+\sqrt{2 \mu_{\alpha_{s}}^{2}} d B_{s}^{2}, \quad Y_{t}=y \in \Gamma
$$

where $u_{\alpha_{s}}^{2}$ is an adapted control process (with value in a compact set U_{α}^{2})

Description of the model: firms optimal control problem

Firms. The dynamics of the representative agent of the firms population m_{2} is given by a Markov process $\left(Y_{s}, \alpha_{s}\right)$ with $Y_{s} \in \Gamma_{\alpha_{s}}$, characterized by the SDE

$$
d Y_{s}=u_{\alpha_{s}}^{2}\left(Y_{s}\right) d s+\sqrt{2 \mu_{\alpha_{s}}^{2}} d B_{s}^{2}, \quad Y_{t}=y \in \Gamma
$$

where $u_{\alpha_{s}}^{2}$ is an adapted control process (with value in a compact set $\left.U_{\alpha}^{2}\right), B_{s}^{2}$ is a one dimensional Wiener process and $\mu_{\alpha}^{2}>0$ is the diffusivity parameter of the firms.

Description of the model: firms optimal control problem

Firms. The dynamics of the representative agent of the firms population m_{2} is given by a Markov process $\left(Y_{s}, \alpha_{s}\right)$ with $Y_{s} \in \Gamma_{\alpha_{s}}$, characterized by the SDE

$$
d Y_{s}=u_{\alpha_{s}}^{2}\left(Y_{s}\right) d s+\sqrt{2 \mu_{\alpha_{s}}^{2}} d B_{s}^{2}, \quad Y_{t}=y \in \Gamma
$$

where $u_{\alpha_{s}}^{2}$ is an adapted control process (with value in a compact set $\left.U_{\alpha}^{2}\right), B_{s}^{2}$ is a one dimensional Wiener process and $\mu_{\alpha}^{2}>0$ is the diffusivity parameter of the firms.
The firm settled at $y \in \Gamma$ at time t minimizes the cost functional

$$
\mathbb{E}_{x, t} \int_{t}^{T}\left[L^{2}\left(u_{\alpha_{s}}^{2}, Y_{s}\right)+w\left(s, Y_{s}\right)+R^{2}\left[m_{1}(t), m_{2}(t)\right]\left(Y_{s}\right)\right] d s
$$

Description of the model: firms optimal control problem

Firms. The dynamics of the representative agent of the firms population m_{2} is given by a Markov process $\left(Y_{s}, \alpha_{s}\right)$ with $Y_{s} \in \Gamma_{\alpha_{s}}$, characterized by the SDE

$$
d Y_{s}=u_{\alpha_{s}}^{2}\left(Y_{s}\right) d s+\sqrt{2 \mu_{\alpha_{s}}^{2}} d B_{s}^{2}, \quad Y_{t}=y \in \Gamma
$$

where $u_{\alpha_{s}}^{2}$ is an adapted control process (with value in a compact set $\left.U_{\alpha}^{2}\right), B_{s}^{2}$ is a one dimensional Wiener process and $\mu_{\alpha}^{2}>0$ is the diffusivity parameter of the firms.
The firm settled at $y \in \Gamma$ at time t minimizes the cost functional

$$
\mathbb{E}_{x, t} \int_{t}^{T}\left[L^{2}\left(u_{\alpha_{s}}^{2}, Y_{s}\right)+w\left(s, Y_{s}\right)+R^{2}\left[m_{1}(t), m_{2}(t)\right]\left(Y_{s}\right)\right] d s
$$

where L^{2} represents the mobility cost

Description of the model: firms optimal control problem

Firms. The dynamics of the representative agent of the firms population m_{2} is given by a Markov process $\left(Y_{s}, \alpha_{s}\right)$ with $Y_{s} \in \Gamma_{\alpha_{s}}$, characterized by the SDE

$$
d Y_{s}=u_{\alpha_{s}}^{2}\left(Y_{s}\right) d s+\sqrt{2 \mu_{\alpha_{s}}^{2}} d B_{s}^{2}, \quad Y_{t}=y \in \Gamma
$$

where $u_{\alpha_{s}}^{2}$ is an adapted control process (with value in a compact set $\left.U_{\alpha}^{2}\right), B_{s}^{2}$ is a one dimensional Wiener process and $\mu_{\alpha}^{2}>0$ is the diffusivity parameter of the firms.
The firm settled at $y \in \Gamma$ at time t minimizes the cost functional

$$
\mathbb{E}_{x, t} \int_{t}^{T}\left[L^{2}\left(u_{\alpha_{s}}^{2}, Y_{s}\right)+w\left(s, Y_{s}\right)+R^{2}\left[m_{1}(t), m_{2}(t)\right]\left(Y_{s}\right)\right] d s
$$

where L^{2} represents the mobility cost, w the wage (that firms pay to workers) and $R^{2}\left[m_{1}, m_{2}\right]$ the rent cost.

Description of the model: the MFG-OT system

Description of the model: the MFG-OT system

The optimal control problems solved by the two populations are coupled through the rent costs R^{1} and R^{2} and the potentials g_{1} and g_{2} of the optimal transport problem.

Description of the model: the MFG-OT system

The optimal control problems solved by the two populations are coupled through the rent costs R^{1} and R^{2} and the potentials g_{1} and g_{2} of the optimal transport problem.

Remark. In the work by Barilla, Carlier and Lasry, the rent cost R is the same for both the populations and depends only on the total demand. Here we consider different and more general coupling costs which also take into account different needs for the two populations.

