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Objective of this talk
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● Build an analogy between the language of Fundamental Physics and the 
language of Machine Learning

● Explain (this you all know) how the Higgs discovery impacted our 
understanding of Particle Physics

● Explain (this you may not all know) how the discovery of "self-attention" 
revolutionized the field of Machine Learning

● Explain why the latter is relevant for us

● Point out some challenges in ML that we need to face to use it in science

*Many of the analogies I will introduce are speculative, even though there exist ongoing 
research aiming to make them formal
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Just because my journey in physics research started there, with the mentorship of 
Riccardo Barbieri
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A driving principle
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The second theme that George Green’s work exemplifies is the historical fact that 

scientific revolutions are more often driven by new tools than by new concepts. 

Thomas Kuhn in his famous book, “The Structure of Scientific Revolutions”, talked almost exclusively about concepts and hardly at all about tools. His idea of a 

scientific revolution is based on a single example, the revolution in theoretical physics that occurred in the 1920s with the advent of quantum mechanics. This was a prime example of a 

concept-driven revolution. Kuhn’s book was so brilliantly written that it became an instant classic. It misled a whole generation of students and historians 

of science into believing that all scientific revolutions are concept driven. The concept-driven revolutions are the ones that attract the most attention and 

have the greatest impact on public awareness of science, but in fact they are comparatively rare. In the last five hundred years we have had six major concept 

driven revolutions, associated with the names of Copernicus, Newton, Darwin, Maxwell, Einstein and Freud, besides the 

quantum-mechanical revolution that Kuhn took as his model. During the same period there have been about twenty tool-driven 

revolutions, not so impressive to the general public but of equal importance to the progress of science. I will not attempt to make a complete list 

of tool-driven revolutions. Two prime examples are the Galilean revolution resulting from the use of the telescope in astronomy, and the Crick–Watson revolution resulting from the use 

of X-ray diffraction to determine the structure of big molecules in biology. The effect of a concept-driven revolution is to explain old things in new ways. 

The effect of a tool-driven revolution is to discover new things that have to be explained. In physics there has been a preponderance of tool-driven 

revolutions. We have been more successful in discovering new things than in explaining old ones. George Green’s great discovery, the Green’s function, is a 

mathematical tool rather than a physical concept. It did not give the world a new theory of electricity and magnetism or a new 

picture of physical reality. It gave the world a new bag of mathematical tricks, useful for exploring the consequences of theories and for predicting the 

existence of new phenomena that experimenters could search for. The Green’s function was a tool of discovery, like the telescope and the microscope, but 

aimed at mathematical models and theories instead of being aimed at the sky and the microbe.

Freeman J. Dyson, Birds and frogs, Selected Papers 1990-2014
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Fundamental Physics Machine Learning

Objective: describe all known particles, their interactions, 
and at all scales

Objective: emulate human intelligence to allow machines 
to perform tasks without explicitly programming them

From Higgless models to Transformers

EFT below electron mass (Euler-Heisenberg) 

EFT at the EW scale (dim-4 Standard Model)

EFT above the EW scale (SMEFT)

EFT below QCD scale (QED + Chiral QCD+Fermi 
Theory)

EFT below EW scale (QED+QCD+Fermi Theory)

EFT close to the Planck scale (quantum gravity, 
string theory, bla bla bla)

Energy

Grids/sequences - Finite range
Convolutional NN (CNNs), Recursive NNs (RNN), etc: 
structured spatial or sequential data, capturing local patterns 
but with limited range

Sparse graph data - Extended range
Graph NN (GNN): Variable-length, structured data with 
complex dependencies and structured relationships

Scalar Data - Short Range
Associative Memory Models, Hopfield Networks, Perceptrons: 
minimal complexity, point-wise or isolated associations

Vector data  - Moderate Range
Feedforward Neural Networks (FFNNs): Fixed-length vectors, 
capturing shallow dependencies within small data sets

Fully connected graph data / Unlimited range
Transformers, Self-Attention Models: Maximum flexibility, 
allowing global dependencies across all points in the input

