Paolo Creminelli, ICTP (Trieste)

Positivity Bounds on Electromagnetic Properties of Media

With O. Janssen, B. Salehian and L. Senatore, 2405.09614 (JHEP)

Riccardo's fest, Nov 9th 2024

Ode al Maestro¹

(Festschrift)

Cari colleghi, ancora adunati² per festeggiare il Riccardo Barbieri, qual schiera eletta tutt'accomunati, dalla sua Scienza, di oggi o di ieri,³

alla sua guisa, riposti gl'incensi, giunto è il momento del pàrlar verace, per dire ora di quei motti densi che ai riti solenni ognuno tace...⁴

Andrea Gambassi

Tanti auguri Riccardo e grazie

Tanti auguri Riccardi e grazie

Positivity: LI case

Coefficients of EFT operators must satisfy inequalities (if there is a "standard" UV completion)

Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi 06

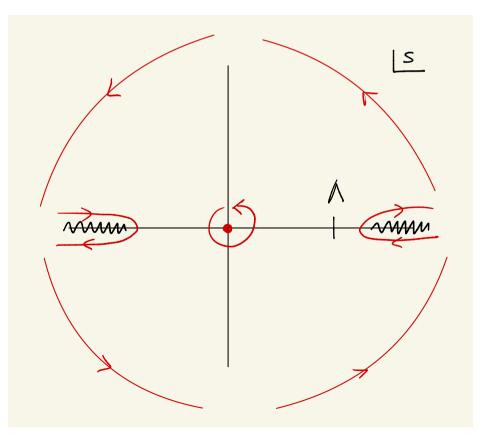
For example:
$$\mathcal{L} = -rac{1}{2}(\partial\pi)^2 + rac{c}{\Lambda^4}(\partial\pi)^4$$
 $c \geq 0$

$$\mathcal{A}(s) \equiv \mathcal{M}(s, t \to 0)$$
 $\mathcal{A}(s) = c \frac{s^2}{\Lambda^4} + \dots$

Crossing: $\mathcal{A}(s) = \mathcal{A}^*(-s^*)$ $\oint \frac{ds}{2\pi i} \frac{\mathcal{A}(s)}{s^3} = \frac{c}{\Lambda^4}$

Froissart bound: $|\mathcal{A}(s)| < s \log^2 s$

$$\frac{c}{\Lambda^4} = \frac{2}{\pi} \int ds \frac{s\sigma(s)}{s^3} \ge 0$$



Similar bounds for non-LI theories?

Motivation: in many interesting situations Lorentz is spontaneously broken

I. Cosmology. In particular Inflation and Dark Energy/Modifications of Gravity

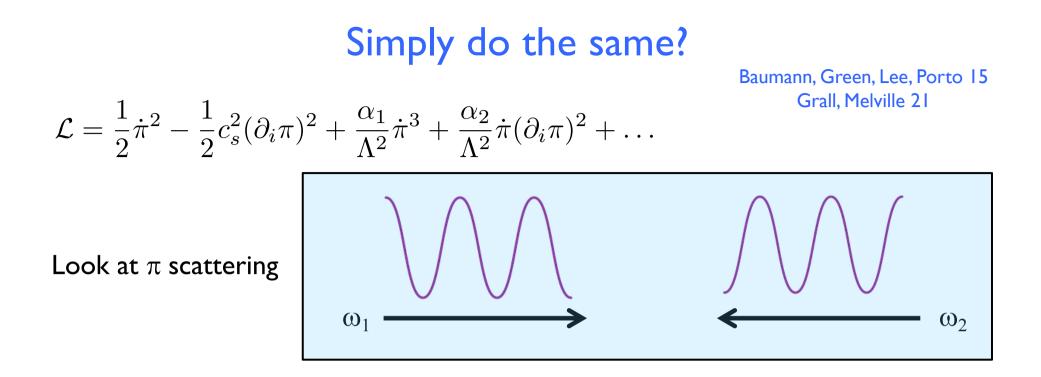
We are particularly interested in "peculiar" theories (Galileon, Ghost Condensate...): are they consistent?

