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INTRODUCTION



- Our aim is to develop some models where pollution is
included into economic decisions.

- Several papers contributed on modeling and studying this
kind of phenomena both in a static and a dynamic
framework.

- In a series of paper by Fabbri, Boucekkine, Gozzi, Federico
[EJOR (2019), JME (2021), GEB (2021)] the problem is
modeled in a continuous times-space framework; Similar
formulation in De Frutos et al. [JEEM (2019),Automatica
(2020)]

- Pollution is a typical example of negative externalities: it is
generated in a certain place and it may move integrally or
partially into another distant place.
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Three possible perspectives on the problem:

- The world-Centralized point of view. There is one planner acting
in the economy and maximizing a given payoff

J(K ,P)

depending on economic variable (for example: capital K ) and
on the environmental state (for example: pollution P) (Optimal
Control).

- Nations-Decentralized point of view. There is a small number of
agents. Each agents maximized a given payoff

J i(K ,P)

depending on some economic variables (K ) and on the
environmental state (P) and also interact with the other agents
(Differential Games).

- Individuals-Decentralized point of view II. Same as the case
above, but when the number of agents is large. (Differential
Games, Mean Field Games) 2



SPATIAL HETEROGENEITY ON NETWORK

We are going to present a model where space is modeled as a
Network.

Motivation:

• Spatial economic data related to economic variable (capital)
are of discrete nature. We may have data for cities, districts,
nations. More specifically for capital and people moving
along different center of interests.

• We can interpret these geographic locations as nodes of a
graph and these paths as weighted arcs of a graph.
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TIME/SPACE STRUCTURE

The model is in continuous time t ∈ R+.

• Space: G = (V, E),

V = {1,2, . . . ,N}, E = {(i , j) : i ∼ j}

• Graph is simple (no self-loops, no multiple links), finite and
weighted. Weights are collected in a matrix W: wij ≥ 0,
i , j = 1, . . . ,n, wii = 0.
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TIME/SPACE STRUCTURE

We introduce L := {`ij} as

`ij :=


wij , if i 6= j ,

−
n∑

j=1

wij , if i = j ,

Main assumption on the graph structure

• L is a Metzler matrix, i.e. `i,j ≥ 0 for each i 6= j ⇒ the
semigroup et(L) is positive.

• L satisfies the following: L + L∗ is negative semidefinite, i.e.
〈x ,L + L∗x〉 ≤ 0⇒ L is a dissipative operator

5



THE ECONOMIC/ENVIRONMENTAL MODEL

We consider the following variables:

- Pi(t) = pollution at time t and location i ;

- Ci(t) = consumption rate at time t and location i ;

- Ii(t) = investment at time t and location i ;

- Bi(t) = abatment level at time t and location i ;

- and others..

All the variables we use are spatially distributed: they have
different values at different locations i
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THE ECONOMIC/ENVIRONMENTAL MODEL

At time t and at any location i ∈ V, there is a single individual
producing through a linear production function

Yi(t) = Ai(t)Ii(t),

• Yi(t) is the output;

• Ii(t) is the capital input;

• Ai(t) > 1 is technological level at location i.
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THE ECONOMIC/ENVIRONMENTAL MODEL

• At any location, the produced output is consumed, invested,
and used for de-pollution, implying:

Ci(t) + Ii(t) + Bi(t , x) = Yi(t),

⇒ Ci(t) = (Ai(t)− 1)Ii(t)− Bi(t , x)

where Ci(t) and Bi(t) are, respectively, the consumption
rate and the resources devoted to de-pollution policies at
location i and at time t .
• Net emissions are given by

Ni(t) = Ii(t)− ϕi(Bi(t))θ, θ ∈ (0,1),

where ϕi ≥ 0 is the efficiency of abatement and θ ∈ (0, 1) is
the return to scale of abatement .
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THE ECONOMIC/ENVIRONMENTAL MODEL

We introduce in the previous context a green technology and
thus its corresponding technological level AR

i and capital input
Ri(t). Production at time t and at location i ∈ V, becomes

Yi(t) = Ai(t)Ii(t) + AR
i (t)Ri(t),

• Yi(t) is the output;