Context Complexity / Correlation length

3



Preview

Riccardo Torre

Fundamental Physics Machine Learning

Objective: describe all known particles, their interactions, 
and at all scales

Objective: emulate human intelligence to allow machines 
to perform tasks without explicitly programming them

From Higgless models to Transformers

EFT below electron mass (Euler-Heisenberg) 

EFT at the EW scale (dim-4 Standard Model)

EFT above the EW scale (SMEFT)

EFT below QCD scale (QED + Chiral QCD+Fermi 
Theory)

EFT below EW scale (QED+QCD+Fermi Theory)

EFT close to the Planck scale (quantum gravity, 
string theory, bla bla bla)

Energy

Grids/sequences - Finite range
Convolutional NN (CNNs), Recursive NNs (RNN), etc: 
structured spatial or sequential data, capturing local patterns 
but with limited range

Sparse graph data - Extended range
Graph NN (GNN): Variable-length, structured data with 
complex dependencies and structured relationships

Scalar Data - Short Range
Associative Memory Models, Hopfield Networks, Perceptrons: 
minimal complexity, point-wise or isolated associations

Vector data  - Moderate Range
Feedforward Neural Networks (FFNNs): Fixed-length vectors, 
capturing shallow dependencies within small data sets

Fully connected graph data / Unlimited range
Transformers, Self-Attention Models: Maximum flexibility, 
allowing global dependencies across all points in the input

Context Complexity / Correlation length

3



Preview

Riccardo Torre

Fundamental Physics Machine Learning

Objective: describe all known particles, their interactions, 
and at all scales

Objective: emulate human intelligence to allow machines 
to perform tasks without explicitly programming them

From Higgless models to Transformers

EFT below electron mass (Euler-Heisenberg) 

EFT at the EW scale (dim-4 Standard Model)

EFT above the EW scale (SMEFT)

EFT below QCD scale (QED + Chiral QCD+Fermi 
Theory)

EFT below EW scale (QED+QCD+Fermi Theory)

EFT close to the Planck scale (quantum gravity, 
string theory, bla bla bla)

Energy

Grids/sequences - Finite range
Convolutional NN (CNNs), Recursive NNs (RNN), etc: 
structured spatial or sequential data, capturing local patterns 
but with limited range

Sparse graph data - Extended range
Graph NN (GNN): Variable-length, structured data with 
complex dependencies and structured relationships

Scalar Data - Short Range
Associative Memory Models, Hopfield Networks, Perceptrons: 
minimal complexity, point-wise or isolated associations

Vector data  - Moderate Range
Feedforward Neural Networks (FFNNs): Fixed-length vectors, 
capturing shallow dependencies within small data sets

Fully connected graph data / Unlimited range
Transformers, Self-Attention Models: Maximum flexibility, 
allowing global dependencies across all points in the input

Context Complexity / Correlation length

3



Preview

Riccardo Torre

Fundamental Physics Machine Learning

Objective: describe all known particles, their interactions, 
and at all scales

From Higgless models to Transformers

EFT below electron mass (Euler-Heisenberg) 

EFT at the EW scale (dim-4 Standard Model)

EFT above the EW scale (SMEFT)

EFT below QCD scale (QED + Chiral QCD+Fermi 
Theory)

EFT below EW scale (QED+QCD+Fermi Theory)

EFT close to the Planck scale (quantum gravity, 
string theory, bla bla bla)

Energy

Grids/sequences - Finite range
Convolutional NN (CNNs), Recursive NNs (RNN), etc: 
structured spatial or sequential data, capturing local patterns 
but with  limited  range

Sparse graph data - Extended range
Graph NN (GNN): Variable-length, structured data with 
complex dependencies and structured relationships

Scalar Data - Short Range
Associative Memory Models, Hopfield Networks, Perceptrons: 
minimal complexity, point-wise or isolated associations

Vector data  - Moderate Range
Feedforward Neural Networks (FFNNs): Fixed-length vectors, 
capturing shallow dependencies within small data sets

Fully connected graph data / Unlimited range
Transformers, Self-Attention Models: Maximum flexibility, 
allowing global dependencies across all points in the input