2. Condensed Matter. Can we deduce general inequalities for a system?

- 3. QFT at finite T or finite Q
- 4. Worldline EFT

In general the theory is <u>defined</u> with non-linearly realised Lorentz

Cannot be "extrapolated" from a LI invariant theory: think about a fluid



In a LI theory this is well-defined at arbitrary high energy (calculable in EFT only at low energy)

If LI is broken, π is not a good asymptotic state at high energy: scatter phonons at 10 TeV?

Even when asymptotic states can be followed, S-matrix does not have required analytic properties

PC, Delladio, Janssen, Longo, Senatore 23 Hui, Kourkoulou, Nicolis, Podo, Zhou 23

Let us go back to 2-point function

- Quite rich object w/o LI: $G(\omega,k)$. Two variables like S-matrix with LI
- Electrodynamics of media, hydrodynamics, worldline EFT.
 Linear response theory
- The first use of analyticity are Kramers-Kronig relations. Non-LI!
- Constraints on conformal superfluids (CFTs at large Q) using $\langle J^{\mu}J^{
 u}
 angle$

PC, Janssen, Senatore 22

What are the implications of microcausality and positivity for EM in media?

Of course 80% is known (Russians!) maybe in an unconventional language... (For us!)

Positivity bounds for EM response of media

Fields are small (compared with the atomic ones) \rightarrow linear optics

We want EOM for <E> and after you integrate out the medium IN-IN Effective action

$$\int d^4x \ J^{\mu}(\psi) A_{\mu} \qquad \mu \checkmark 1 \text{PI} \checkmark \nu$$

$$\Gamma_M[A_1, A_2] = \frac{1}{2} \int d^4x \ d^4y \left[A_{1\mu}(x) \ A_{2\mu}(x) \right] S^{\mu\nu}(x, y) \begin{bmatrix} A_{1\nu}(y) \\ A_{2\nu}(y) \end{bmatrix}$$

$$S^{\mu\nu}(x, y) = i \begin{bmatrix} \langle TJ^{\mu}(x)J^{\nu}(y) \rangle & -\langle J^{\nu}(y)J^{\mu}(x) \rangle \\ -\langle J^{\mu}(x)J^{\nu}(y) \rangle & \langle \tilde{T}J^{\mu}(x)J^{\nu}(y) \rangle \end{bmatrix}_{1\text{PI}}$$

Macroscopic Maxwell equations

$$\frac{1}{g^2} \partial_{\nu} F^{\nu\mu} + \int d^4 y \,\Pi^{\mu\nu}(x, y) A_{\nu}(y) = -J^{\mu}_{\text{ext}}(x)$$

$$\Pi^{\mu\nu}(x,y) = i\theta(x^0 - y^0) \left\langle \left[J^{\mu}(x), J^{\nu}(y)\right] \right\rangle_{1\text{PI}} + \left\langle N^{\mu\nu} \right\rangle_{1\text{PI}} \delta(x - y)$$

$\Pi^{\mu\nu}$ and ε , μ

Conserved: $p_{\mu}\Pi^{\mu\nu} = 0$ $p^{\mu} = (\omega, \mathbf{k})$

Two tensor structures: $\Pi^{\mu\nu} = \pi_L(\omega,k)p^2 \mathcal{P}_L^{\mu\nu} + \pi_T(\omega,k)k^2 \mathcal{P}_T^{\mu\nu}$

$$\begin{split} \mathcal{P}_{L}^{00} &= -\frac{k^{2}}{p^{2}} \,, \qquad \mathcal{P}_{L}^{0i} = -\frac{\omega k^{i}}{p^{2}} \,, \qquad \mathcal{P}_{L}^{ij} = -\frac{\omega^{2}}{p^{2}} \frac{k^{i} k^{j}}{k^{2}} \,, \\ \mathcal{P}_{T}^{00} &= \mathcal{P}_{T}^{0i} = 0 \,, \qquad \mathcal{P}_{T}^{ij} = \delta^{ij} - \frac{k^{i} k^{j}}{k^{2}} \,. \end{split}$$