Description of the model: the MFG-OT system

The optimal control problems solved by the two populations are coupled through the rent costs R^{1} and R^{2} and the potentials g_{1} and g_{2} of the optimal transport problem.
Remark. In the work by Barilla, Carlier and Lasry, the rent cost R is the same for both the populations and depends only on the total demand. Here we consider different and more general coupling costs which also take into account different needs for the two populations.
The necessary conditions for equilibria can be characterized by a Mean-Field Game system coupled with the optimality conditions for the transport problem.

Description of the model: the MFG-OT system

The optimal control problems solved by the two populations are coupled through the rent costs R^{1} and R^{2} and the potentials g_{1} and g_{2} of the optimal transport problem.
Remark. In the work by Barilla, Carlier and Lasry, the rent cost R is the same for both the populations and depends only on the total demand. Here we consider different and more general coupling costs which also take into account different needs for the two populations.
The necessary conditions for equilibria can be characterized by a Mean-Field Game system coupled with the optimality conditions for the transport problem.

Associated with the Langrangian L_{α}^{1} and L_{α}^{2} of workers and firms, we introduce the Hamiltonians $H^{i}:\left(\cup_{\alpha \in \mathcal{A}} \Gamma_{\alpha} \backslash \mathcal{V}\right) \times \mathbb{R} \longrightarrow \mathbb{R}$ which are defined on each edge by

$$
H_{\alpha}^{i}(x, p)=\sup _{u \in U_{\alpha}^{i}}\left\{-u p-L_{\alpha}^{i}(x, u)\right\}, \quad x \in \Gamma_{\alpha} \backslash \mathcal{V}, p \in \mathbb{R}
$$

Description of the model: the MFG-OT system

The Mean Field Game-Optimal Transport (MFGOT) problem reads as:

Description of the model: the MFG-OT system

The Mean Field Game-Optimal Transport (MFGOT) problem reads as:
(i) Forward-Backward MFG: for $(t, x) \in(0, T) \times\left(\Gamma_{\alpha} \backslash \mathcal{V}\right), \alpha \in \mathcal{A}$, $i=1,2$,

$$
\begin{aligned}
& -\partial_{t} \phi_{i}-\mu_{\alpha}^{i} \partial^{2} \phi_{i}+H^{i}\left(x, \partial \phi_{i}\right)=R^{i}\left[m_{1}(t), m_{2}(t)\right]+g_{i}, \\
& \partial_{t} m_{i}-\mu_{\alpha}^{i} \partial^{2} m_{i}-\partial\left(m_{i} \partial_{p} H^{i}\left(x, \partial \phi_{i}\right)\right)=0 .
\end{aligned}
$$

Description of the model: the MFG-OT system

The Mean Field Game-Optimal Transport (MFGOT) problem reads as:
(i) Forward-Backward MFG: for $(t, x) \in(0, T) \times\left(\Gamma_{\alpha} \backslash \mathcal{V}\right), \alpha \in \mathcal{A}$, $i=1,2$,

$$
\begin{aligned}
& -\partial_{t} \phi_{i}-\mu_{\alpha}^{i} \partial^{2} \phi_{i}+H^{i}\left(x, \partial \phi_{i}\right)=R^{i}\left[m_{1}(t), m_{2}(t)\right]+g_{i}, \\
& \partial_{t} m_{i}-\mu_{\alpha}^{i} \partial^{2} m_{i}-\partial\left(m_{i} \partial_{p} H^{i}\left(x, \partial \phi_{i}\right)\right)=0 .
\end{aligned}
$$

(ii) Transition conditions: for $\left(t, \nu_{j}\right) \in(0, T) \times \mathcal{V}, \alpha, \beta \in \mathcal{A}, i=1,2$,

$$
\sum_{\alpha \in \mathcal{A}_{j}} \gamma_{j \alpha}^{i} \mu_{\alpha}^{i} \partial_{\alpha} \phi_{i}\left(t, \nu_{j}\right)=0
$$

$$
\sum_{\alpha \in \mathcal{A}_{j}} \mu_{\alpha}^{i} \partial_{\alpha} m_{i}\left(t, \nu_{j}\right)+\left.n_{j \alpha} \partial_{p} H_{\alpha}^{i}\left(\nu_{j}, \partial \phi_{i}\left(t, \nu_{j}\right)\right) m_{i}\right|_{\Gamma_{\alpha}}\left(t, \nu_{j}\right)=0,
$$

$$
\left.\phi_{i}\right|_{\Gamma_{\alpha}}\left(t, \nu_{j}\right)=\left.\phi_{i}\right|_{\Gamma_{\beta}}\left(t, \nu_{j}\right), \quad \frac{\left.m_{i}\right|_{\Gamma_{\alpha}}\left(t, \nu_{j}\right)}{\gamma_{j \alpha}^{i}}=\frac{\left.m_{i}\right|_{\Gamma_{\beta}}\left(t, \nu_{j}\right)}{\gamma_{j \beta}^{i}}
$$

$$
\left(n_{j \alpha}=1 \text { if } \nu_{j}=\pi_{\alpha}\left(\ell_{\alpha}\right) \text { and } n_{j \alpha}=1 \text { if } \nu_{j}=\pi_{\alpha}(0)\right) .
$$

Description of the model: the MFG-OT system

(iii) Initial-terminal conditions: for $x \in \Gamma, i=1,2$,

$$
\phi_{i}(T, x)=0, \quad m_{i}(0, x)=m_{0}^{i}, \quad x \in \Gamma .
$$

Description of the model: the MFG-OT system

(iii) Initial-terminal conditions: for $x \in \Gamma, i=1,2$,

$$
\phi_{i}(T, x)=0, \quad m_{i}(0, x)=m_{0}^{i}, \quad x \in \Gamma .
$$

(iv) Optimal Transport problem: for $t \in(0, T)$,

$$
\begin{aligned}
& g_{1}(t, x)+g_{2}(t, y) \leq c(x, y) \quad \text { for all }(x, y) \in \Gamma, \\
& C\left(m_{1}(t), m_{2}(t)\right)=\int_{\Gamma} g_{1}(t, x) d m_{1}(t)(x)+\int_{\Gamma} g_{2}(t, y) d m_{2}(t)(y) .
\end{aligned}
$$

