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Problem of Data Assimilation

The signal process {Xn, n ∈ N0} is a sequence in some state
space E (polish);
the observation process {Yn, n ∈ N} is a sequence in Rd (or
finite dim. subspace of E ).

The signal process is not observed directly.

Goal of Data Assimilation
“Estimate” Xn from {Y1, . . . ,Yn} for n = 1, 2, . . ..
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Motivation: diagnostics, model evaluation, forecasting

Estimated trajectories provide a reconstruction of past climate;
Trajectories that fit well might be indicative of a good model;
Initial conditions for forecasts.
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Different perspectives of data assimilation

Deterministic perspective Signal and observation processes
{(Xn,Yn), n ∈ N} are solution of some deterministic
dynamical system with unknown initial condition.
Aim is to estimate Xn as some function
ξn = ξn(Y1, . . . ,Yn) ∀n ∈ N.

Stochastic perspective Signal and observation processes
{(Xn,Yn), n ∈ N0} are stochastic processes on some
probability space (Ω,A,P). Aim is to compute the
filtering process, i.e. the conditional Prob’ty

ρn := P(Xn ∈ .|Y1, . . . ,Yn) ∀n ∈ N.
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Filtering

Basic setup (Hidden Markov Model)

Signal process is homogenous stationary Markov process;
Observation process is conditionally independent given {Xn}
i.e.

P(Y1, . . . ,Yn|X1, . . . ,Xn) =
n∏

k=1

P(Yk |Xk).

Nondegenerate observations: we have

P(Yk ∈ B|Xk) =

∫
B
g(y ,Xk) dν(y).

for some sigma–finite measure ν on Rd and a likelihood
g : Rd × E → R≥0.
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Filtering

Iterative representation of filtering process

The filtering process {ρn, n ∈ N} is a random process in PE , the
set of Borel distributions over E . For HMM’s the filtering process
satisfies

ρ0 = P(X0 ∈ .),

ρn = LYnρn−1,
(1)

with operators Ly : PE → PE , for y ∈ Rd . (Precise form depends
on specific problem.)

For m ≤ n ∈ N, write LYm:n := LYn ◦ . . . ◦ LYm .
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Filtering

Mathematical questions

Accuracy Does ρn concentrate strongly on Xn, the true state of
the system?

Stability Does ρn depend on ρ0 for large n, i.e. does

d(LY1:nπ
(1),LY1:nπ

(2)) → 0

hold in a suitable sense for π(1,2) ∈ PE?
Robustness What is the influence of model misspecification on

the filtering process?
Numerics How to efficiently implement and approximate

filtering?
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Filtering

Existing results

Stability:
Strongly mixing signal processes Ocone and Pardoux [1996],

Kunita [1971], Atar and Zeitouni [1997], LeGland and
Oudjane [2004]; see also van Handel [2009] (very
general result but no rate).

Linear state space models with Gaussian errors Classical results,
see e.g. Anderson and Moore [2012]. For
deterministic signal process: Bocquet et al. [2017] .

Very informative observations Crisan and Heine [2008].
Implementation:
Kalman filter is an exact solution for linear state space models with

Gaussian errors. Vast number of “extensions” to
nonlinear systems.

Sequential Monte Carlo are particle approximations [van Leeuwen
et al., 2019, Crisan and Rozovskii, 2011]

Very few results on accuracy and robustness.
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Stability of optimal filters for deterministic signal processes

Deterministic signal process

Signal process {Xn, n ∈ Z} is given through

Xn+1 = f (Xn), P(X0 ∈ .) = ρ0,

where
f : M → M diffeo on compact Riemannian M’fold M;
f is solenoid–type and transitive.
ρ0 is the (uniquely defined) SRB–measure.

The likelihood g(y , .) is assumed log–Hölder continuous with
integrable coefficient.
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Stability of optimal filters for deterministic signal processes

Filter dynamics on densities

Smale–Williams Attractor or
Solenoid (Source: Wikipedia).