Macroscopic Maxwell equations

$$\frac{1}{g^2} \partial_{\nu} F^{\nu\mu} = -(J^{\mu}_{\rm in} + J^{\mu}_{\rm ext}), \qquad J^{\mu}_{\rm in}(x) \equiv \int d^4 y \,\Pi^{\mu\nu}(x, y) A_{\nu}(y),$$

Internal (bound) current

$$g^{2}\rho_{\rm in} \equiv (1-\varepsilon)\partial_{i}E^{i},$$

$$g^{2}J_{{\rm in},T}^{i} \equiv (\tilde{\varepsilon}-1)\partial_{t}E_{T}^{i} + \left(1-\frac{1}{\tilde{\mu}}\right)\varepsilon^{ijk}\partial_{j}B_{k},$$

$$\varepsilon \nabla \cdot \boldsymbol{E} = g^{2}\rho_{\rm ext}, \qquad \qquad \frac{1}{\tilde{\mu}}\nabla \times \boldsymbol{B} - \tilde{\varepsilon}\partial_{t}\boldsymbol{E}_{T} = g^{2}\boldsymbol{J}_{\rm ext,T}$$

$\Pi^{\mu\nu}$ and ε , μ

Ambiguity due to hom. Maxwell eq. $\nabla \times E + \partial_t B = 0$

Two useful choices:

- No magnetic response $\tilde{\mu} = 1$. Transverse/longitudinal electric permittivity.
- Single electric permittivity $\tilde{arepsilon} = arepsilon$ and magnetic permeability μ

$$arepsilon oldsymbol{
abla} oldsymbol{arepsilon} oldsymbol{E} = g^2
ho_{ ext{ext}} \,, \qquad \qquad rac{1}{\mu} oldsymbol{
abla} imes oldsymbol{B} - arepsilon \, \partial_t oldsymbol{E} = g^2 oldsymbol{J}_{ ext{ext}} \,.$$

Textbook ε and μ now function of ω , k (I should write convolutions)

$$\varepsilon - 1 = -g^2 \pi_L$$
, $1 - \frac{1}{\mu} = g^2 \left(\pi_T + \frac{\omega^2}{k^2} \pi_L \right)$

(Let me not introduce *H*, *D*...)

(We assumed parity invariance, otherwise one would have optical activity: sugar!)

Linear response

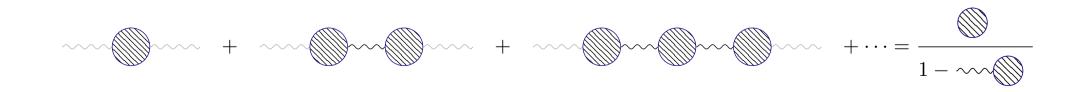
One should be careful about external vs total field

$$J_{\rm in}^{\mu}(x) = \int {\rm d}^4 y \, G_J^{\mu\nu}(x,y) A_{{\rm ext},\nu}(y) \qquad G_J^{\mu\nu}(x,y) = i\theta(x^0 - y^0) \, \langle [J^{\mu}(x), J^{\nu}(y)] \rangle + \langle N^{\mu\nu} \rangle \, \delta(x - y)$$

This is the microcausal object (commutator). It is not IPI.

 $\Pi^{\mu\nu}$ is the response to the total field

$$\begin{split} A^{\mu}(x) &= A^{\mu}_{\text{ext}}(x) + g^2 \int \mathrm{d}^4 y \, \Delta^{\mu\nu}(x-y) J_{\text{in},\nu}(y) & \Delta^{\mu\nu} \text{ is the} \\ & \text{free photon} \\ (\Pi^{-1})^{\mu\nu} &= (G_J^{-1})^{\mu\nu} + g^2 \Delta^{\mu\nu} & \text{propagator} \end{split}$$