Description of the model: the MFG-OT system

(iii) Initial-terminal conditions: for $x \in \Gamma, i=1,2$,

$$
\phi_{i}(T, x)=0, \quad m_{i}(0, x)=m_{0}^{i}, \quad x \in \Gamma .
$$

(iv) Optimal Transport problem: for $t \in(0, T)$,

$$
\begin{aligned}
& g_{1}(t, x)+g_{2}(t, y) \leq c(x, y) \quad \text { for all }(x, y) \in \Gamma, \\
& C\left(m_{1}(t), m_{2}(t)\right)=\int_{\Gamma} g_{1}(t, x) d m_{1}(t)(x)+\int_{\Gamma} g_{2}(t, y) d m_{2}(t)(y) .
\end{aligned}
$$

A solution to (MFGOT) system is given by two triples

$$
\left(\phi_{i}(t, x), m_{i}(t, x), g_{i}(t, x)\right)_{i=1,2}
$$

satisfying $(i)-(i v)$ in a suitable sense.

Theoretical results: existence and uniqueness

Theoretical results: existence and uniqueness

Some functional spaces.

Theoretical results: existence and uniqueness

Some functional spaces. We set
$H^{m}(\Gamma):=\left\{v: \Gamma \longrightarrow \mathbb{R}: v \in C(\Gamma)\right.$ and $v_{\alpha} \in H^{m}\left(0, \ell_{\alpha}\right)$ for all $\left.\alpha \in \mathcal{A}\right\}$,
$H_{b}^{m}(\Gamma):=\left\{v: \Gamma \longrightarrow \mathbb{R}: v_{\alpha} \in H^{m}\left(0, \ell_{\alpha}\right)\right.$ for all $\left.\alpha \in \mathcal{A}\right\}$.

Theoretical results: existence and uniqueness

Some functional spaces. We set
$H^{m}(\Gamma):=\left\{v: \Gamma \longrightarrow \mathbb{R}: v \in C(\Gamma)\right.$ and $v_{\alpha} \in H^{m}\left(0, \ell_{\alpha}\right)$ for all $\left.\alpha \in \mathcal{A}\right\}$,
$H_{b}^{m}(\Gamma):=\left\{v: \Gamma \longrightarrow \mathbb{R}: v_{\alpha} \in H^{m}\left(0, \ell_{\alpha}\right)\right.$ for all $\left.\alpha \in \mathcal{A}\right\}$.
The previous spaces are endowed with the standard norm.

Theoretical results: existence and uniqueness

Some functional spaces. We set
$H^{m}(\Gamma):=\left\{v: \Gamma \longrightarrow \mathbb{R}: v \in C(\Gamma)\right.$ and $v_{\alpha} \in H^{m}\left(0, \ell_{\alpha}\right)$ for all $\left.\alpha \in \mathcal{A}\right\}$,
$H_{b}^{m}(\Gamma):=\left\{v: \Gamma \longrightarrow \mathbb{R}: v_{\alpha} \in H^{m}\left(0, \ell_{\alpha}\right)\right.$ for all $\left.\alpha \in \mathcal{A}\right\}$.
The previous spaces are endowed with the standard norm. We also set $V=H^{1}(\Gamma), V^{\prime}=H^{-1}(\Gamma)$ and $\langle\cdot, \cdot\rangle_{V, V^{\prime}}$ the corresponding pairing

Theoretical results: existence and uniqueness

Some functional spaces. We set
$H^{m}(\Gamma):=\left\{v: \Gamma \longrightarrow \mathbb{R}: v \in C(\Gamma)\right.$ and $v_{\alpha} \in H^{m}\left(0, \ell_{\alpha}\right)$ for all $\left.\alpha \in \mathcal{A}\right\}$,
$H_{b}^{m}(\Gamma):=\left\{v: \Gamma \longrightarrow \mathbb{R}: v_{\alpha} \in H^{m}\left(0, \ell_{\alpha}\right)\right.$ for all $\left.\alpha \in \mathcal{A}\right\}$.
The previous spaces are endowed with the standard norm. We also set $V=H^{1}(\Gamma), V^{\prime}=H^{-1}(\Gamma)$ and $\langle\cdot, \cdot\rangle_{V, V^{\prime}}$ the corresponding pairing, and $W:=\left\{w \in H_{b}^{1}(\Gamma): \frac{\left.w\right|_{\Gamma_{\alpha}}\left(\nu_{j}\right)}{\gamma_{j \alpha}}=\frac{\left.w\right|_{\Gamma_{\beta}}\left(\nu_{j}\right)}{\gamma_{j \beta}}\right.$ for all $\left.j \in I, \alpha, \beta \in \mathcal{A}_{j}\right\}$, $P C:=\left\{v:[0, T] \times \Gamma \longrightarrow \mathbb{R}:\left.v\right|_{[0, T] \times \Gamma_{\alpha}} \in C\left([0, T] \times \Gamma_{\alpha}\right)\right.$ for all $\left.\alpha \in \mathcal{A}\right\}$.