Context Complexity / Correlation length

Objective: describe all features, their interactions 
(correlations), and at all scales (context)

3



Preview

Riccardo Torre

Fundamental Physics Machine Learning

Objective: describe all known particles, their interactions, 
and at all scales

From Higgless models to Transformers

EFT below electron mass (Euler-Heisenberg) 

EFT at the EW scale (dim-4 Standard Model)

EFT above the EW scale (SMEFT)

EFT below QCD scale (QED + Chiral QCD+Fermi 
Theory)

EFT below EW scale (QED+QCD+Fermi Theory)

EFT close to the Planck scale (quantum gravity, 
string theory, bla bla bla)

Energy

Grids/sequences - Finite range
Convolutional NN (CNNs), Recursive NNs (RNN), etc: 
structured spatial or sequential data, capturing local patterns 
but with limited range

Sparse graph data - Extended range
Graph NN (GNN): Variable-length, structured data with 
complex dependencies and structured relationships

Scalar Data - Short Range
Associative Memory Models, Hopfield Networks, Perceptrons: 
minimal complexity, point-wise or isolated associations

Vector data  - Moderate Range
Feedforward Neural Networks (FFNNs): Fixed-length vectors, 
capturing shallow dependencies within small data sets

Fully connected graph data / Unlimited range
Transformers, Self-Attention Models: Maximum flexibility, 
allowing global dependencies across all points in the input

Context Complexity / Correlation length

Objective: describe all features, their interactions 
(correlations), and at all scales (context)

3



Preview

Riccardo Torre

Fundamental Physics Machine Learning

Objective: describe all known particles, their interactions, 
and at all scales

From Higgless models to Transformers

EFT below electron mass (Euler-Heisenberg) 

EFT at the EW scale (dim-4 Standard Model)

EFT above the EW scale (SMEFT)

EFT below QCD scale (QED + Chiral QCD+Fermi 
Theory)

EFT below EW scale (QED+QCD+Fermi Theory)

EFT close to the Planck scale (quantum gravity, 
string theory, bla bla bla)

Energy

Grids/sequences - Finite range
Convolutional NN (CNNs), Recursive NNs (RNN), etc: 
structured spatial or sequential data, capturing local patterns 
but with limited range

Sparse graph data - Extended range
Graph NN (GNN): Variable-length, structured data with 
complex dependencies and structured relationships

Scalar Data - Short Range
Associative Memory Models, Hopfield Networks, Perceptrons: 
minimal complexity, point-wise or isolated associations

Vector data  - Moderate Range
Feedforward Neural Networks (FFNNs): Fixed-length vectors, 
capturing shallow dependencies within small data sets

Fully connected graph data / Unlimited range
Transformers, Self-Attention, GATs: Maximum flexibility, 
allowing global dependencies across all points in the input

Context Complexity / Correlation length

Objective: describe all features, their interactions 
(correlations), and at all scales (context)

3



● It is often said that the role of the Higgs is to give masses to fundamental 
particles

● I believe that, in a more modern view, one can say that the role of the Higgs is to 
extend the validity of the Standard Model "far above" the weak scale

The Higgs in particle physics

Riccardo Torre 4

SM + non-linear EWSB SM + linear EWSB (Higgs)
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colliders

why not exploring with colliders

Large separations of scales in physics are unnatural

● Irrelevant

● Marginal

● Relevant
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Machine Learning (vs Fitting)
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ML is about predicting output from input

● It is like fitting, but with a complicated 

non-linear function of many many 

parameters

● To prevent overfitting one needs to 

generalize well on unseen data

● Validating on unseen data is what 

distinguishes learning from fitting

● Several regularization techniques exist 

that help preventing overfitting
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Tasks vs complexity in ML
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The complexity of the problem depends on the "representation" of input and output

Examples are:

● Scalar/vector to discrete scalar: this is a typical classification problem

● Scalar/vector to continuous scalar: this is a typical regression problem

● Vector to vector: multivariate regression with fixed length vectors

● Sequence to sequence: example are language translation, speech to text, etc.