Positivity

We assume passive medium: it only absorbs energy from external EM

$$\Delta H = \int \frac{\mathrm{d}^4 p}{(2\pi)^4} \omega A_{\mathrm{ext},\mu}(-p) \operatorname{Im} G_J^{\mu\nu}(p) A_{\mathrm{ext},\nu}(p) > \mathbf{0}$$

Im $G_J^{\mu\nu}(p) = \frac{1}{2} \int d^4x \, e^{-ip \cdot x} \, \langle [J^{\mu}(x), J^{\nu}(0)] \rangle$

$$2 \operatorname{Im} G_J^{\mu\nu}(p) = \sum_{n,m} (2\pi)^4 \delta(p + p_n - p_m) \langle n | J^{\mu}(0) | m \rangle \langle m | J^{\nu}(0) | n \rangle (c_n - c_m)$$

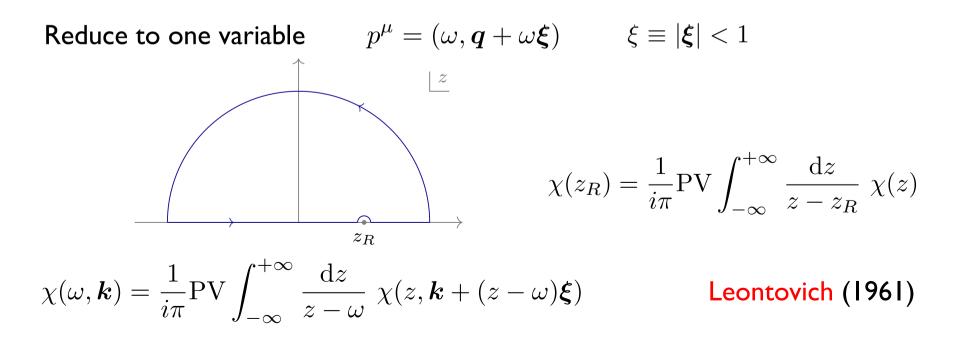
 $ho \left| n
ight
angle = c_n \left| n
ight
angle$ Only absorbtion is c_n are monotonically decreasing, e.g. vacuum or thermal state

- In a laser there is population inversion and light is amplified
- Same property for $\Pi^{\mu\nu}$
- Not assuming a gap in Im G

Microcausality and analyticity

$$\begin{aligned} G_J^{\mu\nu}(p) &= \int \mathrm{d}^4 x \, e^{-ip \cdot x} G_J^{\mu\nu}(x) \qquad G_J^{\mu\nu}(x,y) = i\theta(x^0 - y^0) \, \langle [J^\mu(x), J^\nu(y)] \rangle + \langle N^{\mu\nu} \rangle \, \delta(x-y) \\ p^\mu &= (\omega, \mathbf{k}) \in \mathbb{C}^4 \qquad p^\mu = p_R^\mu + ip_I^\mu \qquad \text{Analytic} \quad p_I^\mu \in \mathrm{FLC} \end{aligned}$$

"That approach really depressed me because I knew that I could never understand the theory of more than one complex variable. So I was pretty worried about how I could do research working in this mess." S.Weinberg

