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Objective of this talk

e Build an analogy between the language of Fundamental Physics and the
language of Machine Learning

e Explain (this you all know) how the Higgs discovery impacted our
understanding of Particle Physics

e Explain (this you may not all know) how the discovery of "self-attention"
revolutionized the field of Machine Learning

e Explain why the latter is relevant for us

e Point out some challenges in ML that we need to face to use it in science

*Many of the analogies | will introduce are speculative, even though there exist ongoing
research aiming to make them formal
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Why do I start from Higgless models?

Just because my journey in physics research started there, with the mentorship of
Riccardo Barbieri

Composite Vectors at the Large Hadron Collider

R. Barbieri®’, A.E. C4rcamo Herndndez®’, G. Corcella®"*,
R. Torre®? and E. Trincherini®

@ Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
b INFN, Sezione di Pisa, Largo Fibonacci 8, I-56127 Pisa, Italy

¢ Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi
Piazza del Viminale 1, I-00184 Roma, Italy

4 Universita degli Studi di Pisa, Dipartimento di Fisica,
Largo Fibonacci 8, I-56127 Pisa, Italy

Abstract

An unspecified strong dynamics may give rise to composite vectors sufficiently light that
their interactions, among themselves or with the electroweak gauge bosons, be approximately
described by an effective Lagrangian invariant under SU(2)z, x SU(2)g/SU(2)+r. We study
the production at the LHC of two such states by vector boson fusion or by the Drell-Yan
process in this general framework and we compare it with the case of gauge vectors from
a SU(2) x SU(2)r x SU(2)" gauge model spontaneously broken to the diagonal SU(2)
subgroup by a generic o-model. Special attention is payed to the asymptotic behaviour
of the different amplitudes in both cases. The expected rates of multi-lepton events from
the decay of the composite vectors are also given. A thorough phenomenological analysis
and the evaluation of the backgrounds to such signals, aiming at assessing the visibility of
composite-vector pairs at the LHC, is instead deferred to future work.

0911.1942v3 [hep-ph] 31 Mar 2010

arXiv
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Why do I start from Higgless models?

Just because my journey in physics research started there, with the mentorship of
Riccardo Barbieri

Signals of composite electroweak-neutral Dark Matter:
LHC/Direct Detection interplay

Riccardo Barbieri®®, Slava Rychkov® and Riccardo Torre??

@ Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
b INFN, Sezione di Pisa, Largo Fibonacci 8, I-56127 Pisa, Italy

¢ Laboratoire de Physique Théorique, Ecole Normale Superieure,

and Faculté de physique, Université Paris VI, France

4 Universita di Pisa, Dipartimento di Fisica, Largo Fibonacci 3, I-56127 Pisa, Haly

Abstract

In a strong-coupling picture of ElectroWeak Symmetry Breaking, a composite electroweak-
neutral state in the TeV mass range, carrying a global (quasi-)conserved charge, makes a
plausible Dark Matter (DM) candidate, with the ongoing direct DM searches being pre-
cisely sensitive to the expected signals. To exploit the crucial interplay between direct DM
searches and the LHC, we consider a composite iso-singlet vector V, mixed with the hyper-

charge gauge field, as the essential mediator of the interaction between the DM particle and

arXiv:1001.3149v1 [hep-ph] 19 Jan 2010

the nucleus. Based on a suitable effective chiral Lagrangian, we give the expected properties
and production rates of V, showing its possible discovery at the maximal LHC energy with
about 100 fb~" of integrated luminosity.

-
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A driving principle

scientific revolutions are more often driven by new tools than by new concepts.

Freeman J. Dyson, Birds and frogs, Selected Papers 1990-2014
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A driving principle

The second theme that George Green’s work exemplifies is the historical fact that
scientific revolutions are more often driven by new tools than by nhew concepts.

Thomas Kuhn in his famous book, “The Structure of Scientific Revolutions”, talked almost exclusively about concepts and hardly at all about tools. His idea of a
scientific revolution is based on a single example, the revolution in theoretical physics that occurred in the 1920s with the advent of quantum mechanics. This was a prime example of a

concept-driven revolution. Kuhn's book was s0 brilliantly written that it became an instant classic. It misled a whole generation of students and historians

of science into believing that all scientific revolutions are concept driven. The concept-driven revolutions are the ones that attract the most attention and
have the greatest impact on public awareness of science, but in fact they are comparatively rare. In the last five hundred years we have had six major concept

driven revolutions, associated with the names of Copernicus, Newton, Darwin, Maxwell, Einstein and Freud, besides the
guantum-mechanical revolution that Kuhn took as his model. During the same period there have been about twenty tool-driven

revolutions, not so impressive to the general public but of equal importance to the progress of science. | will not attempt to make a complete list
of tool-driven revolutions. Two prime examples are the Galilean revolution resulting from the use of the telescope in astronomy, and the Crick-\Watson revolution resulting from the use

of X-ray diffraction to determine the structure of big molecules in biology. The effect of a concept-driven revolution is to explain old things in new ways.