Theoretical results: existence and uniqueness

Some functional spaces. We set

$$
\begin{aligned}
H^{m}(\Gamma) & :=\left\{v: \Gamma \longrightarrow \mathbb{R}: v \in C(\Gamma) \text { and } v_{\alpha} \in H^{m}\left(0, \ell_{\alpha}\right) \text { for all } \alpha \in \mathcal{A}\right\}, \\
H_{b}^{m}(\Gamma) & :=\left\{v: \Gamma \longrightarrow \mathbb{R}: v_{\alpha} \in H^{m}\left(0, \ell_{\alpha}\right) \text { for all } \alpha \in \mathcal{A}\right\} .
\end{aligned}
$$

The previous spaces are endowed with the standard norm. We also set $V=H^{1}(\Gamma), V^{\prime}=H^{-1}(\Gamma)$ and $\langle\cdot, \cdot\rangle_{V, V^{\prime}}$ the corresponding pairing, and $W:=\left\{w \in H_{b}^{1}(\Gamma): \frac{\left.w\right|_{\Gamma_{\alpha}}\left(\nu_{j}\right)}{\gamma_{j \alpha}}=\frac{\left.w\right|_{\Gamma_{\beta}}\left(\nu_{j}\right)}{\gamma_{j \beta}}\right.$ for all $\left.j \in I, \alpha, \beta \in \mathcal{A}_{j}\right\}$, $P C:=\left\{v:[0, T] \times \Gamma \longrightarrow \mathbb{R}:\left.v\right|_{[0, T] \times \Gamma_{\alpha}} \in C\left([0, T] \times \Gamma_{\alpha}\right)\right.$ for all $\left.\alpha \in \mathcal{A}\right\}$.

For functions in these spaces no continuity at the vertices is required.

Theoretical results: existence and uniqueness

Assumptions.

Theoretical results: existence and uniqueness

Assumptions. We denote by \mathcal{M} the space of Borel probability measures on Γ endowed with the topology of the weak convergence.

Theoretical results: existence and uniqueness
Assumptions. We denote by \mathcal{M} the space of Borel probability measures on Γ endowed with the topology of the weak convergence. We assume that initial distribution of the agents satisfies

$$
m_{0}^{i} \in L^{2}(\Gamma) \cap \mathcal{M}, \quad m_{0}^{i} \geq \delta>0, \quad \int_{\Gamma} m_{0}^{i}(x) d x=1, \quad i=1,2
$$

for some $\delta>0$.

Theoretical results: existence and uniqueness

Assumptions. We denote by \mathcal{M} the space of Borel probability measures on Γ endowed with the topology of the weak convergence. We assume that initial distribution of the agents satisfies

$$
m_{0}^{i} \in L^{2}(\Gamma) \cap \mathcal{M}, \quad m_{0}^{i} \geq \delta>0, \quad \int_{\Gamma} m_{0}^{i}(x) d x=1, \quad i=1,2
$$

for some $\delta>0$.
Moreover, we assume that the Hamiltonian $H_{\alpha}^{i}(\cdot, p), i=1,2$ satisfies
(i) $H_{\alpha}^{i} \in C^{1}\left(\Gamma_{\alpha} \times \mathbb{R}\right)$,
(ii) $H_{\alpha}^{i}(x, \cdot)$ is convex in p for any $x \in \Gamma_{\alpha}$,
(iii) $H_{\alpha}^{i}(x, p) \leq C_{0}^{i}(|p|+1)$ for any $(x, p) \in \Gamma_{\alpha} \times \mathbb{R}$, (iv) $\left|\partial_{p} H_{\alpha}^{i}(x, p)\right| \leq C_{0}^{i}$ for any $(x, p) \in \Gamma_{\alpha} \times \mathbb{R}$,
(v) $\left|\partial_{x} H_{\alpha}^{i}(x, p)\right| \leq C_{0}^{i}$ for any $(x, p) \in \Gamma_{\alpha} \times \mathbb{R}$,
for constant C_{0}^{i} independent of α.

Theoretical results: existence and uniqueness

Concerning the viscosity and the Kirchhoff coefficients, we assume that

$$
\mu_{\alpha}^{i}>0, \gamma_{j, \alpha}^{i}>0, \sum_{\alpha \in \mathcal{A}_{j}} \gamma_{j \alpha}^{i} \mu_{\alpha}^{i}=1, \quad \alpha \in \mathcal{A}, j \in I, i=1,2 .
$$

Theoretical results: existence and uniqueness

Concerning the viscosity and the Kirchhoff coefficients, we assume that

$$
\mu_{\alpha}^{i}>0, \gamma_{j, \alpha}^{i}>0, \sum_{\alpha \in \mathcal{A}_{j}} \gamma_{j \alpha}^{i} \mu_{\alpha}^{i}=1, \quad \alpha \in \mathcal{A}, j \in I, i=1,2 .
$$

The commuting cost satisfies

$$
c \in C^{1}(\Gamma \times \Gamma) .
$$

Theoretical results: existence and uniqueness

Concerning the viscosity and the Kirchhoff coefficients, we assume that

$$
\mu_{\alpha}^{i}>0, \gamma_{j, \alpha}^{i}>0, \sum_{\alpha \in \mathcal{A}_{j}} \gamma_{j \alpha}^{i} \mu_{\alpha}^{i}=1, \quad \alpha \in \mathcal{A}, j \in I, i=1,2 .
$$

The commuting cost satisfies

$$
c \in C^{1}(\Gamma \times \Gamma) .
$$

The coupling costs $R^{i}, i=1,2$, are continuous and uniformly bounded in $\mathcal{M} \times \mathcal{M} \times \Gamma$ and

$$
\max _{\alpha \in \mathcal{A}} \max _{x \in \Gamma_{\alpha}}\left|R_{\alpha}^{i}\left[m_{1}, m_{2}\right]-R_{\alpha}^{i}\left[\eta_{1}, \eta_{2}\right]\right| \leq L \max _{i=1,2} \mathbf{d}_{1}\left(m_{i}, \eta_{i}\right)
$$

for all $m_{i}, \eta_{i} \in \mathcal{M}, i=1,2$, where \mathbf{d}_{1} is the Wasserstein distance which metrises the topology of weak convergence of probability measures on Γ.