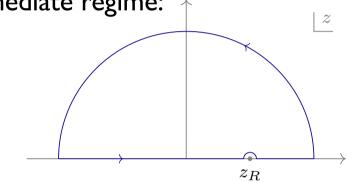


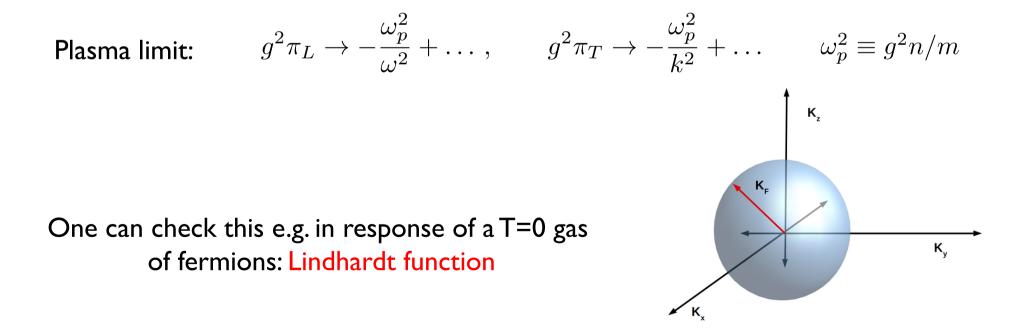
UV behaviour

For Leontovich, one needs functions to decay on the arc: medium negligible

In condensed matter one can close contour in intermediate regime: 1

- $\omega >>$ Collision frequency: free charge particles
- ω << Electron mass: no QED loops





Analyticity of $\Pi^{\mu\nu}$

 Π is not obviously micro-causal being IPI: it gives response to a localized total field. This requires external sources

Microcausal in perturbation theory

One can prove a partial result, but sufficient for our purposes

$$(G_{\gamma}^{-1})^{\mu\nu} = \frac{1}{g^2} (\Delta^{-1})^{\mu\nu} - \Pi^{\mu\nu}$$
 Only possible singularities of Π are zeros of G_{γ}

Dropping k, Landau's argument for absence of zeros in ω UHP

$$\chi(\omega) = \frac{1}{\pi} \int_0^\infty \frac{\mathrm{d}z^2}{z^2 - (\omega + i\epsilon)^2} \operatorname{Im} \chi(z) \qquad \operatorname{Im} \chi(\omega) = \frac{\operatorname{Im} \omega^2}{\pi} \int_0^\infty \frac{\mathrm{d}z^2}{|z^2 - \omega^2|^2} \operatorname{Im} \chi(z)$$

Generalize $\chi(\omega, \boldsymbol{q} + \omega\boldsymbol{\xi}) = \frac{1}{\pi} \int_0^\infty \frac{\mathrm{d}z^2}{z^2 - (\omega + i\epsilon)^2} \operatorname{Im} \chi(z, \boldsymbol{q} + z\boldsymbol{\xi}), \qquad (\boldsymbol{q} \cdot \boldsymbol{\xi} = 0)$

$$\rightarrow \Pi^{\mu\nu}(\omega, q + \omega \xi)$$
 analytic ω in UHP

Bounds on low-energy ϵ and μ

Focus on dieletrics: finite values of $\varepsilon(0,0)$ and $\mu(0,0)$

Conductors have $\epsilon \sim i \sigma/\omega$, superconductors have ϵ , $\mu \sim 1/(\omega^2 - c_s^2 k^2)$

Longitudinal
$$\varepsilon(\omega, \boldsymbol{q} + \omega\boldsymbol{\xi}) - 1 = \frac{1}{i\pi} \text{PV} \int_{-\infty}^{+\infty} \frac{\mathrm{d}z}{z - \omega} g^2 \pi_L(z, \boldsymbol{q} + z\boldsymbol{\xi}), \qquad (\boldsymbol{q} \cdot \boldsymbol{\xi} = 0)$$
part

$$\varepsilon(0,0) - 1 = \frac{2g^2}{\pi} \int_0^{+\infty} \frac{\mathrm{d}z}{z} \, \operatorname{Im} \pi_L(z, z\boldsymbol{\xi})$$