● Structured to structured: mapping between complex representations like 

images, graphs, text, etc.

All the difficulty of ML is handling complicated dependencies that allow to capture 
higher-order, long-range correlations in data of arbitrary representation and 
dimension
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Input vector of features Weights vector Bias

Perceptron: Heaviside activation
Neuron: more general activation

Multilayer perceptron (aka 
feedforward Neural Network)

The framework/language of Machine Learning is provided by feed-forward Neural 
Networks (inspired by the perceptron model) trained with backpropagation using 
Gradient Descent techniques
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● CNN can be seen as the QED of Neural Networks

● They provide the basic building block to handle structured data (like images)

● Convolutional layers are designed to capture local correlations (analog to 

nearest neighbors dependencies) and extract relevant features

● CNN are highly scalable and almost ubiquitous in modern ML applications

Convolution:

Activation:

Pooling (2x2):

Convolutional filter



QED: Convolutional NN (CNN)

Riccardo Torre 10From Higgless models to Transformers

● CNN can be seen as the QED of Neural Networks

● They provide the basic building block to handle structured data (like images)

● Convolutional layers are designed to capture local correlations (analog to 

nearest neighbors dependencies) and extract relevant features

● CNN are highly scalable and almost ubiquitous in modern ML applications

Convolution:

Activation:

Pooling (2x2):

Convolutional filter



QED: Convolutional NN (CNN)

Riccardo Torre 10From Higgless models to Transformers

● CNN can be seen as the QED of Neural Networks

● They provide the basic building block to handle structured data (like images)

● Convolutional layers are designed to capture local correlations (analog to 

nearest neighbors dependencies) and extract relevant features

● CNN are highly scalable and almost ubiquitous in modern ML applications

Convolution:

Activation:

Pooling (2x2):

Convolutional filter



QED: Convolutional NN (CNN)

Riccardo Torre 10From Higgless models to Transformers

● CNN can be seen as the QED of Neural Networks

● They provide the basic building block to handle structured data (like images)

● Convolutional layers are designed to capture local correlations (analog to 

nearest neighbors dependencies) and extract relevant features

● CNN are highly scalable and almost ubiquitous in modern ML applications

Convolution:

Activation:

Pooling (2x2):

Convolutional filter



QED: Convolutional NN (CNN)

Riccardo Torre 10From Higgless models to Transformers

● CNN can be seen as the QED of Neural Networks

● They provide the basic building block to handle structured data (like images)

● Convolutional layers are designed to capture local correlations (analog to 

nearest neighbors dependencies) and extract relevant features

● CNN are highly scalable and almost ubiquitous in modern ML applications

Convolution:

Activation:

Pooling (2x2):

Convolutional filter



QED: Convolutional NN (CNN)

Riccardo Torre 10From Higgless models to Transformers

● CNN can be seen as the QED of Neural Networks

● They provide the basic building block to handle structured data (like images)

● Convolutional layers are designed to capture local correlations (analog to 

nearest neighbors dependencies) and extract relevant features

● CNN are highly scalable and almost ubiquitous in modern ML applications

Convolution:

Activation:

Pooling (2x2):

Convolutional filter



QED: Convolutional NN (CNN)

Riccardo Torre 10From Higgless models to Transformers

● CNN can be seen as the QED of Neural Networks

● They provide the basic building block to handle structured data (like images)

● Convolutional layers are designed to capture local correlations (analog to 

nearest neighbors dependencies) and extract relevant features

● CNN are highly scalable and almost ubiquitous in modern ML applications

Convolution:

Activation:

Pooling (2x2):

Convolutional filter



Over long sequences it suffers from vanishing or 

exploding gradients, which limits the correlation length

● Sequences are lists of "tokens" (e.g. words in a sentence)

● RNN are designed to handle sequences in which the order is essential

● RNN process data sequentially and can capture short- and medium-range 

correlations

● As the Fermi theory has a limited range of validity, RNN cannot capture 

long-range correlation and become ineffective with very large sequences

Fermi Theory: Recursive NN (RNN)
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Hidden state update:

Output update:



Over long sequences it suffers from vanishing or 

exploding gradients, which limits the correlation length

● Sequences are lists of "tokens" (e.g. words in a sentence)

● RNN are designed to handle sequences in which the order is essential

● RNN process data sequentially and can capture short- and medium-range 

correlations

● As the Fermi theory has a limited range of validity, RNN cannot capture 

long-range correlation and become ineffective with very large sequences

Fermi Theory: Recursive NN (RNN)

Riccardo Torre 12From Higgless models to Transformers

Hidden state update:

Output update:



Over long sequences it suffers from vanishing or 

exploding gradients, which limits the correlation length

● Sequences are lists of "tokens" (e.g. words in a sentence)

● RNN are designed to handle sequences in which the order is essential

● RNN process data sequentially and can capture short- and medium-range 

correlations

● As the Fermi theory has a limited range of validity, RNN cannot capture 

long-range correlation and become ineffective with very large sequences

Fermi Theory: Recursive NN (RNN)

Riccardo Torre 12From Higgless models to Transformers

Hidden state update:

Output update:



Over long sequences it suffers from vanishing or 

exploding gradients, which limits the correlation length

● Sequences are lists of "tokens" (e.g. words in a sentence)

● RNN are designed to handle sequences in which the order is essential

● RNN process data sequentially and can capture short- and medium-range 

correlations

● As the Fermi theory has a limited range of validity, RNN cannot capture 

long-range correlation and become ineffective with very large sequences

Fermi Theory: Recursive NN (RNN)

Riccardo Torre 12From Higgless models to Transformers

Hidden state update:

Output update:



Over long sequences it suffers from vanishing or 

exploding gradients, which limits the correlation length

Fermi Theory: Recursive NN (RNN)

Riccardo Torre 12From Higgless models to Transformers

Hidden state update:

Output update:

● Sequences are lists of "tokens" (e.g. words in a sentence)

● RNN are designed to handle sequences in which the order is essential

● RNN process data sequentially and can capture short- and medium-range 

correlations

● As the Fermi theory has a limited range of validity, RNN cannot capture 

long-range correlation and become ineffective with very large sequences



Over long sequences it suffers from vanishing or 

exploding gradients, which limits the correlation length

Fermi Theory: Recursive NN (RNN)

Riccardo Torre 12From Higgless models to Transformers

Hidden state update:

Output update:

● Sequences are lists of "tokens" (e.g. words in a sentence)

● RNN are designed to handle sequences in which the order is essential

● RNN process data sequentially and can capture short- and medium-range 

correlations

● As the Fermi theory has a limited range of validity, RNN cannot capture 

long-range correlation and become ineffective with very large sequences



Fermi Theory: Recursive NN (RNN)

Riccardo Torre 12From Higgless models to Transformers

● Sequences are lists of "tokens" (e.g. words in a sentence)

● RNN are designed to handle sequences in which the order is essential

● RNN process data sequentially and can capture short- and medium-range 

correlations

● As the Fermi theory has a limited range of validity, RNN cannot capture 

long-range correlation and become ineffective with very large sequences

Hidden state update:

Output update:

Over long sequences it suffers from vanishing or 

exploding gradients, which limits the correlation length



● GNN particularly suited for particle physics 
applications

● Clouds of particles with related observables 
naturally represented as graphs

● Great improvements in tagging and 
reconstruction

QCD: Graph NN (GNN)
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● GNN go beyond grid-structured data and towards graph-structured ones 

(graphs can have arbitrary non-local correlations)

● GNN captures both local and global features

● Just like QCD is an evolution of QED with stronger interactions, GNN are an 

evolution of CNN describing more sophisticated interactions 

● As QCD with respect to QED, GNN are more computationally intensive
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~109K citations
(comparable to the total number of papers 

mentioning the Higgs in all Inspire)

● Self-attention transforms a sequence into a 

another sequence (Transformer) passing 

through a fully connected graph with weighted 

edges (whose weights are learned)