Theoretical results: existence and uniqueness

Definition. A solution is given by two triples $\left(\phi_{i}, m_{i}, g_{i}\right), i=1,2$, s.t.:

Theoretical results: existence and uniqueness

Definition. A solution is given by two triples $\left(\phi_{i}, m_{i}, g_{i}\right), i=1,2$, s.t.:
(i) $\phi_{i} \in L^{2}\left((0, T) ; H^{2}(\Gamma)\right) \cap C\left([0, T] ; H^{1}(\Gamma)\right), \partial_{t} \phi_{i} \in L^{2}((0, T) \times \Gamma)$, $\phi_{i}(T, x)=0$ and, for all $w \in W$, a.e. in $t \in(0, T)$,

$$
\int_{\Gamma}\left(-\partial_{t} \phi_{i} w+\mu^{i} \partial \phi_{i} \partial w+H^{i}\left(x, \partial \phi_{i}\right) w d x=\int_{\Gamma}\left(R^{i}\left[m_{1}(t), m_{2}(t)\right]+g_{i}\right) w d x ;\right.
$$

Theoretical results: existence and uniqueness

Definition. A solution is given by two triples $\left(\phi_{i}, m_{i}, g_{i}\right), i=1,2$, s.t.:
(i) $\phi_{i} \in L^{2}\left((0, T) ; H^{2}(\Gamma)\right) \cap C\left([0, T] ; H^{1}(\Gamma)\right), \partial_{t} \phi_{i} \in L^{2}((0, T) \times \Gamma)$, $\phi_{i}(T, x)=0$ and, for all $w \in W$, a.e. in $t \in(0, T)$,

$$
\int_{\Gamma}\left(-\partial_{t} \phi_{i} w+\mu^{i} \partial \phi_{i} \partial w+H^{i}\left(x, \partial \phi_{i}\right) w d x=\int_{\Gamma}\left(R^{i}\left[m_{1}(t), m_{2}(t)\right]+g_{i}\right) w d x ;\right.
$$

(ii) $m_{i} \in L^{2}((0, T) ; W) \cap C\left([0, T] ; L^{2}(\Gamma) \cap \mathcal{M}\right), \partial_{t} m_{i} \in L^{2}\left((0, T) ; V^{\prime}\right)$, $m_{i}(0, x)=m_{0}^{i}$ and, for all $v \in V$, a.e. in $t \in(0, T)$,

$$
\left\langle\partial_{t} m_{i}, v\right\rangle_{V^{\prime}, V}+\int_{\Gamma} \mu^{i} \partial m_{i} \partial v d x+\int_{\Gamma} \partial_{p} H^{i}\left(x, \partial \phi_{i}\right) m_{i} \partial v d x=0 ;
$$

Theoretical results: existence and uniqueness

Definition. A solution is given by two triples $\left(\phi_{i}, m_{i}, g_{i}\right), i=1,2$, s.t.:
(i) $\phi_{i} \in L^{2}\left((0, T) ; H^{2}(\Gamma)\right) \cap C\left([0, T] ; H^{1}(\Gamma)\right), \partial_{t} \phi_{i} \in L^{2}((0, T) \times \Gamma)$, $\phi_{i}(T, x)=0$ and, for all $w \in W$, a.e. in $t \in(0, T)$,

$$
\int_{\Gamma}\left(-\partial_{t} \phi_{i} w+\mu^{i} \partial \phi_{i} \partial w+H^{i}\left(x, \partial \phi_{i}\right) w d x=\int_{\Gamma}\left(R^{i}\left[m_{1}(t), m_{2}(t)\right]+g_{i}\right) w d x\right.
$$

(ii) $m_{i} \in L^{2}((0, T) ; W) \cap C\left([0, T] ; L^{2}(\Gamma) \cap \mathcal{M}\right), \partial_{t} m_{i} \in L^{2}\left((0, T) ; V^{\prime}\right)$, $m_{i}(0, x)=m_{0}^{i}$ and, for all $v \in V$, a.e. in $t \in(0, T)$,

$$
\left\langle\partial_{t} m_{i}, v\right\rangle_{V^{\prime}, V}+\int_{\Gamma} \mu^{i} \partial m_{i} \partial v d x+\int_{\Gamma} \partial_{p} H^{i}\left(x, \partial \phi_{i}\right) m_{i} \partial v d x=0
$$

(iii) $\left(g_{1}(t, \cdot), g_{2}(t, \cdot)\right)=\left(g(t, \cdot), g^{c}(t, \cdot)\right)$ where, for any $t \in[0, T], g(t, \cdot)$ is a c-concave Kantorovich potential, i.e.

$$
C\left(m_{1}(t), m_{2}(t)\right)=\int_{\Gamma} g(t, x) d m_{1}(t)(x)+\int_{\Gamma} g^{c}(t, y) d m_{2}(t)(y),
$$

such that $\int_{\Gamma} g(t, x) d x=0\left(g^{c}(t, y):=\inf _{x \in \Gamma}\{c(x, y)-g(t, x)\}\right)$.