The effect of a tool-driven revolution is to discover new things that have to be explained. in physics there has been a preponderance of tool-driven
revolutions. We have been more successful in discovering new things than in explaining old ones. George Green'’s great discovery, the Green’s function, isa

mathematical tool rather than a physical concept. It did not give the world a new theory of electricity and magnetism or a new

picture of physical reality. It gave the world a new bag of mathematical tricks, useful for exploring the consequences of theories and for predicting the
existence of new phenomena that experimenters could search for. The Green’s function was @ tool of discovery, like the telescope and the microscope, but

aimed at mathematical models and theories instead of being aimed at the sky and the microbe.

Freeman J. Dyson, Birds and frogs, Selected Papers 1990-2014
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Preview

Fundamental Physics Machine Learning
Objective: describe all known particles, their interactions, Objective: emulate human intelligence to allow machines
and at all scales to perform tasks without explicitly programming them

Riccardo Torre From Higgless models to Transformers



Preview

Fundamental Physics Machine Learning
Objective: describe all known particles, their interactions, Objective: describe all features, their interactions
and at all scales (correlations), and at all scales (context)

Riccardo Torre From Higgless models to Transformers



Preview

Fundamental Physics Machine Learning
Objective: describe all known particles, their interactions, Objective: describe all features, their interactions
and at all scales (correlations), and at all scales (context)

Energy

EFT close to the Planck scale (quantum gravity,
G]_V2 string theory, bla bla bla)

EFT above the EW scale (SMEFT)
EFT at the EW scale (dim-4 Standard Model)
EFT below EW scale (QED+QCD+Fermi Theory)

AQCD EFT below QCD scale (QED + Chiral QCD+Fermi
Theory)

EFT below electron mass (Euler-Heisenberg)
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EFT close to the Planck scale (quantum gravity,

string theory, bla bla bla)

EFT above the EW scale (SMEFT)

EFT at the EW scale (dim-4 Standard Model)

EFT below EW scale (QED+QCD+Fermi Theory)

EFT below QCD scale (QED + Chiral QCD+Fermi

Theory)

EFT below electron mass (Euler-Heisenberg)

Preview

A
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Machine Learning

Objective: describe all features, their interactions
(correlations), and at all scales (context)

Context Complexity / Correlation length

Fully connected graph data / Unlimited range
Transformers, Self-Attention, GATs: Maximum flexibility,
allowing global dependencies across all points in the input

Sparse graph data - Extended range
Graph NN (GNN): Variable-length, structured data with
complex dependencies and structured relationships

Grids/sequences - Finite range

Convolutional NN (CNNs), Recursive NNs (RNN), etc:
structured spatial or sequential data, capturing local patterns
but with limited range

Vector data - Moderate Range
Feedforward Neural Networks (FFNNs): Fixed-length vectors,
capturing shallow dependencies within small data sets

Scalar Data - Short Range
Associative Memory Models, Hopfield Networks, Perceptrons:
minimal complexity, point-wise or isolated associations
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The Higgs In particle physics

It is often said that the role of the Higgs is to "give masses" to fundamental

particles
| believe that, in a more modern view, one can say that the role of the Higgs is to

extend the validity of the Standard Model "far above" the weak scale

SM + non-linear EWSB SM + linear EWSB (Higgs)
2
Lowss = (D, (D)) Sowss = (DuH(D"H)') — V(H)
»=emot/v H= %(v +h)E, T=¢mo/
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The Higgs In particle physics

e |t is often said that the role of the Higgs is to "give masses" to fundamental

particles
e | believe that, in a more modern view, one can say that the role of the Higgs is to

extend the validity of the Standard Model "far above" the weak scale

SM + non-linear EWSB SM + linear EWSB (Higgs)
2
ZEwsB = %<DME(D”E)T> Lowss = (DuH(D'H)T) - V(H)
. a_a ]_ : _a __a
3 — gin®o®/v H:E(v-l—h)i), $=eim /Y
i ™ T T
y i ;_2 + :‘,\r___f_l____;\':, + crossing oc A
T N s o

A ~ 4mv A > 4mv
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How far above the weak scale?

chemistry
° ° ° ° P energy
1
Aqep  GR? Gy’
TBohr
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How far above the weak scale?

explored with

colliders
chemistry
° ° -« . P energy
1 . . .
; Aqcp Gg? One of the biggest puzzles in science Gy>
Bohr

Large separations of scales in QFT are unnatural!