Representation of Ly on densities (wrt. m)

L yϕ(z) =
g(z , y) f∗ϕ(z)∫
M · · · dm(z)

,
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Stability of optimal filters for deterministic signal processes

Main result

Theorem [J.B. and Del Magno, 2017, Oljača, Kuna, and J.B., 2021]

There exist Ω1 ⊂ Ω with P(Ω1) = 1 and positive α, β, so that
for all ω ∈ Ω1,
for all densities ϕ : U → R>0 α-log Hölder cont’,
for all functions ψ : U → R α-Hölder cont’,

we have

lim sup
n→∞

1
n
log

∣∣∣ ∫ ψ · LY1:nϕ dm − E(ψ(Xn)|Y1:n)
∣∣∣ ≤ −β.

If ψ is merely continuous, the convergence still takes place albeit
not necessarily with exponential rate. (Convergence in L1 holds in
the case of uniformly expanding dynamics.)
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Stability of optimal filters for deterministic signal processes

Regularity of densities for hyperbolic dynamics

Expanding and contracting directions!

γ2f −1(γ2)

f

f −1(γ1) γ1

stable foliation under f with local stable leaves γ1, γ2.
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Stability of optimal filters for deterministic signal processes

Conclusions for part II

Stochastic interpretation of Data Assimilation leads to concept
of filtering;
Several interesting mathematical questions regarding
properties of the filtering process (stability, robustness etc);
Example: stability result for expansive and solenoid–type
dynamics (extension to Anosov systems is work in progress);
Approximation and implementation of filters is huge field not
touched upon.
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Data assimilation as observer problem

State space model

Signal process {Xn ∈ E , n ∈ N} is given through

Xn+1 = f (Xn) X0 unknown.

Here f might be time–τ flow of differential equation.

Observations are given by

Yn = h(Xn), with h : E 7→ Rd .

Observer problem

For every n ∈ N, approximate Xn as a function ξn = ξn(Y1, . . . ,Yn).
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Data assimilation as observer problem

Mathematical questions

The observer problem is well studied in discrete and continuous
time (especially for finite dimensional dynamics).

Mathematical questions:
Asymptotic behaviour for large time;
Robustness to model misspecification;
Stability with respect to initial condition;
Sensitivity to observational noise.

The last point overlaps with the stochastic perspective.
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Observers with linear error feedback

Linear error feedback

We attempt to reconstruct {Xn, n ∈ N} by computing estimates
{ξn ∈ H, n ∈ N} recursively as follows:
At time n, let

ξ−n+1 = f (ξn), (prediction step)
ξn+1 = ξ−n+1 + Kn

(
Yn+1 − h(ξ−n+1)

)︸ ︷︷ ︸
error

, (update step),

with some feedback gain Kn. In Data Assimilation parlance
ξ−n is called Background
ξn is called Analysis
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Observers with linear error feedback

How to find “optimal” Kn

In 3DVar, the analysis ξn (for given background) is found by
minimising

J(z) = (ξ−n − z)TB−1(ξ−n − z) + (Yn − h(z))TS−1(Yn − h(z)),

which has some probabilistic motivation. For linear h(z) = Hz , this
gives

ξn = (1 − KH)ξ−n + KYn,

with “optimal” Kalman Gain K depending on B, S ,H.
Brett et al. [2013] consider 3DVar and other systems
(Lorenz-type) with bounded noise.
Blömker et al. [2013] consider 3DVar in continuous time.
Vast literature on 3DVar in applications.
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Observers with linear error feedback

Examle: 2D Navier Stokes

On torus T = [0, 1]× [0, 1] with periodic BC, consider
Navier–Stokes

∂tu − ν∆u + (u · ∇)u +∇p = ϕ,

∇ · u = 0,

Here E = L2(T), and we let f , the time–τ flow map of
Navier–Stokes.
Observations: Let H : E → E be orthogonal projection onto
subspace EN spanned by first N Fourier modes. We consider
observations of the form

Yn = HXn n ∈ N,

and K = 1.
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Observers with linear error feedback

Movies (without observational noise)