Theoretical results: existence and uniqueness

Theorem. There exists a solution to the (MFGOT) system. Moreover, if

$$
\sum_{i=1}^{2} \int_{\Gamma}\left(R^{i}\left[m_{1}, m_{2}\right]-R^{i}\left[\bar{m}_{1}, \bar{m}_{2}\right]\right)\left(m_{i}-\bar{m}_{i}\right) d x \geq 0
$$

for any $\left(m_{1}, m_{2}\right),\left(\bar{m}_{1}, \bar{m}_{2}\right) \in \mathcal{M} \times \mathcal{M}$, with the equality implying $R^{i}\left[m_{1}, m_{2}\right]=R^{i}\left[\bar{m}_{1}, \bar{m}_{2}\right]$ for $i=1,2$, then the solution is unique.

Theoretical results: existence and uniqueness

Theorem. There exists a solution to the (MFGOT) system. Moreover, if

$$
\sum_{i=1}^{2} \int_{\Gamma}\left(R^{i}\left[m_{1}, m_{2}\right]-R^{i}\left[\bar{m}_{1}, \bar{m}_{2}\right]\right)\left(m_{i}-\bar{m}_{i}\right) d x \geq 0
$$

for any $\left(m_{1}, m_{2}\right),\left(\bar{m}_{1}, \bar{m}_{2}\right) \in \mathcal{M} \times \mathcal{M}$, with the equality implying $R^{i}\left[m_{1}, m_{2}\right]=R^{i}\left[\bar{m}_{1}, \bar{m}_{2}\right]$ for $i=1,2$, then the solution is unique.

Sketch of the proof. The existence is proved by a fixed-point procedure in the convex and compact subset
$X=\left\{m \in C([0, T], \mathcal{M}): \mathbf{d}_{1}(m(t), m(s)) \leq C_{0}|t-s|^{\frac{1}{2}}, m(t) \geq \delta_{0}>0\right\}$.

Theoretical results: existence and uniqueness

Theorem. There exists a solution to the (MFGOT) system. Moreover, if

$$
\sum_{i=1}^{2} \int_{\Gamma}\left(R^{i}\left[m_{1}, m_{2}\right]-R^{i}\left[\bar{m}_{1}, \bar{m}_{2}\right]\right)\left(m_{i}-\bar{m}_{i}\right) d x \geq 0
$$

for any $\left(m_{1}, m_{2}\right),\left(\bar{m}_{1}, \bar{m}_{2}\right) \in \mathcal{M} \times \mathcal{M}$, with the equality implying $R^{i}\left[m_{1}, m_{2}\right]=R^{i}\left[\bar{m}_{1}, \bar{m}_{2}\right]$ for $i=1,2$, then the solution is unique.

Sketch of the proof. The existence is proved by a fixed-point procedure in the convex and compact subset
$X=\left\{m \in C([0, T], \mathcal{M}): \mathbf{d}_{1}(m(t), m(s)) \leq C_{0}|t-s|^{\frac{1}{2}}, m(t) \geq \delta_{0}>0\right\}$.
In particular we define a map $\mathcal{T}: X^{2} \longrightarrow X^{2}$ in the following way:
$\mathcal{T}:\left(m_{1}, m_{2}\right) \in X^{2} \longmapsto\left(g_{1}, g_{2}\right) \longmapsto\left(\phi_{1}, \phi_{2}\right) \longmapsto\left(\eta_{1}, \eta_{2}\right)=\mathcal{T}\left(m_{1}, m_{2}\right)$.

Theoretical results: existence and uniqueness

Theorem. There exists a solution to the (MFGOT) system. Moreover, if

$$
\sum_{i=1}^{2} \int_{\Gamma}\left(R^{i}\left[m_{1}, m_{2}\right]-R^{i}\left[\bar{m}_{1}, \bar{m}_{2}\right]\right)\left(m_{i}-\bar{m}_{i}\right) d x \geq 0
$$

for any $\left(m_{1}, m_{2}\right),\left(\bar{m}_{1}, \bar{m}_{2}\right) \in \mathcal{M} \times \mathcal{M}$, with the equality implying $R^{i}\left[m_{1}, m_{2}\right]=R^{i}\left[\bar{m}_{1}, \bar{m}_{2}\right]$ for $i=1,2$, then the solution is unique.

Sketch of the proof. The existence is proved by a fixed-point procedure in the convex and compact subset
$X=\left\{m \in C([0, T], \mathcal{M}): \mathbf{d}_{1}(m(t), m(s)) \leq C_{0}|t-s|^{\frac{1}{2}}, m(t) \geq \delta_{0}>0\right\}$.
In particular we define a map $\mathcal{T}: X^{2} \longrightarrow X^{2}$ in the following way:
$\mathcal{T}:\left(m_{1}, m_{2}\right) \in X^{2} \longmapsto\left(g_{1}, g_{2}\right) \longmapsto\left(\phi_{1}, \phi_{2}\right) \longmapsto\left(\eta_{1}, \eta_{2}\right)=\mathcal{T}\left(m_{1}, m_{2}\right)$.
By proving that \mathcal{T} is well-defined and continuous, the Schauder Fixed-Point Theorem shows that (MFGOT) admits a solution.

Theoretical results: existence and uniqueness

Theorem. There exists a solution to the (MFGOT) system. Moreover, if

$$
\sum_{i=1}^{2} \int_{\Gamma}\left(R^{i}\left[m_{1}, m_{2}\right]-R^{i}\left[\bar{m}_{1}, \bar{m}_{2}\right]\right)\left(m_{i}-\bar{m}_{i}\right) d x \geq 0
$$

for any $\left(m_{1}, m_{2}\right),\left(\bar{m}_{1}, \bar{m}_{2}\right) \in \mathcal{M} \times \mathcal{M}$, with the equality implying $R^{i}\left[m_{1}, m_{2}\right]=R^{i}\left[\bar{m}_{1}, \bar{m}_{2}\right]$ for $i=1,2$, then the solution is unique.