A c>0
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How far above the weak scale?

explored with why not exploring with colliders
colliders
chemistry
° ° -« . P energy
1 . . .
; Aqcp Gg? One of the biggest puzzles in science Gy>
Bohr

Large separations of scales in QFT are unnatural!

A c>0
e Irrelevant go(Auv) = O(41) = go(Ar) =~ (ﬂ)

Auv
HIR =4 0
€>
go(ur) = go(uuv) (M) e Marginal  go(Ar) = O(47) = go(Auv) = (Aﬁ) A (1+elog E)
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Machine Learning (vs Fitting)

ML is about predicting output from input

It is like fitting, but with a complicated

Under-fitting

Optimal-fitting Over-fitting

non-linear function of many many
parameters

To prevent overfitting one needs to
generalize well on unseen data

Validating on unseen data is what
distinguishes learning from fitting

Several regularization techniques exist
that help preventing overfitting
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Tasks vs complexity in ML

The complexity of the problem depends on the "representation” of input and output

Examples are:
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Scalar/vector to discrete scalar: this is a typical classification problem
Scalar/vector to continuous scalar: this is a typical regression problem
Vector to vector: multivariate regression with fixed length vectors

Sequence to sequence: example are language translation, speech to text, etc.
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Structured to structured: mapping between complex representations like
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Tasks vs complexity in ML

The complexity of the problem depends on the "representation” of input and output
Examples are:

Scalar/vector to discrete scalar: this is a typical classification problem
Scalar/vector to continuous scalar: this is a typical regression problem
Vector to vector: multivariate regression with fixed length vectors
Sequence to sequence: example are language translation, speech to text, etc.

Structured to structured: mapping between complex representations like
images, graphs, text, etc.

All the difficulty of ML is handling complicated dependencies that allow to capture
higher-order, long-range correlations in data of arbitrary representation and
dimension

Riccardo Torre
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The framework/language of Machine Learning is provided by feed-forward Neural
Networks (inspired by the perceptron model) trained with backpropagation using
Gradient Descent techniques
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The "QFT" of ML: Neural Networks

The framework/language of Machine Learning is provided by feed-forward Neural
Networks (inspired by the perceptron model) trained with backpropagation using
Gradient Descent techniques

Perceptron vs neuron

Input vector of features Weights vector Bias

}@) _ a('w m+b/

Perceptron: HeaV|5|de activation
Neuron: more general activation
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The "QFT" of ML: Neural Networks

The framework/language of Machine Learning is provided by feed-forward Neural
Networks (inspired by the perceptron model) trained with backpropagation using
Gradient Descent techniques

Perceptron vs neuron Multilayer perceptron
Input vector of features Weights vector Bias (feedforward Neural Network)
i x @ | o

Perceptron: Heaviside activation
Neuron: more general activation
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The "QFT" of ML: Neural Networks

The framework/language of Machine Learning is provided by feed-forward Neural
Networks (inspired by the perceptron model) trained with backpropagation using
Gradient Descent techniques

Cost (loss) function

f(X? W) — d(ytrue - ypred (X1 W))
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The "QFT" of ML: Neural Networks

The framework/language of Machine Learning is provided by feed-forward Neural
Networks (inspired by the perceptron model) trained with backpropagation using
Gradient Descent techniques

Cost (loss) function Optimization problem

A

FX, W) = d(Wirge — Yprea (X, W)) W = argmin f(X, W)
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The "QFT" of ML: Neural Networks

The framework/language of Machine Learning is provided by feed-forward Neural
Networks (inspired by the perceptron model) trained with backpropagation using
Gradient Descent techniques

Cost (loss) function Optimization problem
F(X, W) = d(Yirue — Yprea (X, W) W = argmin f(X, W)

Gradient Descent with Backpropagation

_ of of 0z
Wit = Wy — Vi, f _ ) 0z
t+1 ¢ / 1% 0~ oy Bw,

Learning rate

Chain rule for derivatives
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The "QFT" of ML: Neural Networks

The framework/language of Machine Learning is provided by feed-forward Neural
Networks (inspired by the perceptron model) trained with backpropagation using
Gradient Descent techniques