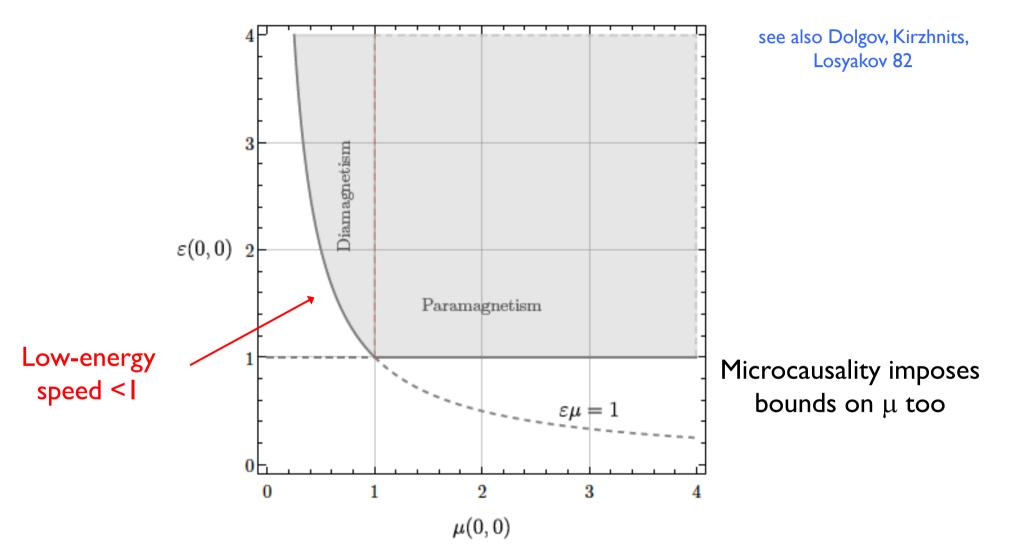
Transverse part

$$\frac{g^2 k^2 \pi_T}{\omega^2} = (\varepsilon - 1) + \frac{k^2}{\omega^2} \left(1 - \frac{1}{\mu}\right)$$

$$\left(\varepsilon(0,0)-1\right) + \xi^2 \left(1 - \frac{1}{\mu(0,0)}\right) = \frac{2g^2\xi^2}{\pi} \int_0^{+\infty} \frac{\mathrm{d}z}{z} \ \operatorname{Im} \pi_T(z, z\boldsymbol{\xi})$$

$$\varepsilon(0,0) - \frac{1}{\mu(0,0)} = \frac{2g^2}{\pi} \int_0^{+\infty} \frac{\mathrm{d}z}{z} \, \mathrm{Im} \, \pi_T(z,z)$$

Bounds on low-energy ϵ and μ

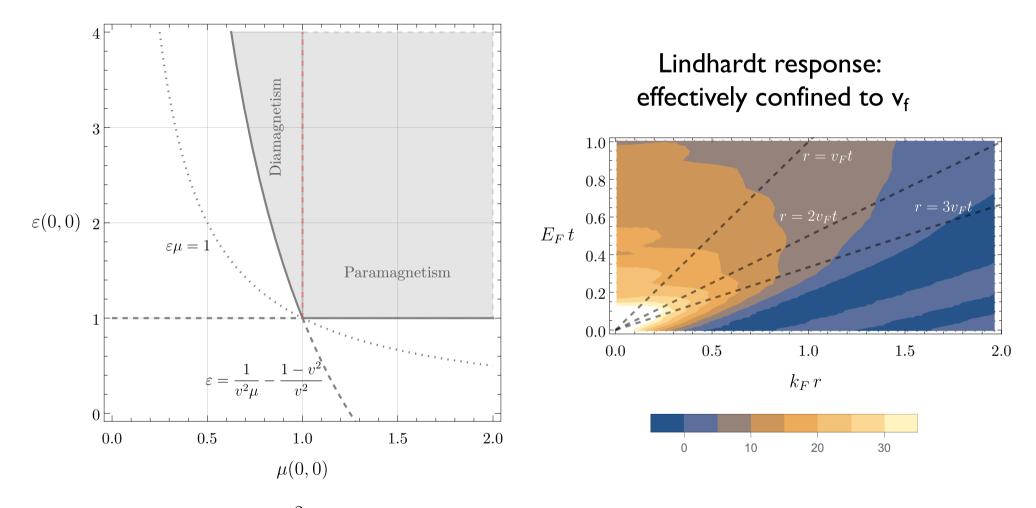


One can estimate part of the RHS integral for better bounds

E.g. using plasma limit: $\varepsilon(0,0) - 1 \ge \frac{\omega_p^2}{\omega_{\mathrm{UV}}^2}$

