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What?
Dependence of the long-time average behaviour of solutions of nonlinear
dissipative SPDEs from deterministic additive forcings.

Why?
To give a mathematical insight into whether statistical properties derived
under current conditions will be valid under di�erent forcing scenarios
in physically relevant models (e.g. GFD models, climate models).

How?
Establishing regularity of observable averages against the invariant
measure with respect to changes in a time-independent forcing



Example: two-layer quasi-geostrophic model
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Consider the streamfunction  = ( 1(x , y , t), 2(x , y , t))t for (x , y) 2 T2, t � 0,

dq1 + (r? 1 ·rq1) dt = (��@x 1 + ⌫�2 1 + f (a))dt + dW

@tq2 +r? 2 ·rq2 = ��@x 2 + ⌫�2 2 � r� 2

(�)

where q = (q1, q2) is the so-called QG potential vorticity

q1 = � 1 � F1( 1 �  2), q2 = � 2 � F2( 2 �  1)

with F1,F2 positive constants depending on the density of the layers.



Quest for ergodic properties
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Let q(t;q0) be the solution at time t with initial condition q0 2 H.

Transition probabilities: q0 2 H, � ⇢ H

Pt(q0, �) := Law(q(t,q0))(�) = P(q(t;q0) 2 �),

Markov semigroup acting on observables ' : H ! R

(Pt ')(q0) = E'(q(t,q0)) =
Z

H
'(⇣)Pt(q0, d⇣)

Invariant measure i.e. for observables ' : H ! R
Z

H
' dµ =

Z

H
' d(P⇤

t µ) =
Z

H
Pt'dµ

If an invariant measure µ is unique, it is ergodic.
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�. Exponential ergodicity
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temporal averages of an observable converge to averages of the
observables with respect to the stationary distribution, i.e. given
' 2 L1(H, µ)

lim
t!1

1

t

Z t

0
(Ps ')(q0) ds =

Z

H
' dµ =: h', µi, µ-a.e.

transition probabilities converge to a unique stationary distribution with
an exponential rate, i.e. there exists � > 0, C = C (q0) > 0 such that

d (Pt(q0, ·), µ)  e��tC (q0) for all q0 2 H.

For example when d is a Wasserstein distance

|Pt '(q0)� h', µi| = |h',Pt(q0, ·)i � h', µi|  d (Pt(q0, ·), µ)
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For stochastic �uid equations
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�

When the noise acts on a minimum number of degrees of freedom, recent
results ensure ergodicity and exponential ergodicity:

Butkovsky et al ����,
Glatt-Holtz et al ����:

�D Navier-Stokes
�D Hydrostatic Navier-Stokes
Fractionally Dissipative Euler
Boussinesq approximation for
Rayleigh-Bénard convection

C., Bröcker, Kuna (����):
�LQG + stochastic wind forcing

exists invariant measure µ

for r large enough, µ is unique and
transitions probabilities converge
exponentially to it.
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Consider for a 2 R

dq1 + (r? 1 ·rq1) dt = (⌫�2 1 + f (a))dt + dW

@q2
@t

+r? 2 ·rq2 = ⌫�2 2 � r� 2

(�)

with invariant measure µa.

How does µa change with a? One typically looks for a response formula i.e.

d

da
h', µai

����
a=a0

= F (Pa0
t , µa0 ,', @aP

a0
t )

so that
h', µai ⇠ h', µa0i+ (a� a0)F (Pa0

t , µa0 ,', @aP
a0
t )
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Linear response in �nite dimension
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Most mathematical results are for SRB measure in �nite dimensional
deterministic context for hyperbolic or partially hyperbolic systems (e.g. work
of Ruelle, Baladi, Dolgopyat).

Chaotic Hypothesis (Gallavotti-Cohen): chaotic systems are hyperbolic.

Under this hypothesis, theory of linear response showed enormous potential
in the applications to climate (climate sensitivity) and geophysical �uid
dynamics (GFD) models (e.g. work of Majda, Lucarini, Gottwald and many
more)
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For a large class of stochastic systems in a in�nite dimensional: Hairer and
Majda, ����

applies even with highly degenerate noise (via Hairer Mattingly ����)
requires sophisticated techniques (asymptotic strong Feller, Malliavin
calculus)
works for “di�erentiable” observables

In C., Kuna, Bröcker ����, having the �LQG model in mind, we addressed the
following questions:
Q: Can we get away with simpler tools for a less degerate noise?
Q: Can we provide a toolbox for Navier-Stokes type equations?
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Formal idea (Hairer, Majda, ����; C., Kuna, Bröcker, ����)
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Fix t � 0 and a reference parameter a0 2 R. It is easy to see that

h(1� Pa0
t ) , µa � µa0i = h(Pa

t � Pa0
t ) , µai for all  2 O.