Cost (loss) function Optimization problem
f(Xa W) — d(ytrue — Ypred (X’ W)) W =arg mul/n‘f(X’ W)
Gradient Descent with Backpropagation . Weight Gradient
Wit :Wt_antf af = Bf 8zj Step\ ﬂ
/ ow; Oy ow; Vi
. / /'
Learning rate N f/ Minimum Cost
Chain rule for derivatives S

>

Weight
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OQED: Convolutional NN (CNN)
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OQED: Convolutional NN (CNN)

CNN can be seen as the QED of Neural Networks

They provide the basic building block to handle structured data (like images)
Convolutional layers are designed to capture local correlations (analog to
nearest neighbors dependencies) and extract relevant features

CNN are highly scalable and almost ubiquitous in modern ML applications

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network

Conv_2 RelU activation
onvolution /_% ,—)L
X -Poolin;

@9

OUTPUT
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OQED: Convolutional NN (CNN)

CNN can be seen as the QED of Neural Networks

They provide the basic building block to handle structured data (like images)
Convolutional layers are designed to capture local correlations (analog to
nearest neighbors dependencies) and extract relevant features

CNN are highly scalable and almost ubiquitous in modern ML applications

Convolutional filter

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network

s S Convolution: Yi; =) ) Xiimjin: Kmn+b
. O gv:ti)t:out) m n

® @1 Activation: Y/, =0(Y;;)
6 3 / /
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The self-attention mechanism (layers)
transform sequential data into "attention
graphs" in which all weights are learned
In this way, instead of enforcing a graph
structure a-priori, the graph is based, for
each attention head, on learned attention
of each token on any other token

This idea, at the basis of Transformers,
has revolutionized ML, allowing to
extend the correlation range that NNs
are able to capture
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Data collection
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Precision calculations
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Data analysis
o Physics interpretation and hypothesis testing

e Thanks to the technologies | discussed earlier, ML has been shown to be able to
improve over traditional techniques in all of these tasks
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Why ML should care about HEP

On the other hand, HEP researchers can actively contribute to the ongoing ML

revolution
Indeed HEP represents the natural playground to better understand ML
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Large amount of clean data

Knowledge of the model underlying data

Advanced/robust statistical workflows

Knowledge of the physical behavior of complex systems (there is an entire
field trying to explain NNs in terms of concepts coming from physics, from
the Ising model, to the RG)

Analogy of the faced problems as stressed in this talk
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Choosing the rlght representatlon

70
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Factor of 4x in 4 years, a tool-induced "revolution" in HEP!

Choosing the right representation (graphs) together with
implementing "attention" let to an impressive improvement
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Refereeing the Referees:
Evaluating Two-Sample Tests for Validating
Generators in Precision Sciences

Samuele Grossi®®, Marco Letizia®¢, and Riccardo Torre®?
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September 26, 2024

Abstract

‘We propose a robust methodology to evaluate the performance and computational
efficiency of non-parametric two-sample tests, specifically designed for high-dimensional
generative models in scientific applications such as in particle physics. The study fo-
cuses on tests built from univariate integral probability measures: the sliced Wasser-
stein distance and the mean of the Kolmogorov-Smirnov statistics, already discussed in
the literature, and the novel sliced Kolmogorov-Smirnov statistic. These metrics can
be evaluated in parallel, allowing for fast and reliable estimates of their distribution
under the null hypothesis. We also compare these metrics with the recently proposed
unbiased Fréchet Gaussian Distance and the unbiased quadratic Maximum Mean Dis-
crepancy, computed with a quartic polynomial kernel. We evaluate the proposed tests
on various distributions, focusing on their sensitivity to deformations parameterized
by a single parameter e. Our experiments include correlated Gaussians and mixtures
of Gaussians in 5, 20, and 100 dimensions, and a particle physics dataset of gluon jets
from the JetNet dataset, considering both jet- and particle-level features. Our results
demonstrate that one-dimensional-based tests provide a level of sensitivity comparable
to other multivariate metrics, but with significantly lower computational cost, mak-
ing them ideal for evaluating generative models in high-dimensional settings. This
methodology offers an efficient, standardized tool for model comparison and can serve
as a benchmark for more advanced tests, including machine-learning-based approaches.

2409.16336v1 [stat.ML] 24 Sep 2024

arXiv

Keywords: Non-Parametric Two-Sample Tests, Multivariate Hypothesis Testing, Integral
Probability Measure, Generative Models, Generative Models Evaluation
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ML provides, together with the hardware revolution of GPUs, a "new bag of
tools for discovery"

ML is not "just for experimentalists", as it is not just a practical tool

The role of theorists is essential, as it was in understanding how to use Green's
function to explain physical phenomena
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