• Ii(t) is the capital input, Ri(t) is the capital green input;

• Ai(t) > 1 is technological level at location i, AR
i (t) > 1 is

technological level of renewable energy at location i .
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THE ECONOMIC/ENVIRONMENTAL MODEL

• At any location, the produced output is consumed, invested,
and used for de-pollution, implying:

Ci(t) + Ii(t) + Ri(t) + Bi(t , x) = Yi(t),

⇒ Ci(t) = (Ai(t)− 1)Ii(t) + (AR
i (t)− 1)Ri(t)− Bi(t , x)

• Net emissions are given by

Ni(t) = Ii(t) + εiRi(t)− ϕi(Bi(t))θ, θ ∈ (0,1),

where ϕi ≥ 0 is the efficiency of abatement, θ ∈ (0, 1) is the
return to scale of abatement, εi << 1 is the pollution effect
of the renewable energy.
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THE ECONOMIC/ENVIRONMENTAL MODEL

The pollution at location i evolves according to:
d
dt

Pi(t) =
n∑

j=1

wijPj(t)︸ ︷︷ ︸
inflow

−
n∑

j=1

wjiPi(t)︸ ︷︷ ︸
outflow

− δiPi(t)︸ ︷︷ ︸
decay

+Ni(t)

Pi(0) = pi(0) ≥ 0.

In a vector formulation, d
dt P(t) = (L− δ)P(t) + N(t),

P(0) = p ∈ Rn
+.

where P(t) := (P1(t), . . . ,Pn(t))T , N(t) := (N1(t), . . . ,Nn(t))T ,
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THE ECONOMIC/ENVIRONMENTAL MODEL

Consider a social planner, who aims at controlling consumption
level to maximize the following social welfare:

J((I,B,R),p) :=
∫ +∞

0
e−ρt

(
n∑

i=1

(
Ci(t)1−γ

1− γ
− ωiPi(t)− fi(Ri(t))

))
dt ,

where ωi > 0 represents local environmental awareness at the
location i , ρ > 0 is a discount factor and γ ∈ (0, 1) ∪ (1,+∞) is a
preference parameter.
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THE ECONOMIC/ENVIRONMENTAL MODEL

In summary, the social planner has to solve the optimal control
problem,

J((I,B,R);p) :=
∫ +∞

0
e−ρt

(
〈C(t)1−γ

1− γ
,1〉 − 〈ω,P(t)〉 − 〈f (R(t)),1〉

)
dt ,

over  d
dt P(t) = (L− δ)P(t) + N(t),

P(0) = p ∈ Rn
+.

where

C(t) = (A(t)− 1)I(t) + (AR(t)− 1)R(t)− B(t)

N(t) = I(t) + εR(t)− ϕ(B(t))θ,
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BASIC IDEA TO APPROACH THE PROBLEM

The problem is linear!

J(p, (I,R,B)) = −〈α,p〉+

+

∫ +∞

0
e−ρt

[〈
((AI(t)− 1)I(t) + (AR(t)− 1)R(t)− B(t))1−γ

1− γ
,1
〉

−
∫ +∞

0
e−ρt

[
〈f (R(t)),1〉 − 〈α, I(t) + εR(t)− ϕ(t)B(t)θ〉

]
dt .

The problem is reduced to a static problem.
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MAIN RESULT

Proposition (Under suitable assumptions on the coeffi-
cients)

For convex cost,

• The optimal control problem admit a unique solution ;

• The optimal spatial pollution density P(t) converges
as t →∞ to the long-run pollution profile P∞, unique
solution to the following ODE:

(L− δ)P∞ + N∗ = 0.
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MAIN RESULTS-LINEAR COST FUNCTION

Proposition (Under suitable assumptions on the coefficients)

If fi(Ri) = λiRi ,

• If λi <
[
(aR

i −1)
(aI

i −1)
− εi

]
αi for some i ∈ {1, . . . , n}


B∗

i =
(

λi+εiαi
θ(AR

i −1)ϕiαi

) 1
θ−1

, I∗i = 0

R∗
i = (AR

i − 1)
1−γ
γ (λi + εiαi)

− 1
γ + (AR

i − 1)−1
(

λi+εiαi
θ(AR

i −1)ϕiαi

) 1
θ−1

.