● Differently from GNN, the graph structure is 

not fixed a priori and is always fully connected

● Attention "heads" can implement overlapping 

graphs with edges of different nature

● Computationally intensive, but scalable to any 

correlation length

● Only model able to catch long-range 

correlations (e.g. ChatGPT)
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graphs" in which all weights are learned

● In this way, instead of enforcing a graph 

structure a-priori, the graph is based, for 

each attention head, on learned attention 

of each token on any other token

● This technology, at the basis of 

Transformers, has revolutionized ML 

extending the correlation range that NNs 

are able to capture
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● HEP is the scientific field of science that produces and needs to analyse the 
largest amount of data, both real and synthetic (Monte Carlo)

● ML can find application in each step of the HEP Workflow

○ Precision calculations

○ Monte Carlo simulations

○ Detector design

○ Detector operation

○ Data collection

○ Data analysis

○ Physics interpretation and hypothesis testing

● Thanks to the technologies I discussed earlier, ML has been shown to be able to 
improve over traditional techniques in all of these tasks



Why HEP should care about ML

Riccardo Torre 15From Higgless models to Transformers

● HEP is the scientific field of science that produces and needs to analyse the 
largest amount of data, both real and synthetic (Monte Carlo)

● ML can find application in each step of the HEP Workflow

○ Precision calculations

○ Monte Carlo simulations

○ Detector design

○ Detector operation

○ Data collection

○ Data analysis

○ Physics interpretation and hypothesis testing

● Thanks to the technologies I discussed earlier, ML has been shown to be able to 
improve over traditional techniques in all of these tasks



Why HEP should care about ML

Riccardo Torre 15From Higgless models to Transformers

● HEP is the scientific field of science that produces and needs to analyse the 
largest amount of data, both real and synthetic (Monte Carlo)

● ML can find application in each step of the HEP Workflow

○ Precision calculations

○ Monte Carlo simulations

○ Detector design

○ Detector operation

○ Data collection

○ Data analysis

○ Physics interpretation and hypothesis testing

● Thanks to the technologies I discussed earlier, ML has been shown to be able to 
improve over traditional techniques in all of these tasks



Why HEP should care about ML

Riccardo Torre 15From Higgless models to Transformers

● HEP is the scientific field of science that produces and needs to analyse the 
largest amount of data, both real and synthetic (Monte Carlo)

● ML can find application in each step of the HEP Workflow

○ Precision calculations

○ Monte Carlo simulations

○ Detector design

○ Detector operation

○ Data collection

○ Data analysis

○ Physics interpretation and hypothesis testing

● Thanks to the technologies I discussed earlier, ML has been shown to be able to 
improve over traditional techniques in all of these tasks



Why HEP should care about ML

Riccardo Torre 15From Higgless models to Transformers

● HEP is the scientific field of science that produces and needs to analyse the 
largest amount of data, both real and synthetic (Monte Carlo)

● ML can find application in each step of the HEP Workflow

○ Precision calculations

○ Monte Carlo simulations

○ Detector design

○ Detector operation

○ Data collection

○ Data analysis

○ Physics interpretation and hypothesis testing

● Thanks to the technologies I discussed earlier, ML has been shown to be able to 
improve over traditional techniques in all of these tasks



Why ML should care about HEP

Riccardo Torre 16From Higgless models to Transformers
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● Indeed HEP represents the natural playground to better understand ML

○ Large amount of clean data

○ Knowledge of the model underlying data

○ Advanced/robust statistical workflows

○ Knowledge of the physical behavior of complex systems (there is an entire 

field trying to explain NNs in terms of concepts coming from physics, from 

the Ising model, to the RG)

○ Analogy of the faced problems as stressed in this talk
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● It seems, in HEP, we are struggling looking for a concept-induced revolution

● Maybe we should also strongly pursue the idea of a tool-induced one, 

remembering what Dyson said about the impact of George Green: tools are 

also mathematical tools, not only "screwdrivers"

● ML provides, together with the hardware revolution of GPUs, a "new bag of 

tools for discovery"

● ML is not "just for experimentalists", as it is not just a practical tool

● The role of theorists is essential, as it was in understanding how to use Green's 

function to explain physical phenomena
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