Sketch of the proof. The existence is proved by a fixed-point procedure in the convex and compact subset
$X=\left\{m \in C([0, T], \mathcal{M}): \mathbf{d}_{1}(m(t), m(s)) \leq C_{0}|t-s|^{\frac{1}{2}}, m(t) \geq \delta_{0}>0\right\}$.
In particular we define a map $\mathcal{T}: X^{2} \longrightarrow X^{2}$ in the following way:
$\mathcal{T}:\left(m_{1}, m_{2}\right) \in X^{2} \longmapsto\left(g_{1}, g_{2}\right) \longmapsto\left(\phi_{1}, \phi_{2}\right) \longmapsto\left(\eta_{1}, \eta_{2}\right)=\mathcal{T}\left(m_{1}, m_{2}\right)$.
By proving that \mathcal{T} is well-defined and continuous, the Schauder Fixed-Point Theorem shows that (MFGOT) admits a solution. The uniqueness goes similarly as the standard one.

Theoretical results: existence and uniqueness
Key points for the proof.

Theoretical results: existence and uniqueness

Key points for the proof.

- The Kantorovich potentials (g_{1}, g_{2}), up to a renormalization, are uniquely defined.

Theoretical results: existence and uniqueness

Key points for the proof.

- The Kantorovich potentials (g_{1}, g_{2}), up to a renormalization, are uniquely defined. The assumption $m_{0}^{i} \geq \delta>0\left(\Rightarrow \operatorname{supp}\left(m_{i}(t)\right)=\Gamma\right.$, $t \in(0, T))$ guarantees the uniqueness.

Theoretical results: existence and uniqueness

Key points for the proof.

- The Kantorovich potentials (g_{1}, g_{2}), up to a renormalization, are uniquely defined. The assumption $m_{0}^{i} \geq \delta>0\left(\Rightarrow \operatorname{supp}\left(m_{i}(t)\right)=\Gamma\right.$, $t \in(0, T))$ guarantees the uniqueness. Indeed, due to the regularity of c, this hypothesis can be relaxed assuming only that the initial distribution of one population, for example workers, is supported on the whole Γ.

Theoretical results: existence and uniqueness
Key points for the proof.

- The Kantorovich potentials (g_{1}, g_{2}), up to a renormalization, are uniquely defined. The assumption $m_{0}^{i} \geq \delta>0\left(\Rightarrow \operatorname{supp}\left(m_{i}(t)\right)=\Gamma\right.$, $t \in(0, T))$ guarantees the uniqueness. Indeed, due to the regularity of c, this hypothesis can be relaxed assuming only that the initial distribution of one population, for example workers, is supported on the whole Γ. If the Kantorovich potentials are not uniquely defined, then the map \mathcal{T} is no longer single valued but multi-valued. In this case, a possible application of the Kakutani Theorem fails since the image $\mathcal{T}\left(g_{1}, g_{2}\right)$ is not convex.

Theoretical results: existence and uniqueness
Key points for the proof.

- The Kantorovich potentials (g_{1}, g_{2}), up to a renormalization, are uniquely defined. The assumption $m_{0}^{i} \geq \delta>0\left(\Rightarrow \operatorname{supp}\left(m_{i}(t)\right)=\Gamma\right.$, $t \in(0, T))$ guarantees the uniqueness. Indeed, due to the regularity of c, this hypothesis can be relaxed assuming only that the initial distribution of one population, for example workers, is supported on the whole Γ. If the Kantorovich potentials are not uniquely defined, then the map \mathcal{T} is no longer single valued but multi-valued. In this case, a possible application of the Kakutani Theorem fails since the image $\mathcal{T}\left(g_{1}, g_{2}\right)$ is not convex.
- The Kantorovich potentials are continuous and unif. bounded.

Theoretical results: existence and uniqueness

Key points for the proof.

- The Kantorovich potentials (g_{1}, g_{2}), up to a renormalization, are uniquely defined. The assumption $m_{0}^{i} \geq \delta>0\left(\Rightarrow \operatorname{supp}\left(m_{i}(t)\right)=\Gamma\right.$, $t \in(0, T))$ guarantees the uniqueness. Indeed, due to the regularity of c, this hypothesis can be relaxed assuming only that the initial distribution of one population, for example workers, is supported on the whole Γ. If the Kantorovich potentials are not uniquely defined, then the map \mathcal{T} is no longer single valued but multi-valued. In this case, a possible application of the Kakutani Theorem fails since the image $\mathcal{T}\left(g_{1}, g_{2}\right)$ is not convex.
- The Kantorovich potentials are continuous and unif. bounded. This, together with the regularity assumptions on R^{i}, guarantees the existence and the uniqueness of the solution to the HJ and FP equation (in the sense of the previous definition).

Theoretical results: existence and uniqueness

Key points for the proof.

- The Kantorovich potentials $\left(g_{1}, g_{2}\right)$, up to a renormalization, are uniquely defined. The assumption $m_{0}^{i} \geq \delta>0\left(\Rightarrow \operatorname{supp}\left(m_{i}(t)\right)=\Gamma\right.$, $t \in(0, T))$ guarantees the uniqueness. Indeed, due to the regularity of c, this hypothesis can be relaxed assuming only that the initial distribution of one population, for example workers, is supported on the whole Γ. If the Kantorovich potentials are not uniquely defined, then the map \mathcal{T} is no longer single valued but multi-valued. In this case, a possible application of the Kakutani Theorem fails since the image $\mathcal{T}\left(g_{1}, g_{2}\right)$ is not convex.
- The Kantorovich potentials are continuous and unif. bounded. This, together with the regularity assumptions on R^{i}, guarantees the existence and the uniqueness of the solution to the HJ and FP equation (in the sense of the previous definition).
- Stability and monotonicity properties of Kantorovich potentials and stability of sol. of HJ and FP equations.