• If λi >
[
(AR

i −1)
(Ai−1) − εi

]
αi for some i ∈ {1, . . . , n}I∗i = (aI

i − 1)
1−γ
γ α

− 1
γ

i + (Ai − 1)
θ

1−θ (θϕiαi)
1

1−θ

B∗
i = ((Ai − 1)ϕiθ)

1
1−θ , R∗

i = 0.

• If λi =
[
(AR

i −1)
(Ai−1) − εi

]
αi , infinite solutions.

Note: α represents the environmental aggregation between nodes
16



MAIN RESULTS-QUADRATIC COST FUNCTION

If fi(Ri) = λiR2
i , no explicit solution. But some numerical

simulations are performed.

• No dichotomy.

• In this (very) simplified context, we can catch the influence
of spatial heterogeneity into the optimal control.
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NUMERICAL SIMULATION-QUADRATIC COST FUNCTION
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Figure 1: Impact of the Heterogeneity of A and AR on I∗,R∗. On the
left: distribution of A,AR . From left to the right: I∗,R∗ for λ = 0.1,1,5.
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Figure 2: Impact of the Heterogeneity of A and AR on I∗,R∗. On the
left: distribution of A,AR . From left to the right: I∗,R∗ for λ = 0.1,1,5.
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NUMERICAL SIMULATION-QUADRATIC COST FUNCTION
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Figure 3: Impact of the Heterogeneity of A and AR on C∗. On the left:
distribution of A,AR . From left to the right: C∗ for λ = 0.1,1,5
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Figure 4: Impact of the Heterogeneity of A and AR on C∗. On the left:
distribution of A,AR . From left to the right: C∗ for λ = 0.1,1,5
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NUMERICAL SIMULATION-QUADRATIC COST FUNCTION

• R∗: when there is only green investment, the space
heterogeneity of R∗ show a spatial discrepancy. When it is
optimal to do both type of investment, R∗ follow the
heterogenity of AR.

• I∗: the space heterogeneity of I∗ show a spatial discrepancy.

• C∗ increases when it is optimal to do only green investment.
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NUMERICAL SIMULATION-QUADRATIC COST FUNCTION

Figure 5: Value function
with γ = 6 compared to λ

Figure 6: Value function
with γ = 0.5 compared to λ
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NUMERICAL SIMULATION-QUADRATIC COST FUNCTION

Classical growth à la Stokey (1999): as the economy develops, it starts
depolluting without breaking down growth. In other terms: Pollution goes down
with production.
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Figure 8: Production vs
Pollution

Differentiation of technology generates Classical growth à la Stokey. 22



FUTURE RESEARCH

It would be interesting to replace the equation for the pollution,
with an EBCM. Some literature: Brock, Engström, Xepapadeas
[EER, ’13], Xepapadeas, Yannacopoulos [JEDC ’14].

Possibile future research lines:

• Enrich the model with an equation for capital.

• Carbon tax

• EBCM in place of Pollution
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FUTURE RESEARCH

We could an EBCM with human impact ht

∂T (x , t)
∂t

= D
∂

∂x

[(
1− x2

) ∂T (x , t)
∂x

]
︸ ︷︷ ︸

Diffusion

+

+ Ra(T (x , t))︸ ︷︷ ︸
Absorbed radiation

− Re(T (x , t))︸ ︷︷ ︸
Outgoing radiation

+ h(x , t)︸ ︷︷ ︸
human effect

In this way, we would deal with a quantity, T , where a natural mechanism
inducing a non-homogenous distribution for the temperature!

Some questions:

- When and where it is optimal to invest in R?

- Space heterogeneity of carbon tax?

- How do different types of economy (closed/open economy) affect the
distribution of taxation?
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Thanks for the attention!
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