Movie 1: 3 by 3 modes
nu = 2 · 10−5

dt = 0.1
Movie 2: 7 by 7 stations
nu = 2 · 10−5

dt = 0.1
Movie 3: 5 by 5 stations
nu = 2 · 10−7

dt = 0.1

Movie 4: 3 by 3 modes
nu = 2 · 10−8

dt = 0.2
Movie 5: 3 by 3 modes
nu = 2 · 10−6

dt = 0.2
Movie 6: 5 by 5 modes
nu = 2 · 10−6

dt = 0.2
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Observers with linear error feedback

Previous work on this behaviour

Foiaş and Prodi [1967] show that the solution of 2D-NS is
fully determined by its projection onto finitely many degrees of
freedom.
Jones and Titi [1992] carry this further (quantitative analysis).
Hayden et al. [2011] apply this in the context of data
assimilation.
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Observers with linear error feedback

Error dynamics with noise

We consider observations with noise

Yn = HXn + σwn, n ∈ N,

where {wn, n ∈ N} i.i.d. random variables (with values in
EN = range(H)). We get error dynamics

δn+1 = Xn+1 − ξn+1 = (1 − H) (f (Xn)− f (ξn))− σwn+1.

Here we look for Individual bounds

lim sup
n→∞

(∥δn∥ − cnσ) ≤ 0

where cn is a stationary process.
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Observers with linear error feedback

A local squeezing property

Write Q = 1 − H.

Local squeezing property [Hayden et al., 2011]

There are α, β (dep. on τ,N,R) so that
1 whenever ∥u∥2 ≤ R and ∥v∥2 ≤ R then

∥Q (f (u)− f (v)) ∥2 ≤ α∥Q(u − v)∥2 + β∥H(u − v)∥2,

2 for each R there is N, τ so that α < 1.

Without noise, this would imply ∥δn∥2 ≤ αn∥δ0∥2 → 0, if we have
independent proof of the apriori bounds.
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Observers with linear error feedback

Synchronisation with noise

Simple induction on the local squeezing property yields

∥Qδn∥2 ≤ αn
m∥Qδm∥2 + σ2

n−1∑
k=m

αn−1
k βk∥wk∥2

with αn
m :=

∏n−1
l=m αl and αn := α(τ,P, ∥Xn∥ ∨ ∥ξn∥).

Problem: ∥Xn∥ and ∥ξn∥ are unbounded! A priori bounds replaced
by asymptotic stationarity of {Xn} and {ξn}.
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Observers with linear error feedback

Accuracy of data assimilation in 2D–NS with unbounded
observation noise

Theorem [Oljača, J.B., and Kuna, 2019]

Fix σ0 > 0. Then
1 The stochastic processes {αn}, {βn} are stationary and

ergodic with E(log+ β0) <∞.
2 Suppose that E(∥wn∥3) <∞. Then for τ small enough and N

large enough (i.e. sufficiently many modes observed) we have
E(αn) < 1.

This implies that there is a stationary process cn depending only on
σ0 so that for all σ ≤ σ0 we have

∥δn∥2 ≤ cnσ
2

whenever n is sufficiently large.
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Observers with linear error feedback

Accuracy of data assimilation in 2D–NS with unbounded
observation noise (short version)

Theorem [Oljača, J.B., and Kuna, 2019]

Fix σ0 > 0 and suppose that E(∥wn∥3) <∞. Then for τ small
enough and N large enough (i.e. sufficiently many modes
observed), there is a stationary process cn depending only on σ0 so
that for all σ ≤ σ0 we have

∥δn∥2 ≤ cnσ
2

whenever n is sufficiently large.
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Observers with linear error feedback

Conclusions for part III

Data Assimilation from a deterministic perspective strongly
linked to Observer Problem;
In operational practice, most algorigthms employ linear error
feedback, with some probabilistic motivation for the feedback
gain;
In analysis of 2D Navier Stokes, local squeezing property is
fundamental and describes amount of “information” contained
in observations (depending on the viscosity and attractor size).
A number of ideas presented apply to other dissipative
dynamical systems (such as Lorenz63 and Lorenz96).
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Observers with linear error feedback
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