Comments, ongoing research and future perspectives

Comments, ongoing research and future perspectives

Comments.

Comments, ongoing research and future perspectives

Comments. In the work by Barilla, Carlier and Lasry, the existence of a solution is obtained via a variational technique which requires a symmetric interaction among the two populations: the land rent is the same for workers and firms and depends only on the total density.

Comments, ongoing research and future perspectives

Comments. In the work by Barilla, Carlier and Lasry, the existence of a solution is obtained via a variational technique which requires a symmetric interaction among the two populations: the land rent is the same for workers and firms and depends only on the total density. The fixed-point procedure does not require a symmetric behavior.

Comments, ongoing research and future perspectives

Comments. In the work by Barilla, Carlier and Lasry, the existence of a solution is obtained via a variational technique which requires a symmetric interaction among the two populations: the land rent is the same for workers and firms and depends only on the total density. The fixed-point procedure does not require a symmetric behavior. Indeed, it seems to be natural to assume that people prefer to avoid to live near polluting factories or in overcrowded residential areas, while firms tend to cluster to take advantage of a more effective transport system.

Comments, ongoing research and future perspectives

Comments. In the work by Barilla, Carlier and Lasry, the existence of a solution is obtained via a variational technique which requires a symmetric interaction among the two populations: the land rent is the same for workers and firms and depends only on the total density. The fixed-point procedure does not require a symmetric behavior. Indeed, it seems to be natural to assume that people prefer to avoid to live near polluting factories or in overcrowded residential areas, while firms tend to cluster to take advantage of a more effective transport system. Moreover, we also prove a uniqueness result.

Comments, ongoing research and future perspectives

Comments. In the work by Barilla, Carlier and Lasry, the existence of a solution is obtained via a variational technique which requires a symmetric interaction among the two populations: the land rent is the same for workers and firms and depends only on the total density. The fixed-point procedure does not require a symmetric behavior. Indeed, it seems to be natural to assume that people prefer to avoid to live near polluting factories or in overcrowded residential areas, while firms tend to cluster to take advantage of a more effective transport system. Moreover, we also prove a uniqueness result.

Ongoing research. Numerical tests with a non-symmetric rent cost.

Comments, ongoing research and future perspectives

Comments. In the work by Barilla, Carlier and Lasry, the existence of a solution is obtained via a variational technique which requires a symmetric interaction among the two populations: the land rent is the same for workers and firms and depends only on the total density. The fixed-point procedure does not require a symmetric behavior. Indeed, it seems to be natural to assume that people prefer to avoid to live near polluting factories or in overcrowded residential areas, while firms tend to cluster to take advantage of a more effective transport system. Moreover, we also prove a uniqueness result.
Ongoing research. Numerical tests with a non-symmetric rent cost.
Future perspectives.

Comments, ongoing research and future perspectives

Comments. In the work by Barilla, Carlier and Lasry, the existence of a solution is obtained via a variational technique which requires a symmetric interaction among the two populations: the land rent is the same for workers and firms and depends only on the total density. The fixed-point procedure does not require a symmetric behavior. Indeed, it seems to be natural to assume that people prefer to avoid to live near polluting factories or in overcrowded residential areas, while firms tend to cluster to take advantage of a more effective transport system. Moreover, we also prove a uniqueness result.

Ongoing research. Numerical tests with a non-symmetric rent cost.
Future perspectives.

- Study a long-time behavior of the system.

Comments, ongoing research and future perspectives

Comments. In the work by Barilla, Carlier and Lasry, the existence of a solution is obtained via a variational technique which requires a symmetric interaction among the two populations: the land rent is the same for workers and firms and depends only on the total density. The fixed-point procedure does not require a symmetric behavior. Indeed, it seems to be natural to assume that people prefer to avoid to live near polluting factories or in overcrowded residential areas, while firms tend to cluster to take advantage of a more effective transport system. Moreover, we also prove a uniqueness result.

Ongoing research. Numerical tests with a non-symmetric rent cost.

Future perspectives.

- Study a long-time behavior of the system.
- Put a Dirichlet boundary condition, many agents exit the game and hence the number of workers and firms change so the city evolves in different configurations.

Some references

- C. Barilla, G. Carlier, J.-M. Lasry, A mean field game model for the evolution of cities, J. Dyn. Games, 8(3), 299-329, 2021.
- G. Carlier, I. Ekeland, Equilibrium structure of a bidimensional asymmetric city, Nonlinear Anal. Real World Appl., 8(3), 725-748, 2007.
- Y. Achdou, M.-K. Dao, O. Ley, N. Tchou, Finite horizon mean field games on networks, Calc. Var. Partial Differ. Equ., 59(5), 157, 34 pp., 2020.
- M. Erbar, D. Forkert, J. Maas, D. Mugnolo, Gradient flow formulation of diffusion equations in the Wasserstein space over a Metric graph, Netw. Heterog. Media, 17(5), 687-717, 2022.
- C. Villani, Optimal transport: old and new, volume 338, Springer Science \& Business Media, 2008.
- Y. Achdou, M. Bardi, M. Cirant, Mean field games models of segregation, Math. Models Methods Appl. Sci., 27(1), 75-113, 2017.

Thank you for your attention