If ' = (1� Pa0
t ) then

h', µa � µa0i
a� a0

=

⌧
(Pa

t � Pa0
t ) 

a� a0
, µa

�

Conditions
a 7! Pa

t  is di�erentiable in a0

a 7! hDPa0
t  , µai continuous in a0

for any ' there exists  with ' = (1� Pa0
t ) 
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Spectral gap
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We want to know that for any ' there exists  with ' = (1� Pa0
t ) .

If Pa0
t has a spectral gap in O, namely there exists ⇢ < 1 s.t.

kPa0
t '� h', µa0ikO  ⇢k'� h', µa0ikO,

i.e. Pa0
t is a bounded operator on O/ ker µa0 with kPa0

t k < 1, then (1� Pa0
t ) is

invertible on O/ ker µa0 .
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Hairer and Majda (����): (O, k · kO) is the closure of C1
0 wrt

k'kV1,V2 = sup
x2H

✓
|'(x)|
V1(x)

+
kD'(x)k
V2(x)

◆

For SNS V1(x) = V2(x) = e�⌘kxk2
H as in Hairer and Mattingly, ����.

We consider approach from Butkovsky, Kulik, Scheutzow, ����, and C.,
Bröcker, Kuna, ���� based on the generalized Harris’ theorem (Hairer,
Mattingly, Scheutzow, ����).

With this approach observables are Hölder-type functions.
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Di�erentiability of the semigroup
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Is a 7! Pa
t  = E (q(t; ·, a)) still di�erentiable when  is not?

Yes, if Q is the covariance operator of the noise W , we ask for:
(i) a 7! f (a) to be di�erentiable as a map with values in rangeQ

(ii) supa2(a0�",a0+") |DaQ�1/2f | < 1

One can then show:

d

da
h', µai

����
a=a0

= hDaPa0
t (1� Pa0

t )�1('� h', µa0i), µa0i.

Without these restrictions we can nevertheless establish weak local Hölder
continuity of a 7! µa (fractional response).
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Two-layer energy balance model
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Ta,s(t, .) : [�1, 1] ! R are the zonally averaged temperature in the atmosphere
(Ta) and at the surface (Ts ).

dTa =
⇣
ATa + �Ts |Ts |3 � 2�Ta|Ta|3 � �(Ta � Ts) + Ra(Ta)

⌘
dt + dWa,

dTs =
⇣
ATs + �Ta|Ta|3 � �Ts |Ts |3 � �(Ts � Ta) + Rs(Ts)

⌘
dt + dWs .

The Wiener processes both have the form Wa,s(t) =
P

nN0
�nenB

(n)
t

{B(n)} are �D Wiener processes on some joint probability space (⌦,F ,P)
(en)n�0 eigenfunctions of �A forming a complete ONS of L2([�1, 1])

�k > 0 for k = 1, . . . ,N0 (the �k may di�er between the surface
and the atmosphere).
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Research questions
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with Bröcker, Cannarsa, Kuna, Urbani:

�. Well-posedness of the stochastic �LEBM.
In particular we want the solution to generate a Markov semigroup in an
appropriate Banach space (not necessarily Hilbert here).

�. Uniqueness of the invariant measure and spectral gap result.
The generalised coupling method as in C., Bröcker, Kuna ����, showed
potential in one-layer model and simpli�ed versions of the �LEBM.

�. Response theory or break of linear response.
Approach presented should be adapted for “multplicative” parameters as

�(Ta � Ts), q(x)�s(Ts), �Ts |Ts |3
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Summary and more questions
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What are the key elements for
response
The importance of spectral gap
LR for forcings di�erentiable in the
parameter in the range of the
noise (on the same d.o.f.)
� layer Energy Balance Model

the result for linear response
should apply to all examples in
Glatt-Holtz et al. ����, Butkovsky et
al. ����
di�erent parameters e.g. given by
numerical approximation?
di�erent forms of noise?
correlations vs averages?
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