Non-relativistic response

A response confined in a narrower cone, v << c, gives stronger bounds



 $rac{1}{\mu} - 1 < rac{v^2}{c^2}(arepsilon - 1)$ Indeed normal diamagnetism has $\delta \mu \sim -10^{-5}$

Beyond condensed matter

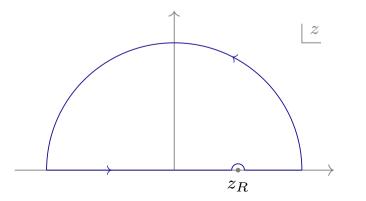
• Tiny diamagnetism in CM, because v << c

Cf.
$$\mathcal{L} = -\frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} (\partial_\mu \phi)^2 - \frac{1}{2} m^2 \phi^2 + \frac{\alpha}{\Lambda^2} \phi^2 F_{\mu\nu} F^{\mu\nu}$$

 $F_{\mu\nu} F^{\mu\nu} \propto E^2 - B^2$

Diamagnetic response saturates the bound. This happens for pions for instance

• For high-energy media (e.g. nuclear matter) one cannot close the contour below electron mass



Contour at infinity cannot be neglected, but it is known

$$\varepsilon(0,0) - \operatorname{Re}\varepsilon(\omega_{\rm UV},0) = \frac{2g^2}{\pi} \int_0^{\omega_{\rm UV}} \frac{\mathrm{d}z}{z} \operatorname{Im} \pi_L(z,0)$$

Future directions

- Other systems: superconductors, conductors, crystals...
- Derivatives of ϵ, μ
- Full analyticity of $\Pi^{\mu\nu}$
- Khallen-Lehman representation? Not every spectral density is ok:

$$\operatorname{PV} \int dz \, \frac{\operatorname{Im} \chi(z, \boldsymbol{k} + (z - \omega)\boldsymbol{\xi}_1)}{z - \omega} = \operatorname{PV} \int dz \, \frac{\operatorname{Im} \chi(z, \boldsymbol{k} + (z - \omega)\boldsymbol{\xi}_2)}{z - \omega}$$

Fluctuation dissipation theorem

We do not know anything without LI

- Induced dipole moments (and eventually Love numbers in gravity)
- Fluids using $\langle T^{\mu\nu}T^{\alpha\beta}\rangle$
- Inflation

Backup slides

Para/Dia magnetism and Electric response

Interaction with magnetic field

$$\begin{split} \Delta H &= \mu_B(\vec{L} + g_0 \vec{S}) \cdot H + \frac{e^2}{8mc^2} H^2 \sum_i (x_i^2 + y_i^2) \\ \text{Paramagnetic} & \text{Diamagnetic} \end{split}$$

Effect of E is second order

$$\Delta H_0 = 2E^2 e^2 \sum_n \frac{|\langle n|z|0\rangle|^2}{E_n - E_0}$$

Diamagnetic response is suppressed wrt electric one by $\Delta E/m \sim v^2$

Origin of analyticity

Consequence of microcausality: commutators vanish outside lightcone

See e.g. Itzykson Zuber's book

LSZ:
$$S_{fi} = -\int d^4x \, d^4y \, e^{i(q_2 \cdot y - q_1 \cdot x)} (\Box_y + m_a^2) (\Box_x + m_a^2) \langle p_2 | T \phi^{\dagger}(y) \phi(x) | p_1 \rangle$$

Up to disconnected pieces: $T\varphi^{\dagger}(y)\varphi(x) \rightarrow \theta(y^0 - x^0)[\varphi^{\dagger}(y), \varphi(x)]$

$$S_{fi} = (2\pi)^4 \delta^4 (p_2 + q_2 - p_1 - q_1) i \mathscr{T}$$
$$\mathscr{T} = i \int d^4 z \; e^{iq \cdot z} \langle p_2 | \, \theta(z^0) \left[j^\dagger \left(\frac{z}{2} \right), j \left(-\frac{z}{2} \right) \right] | p_1 \rangle \qquad (\Box + m_a^2) \varphi(x) = j(x)$$
$$q = \frac{1}{2} (q_1 + q_2)$$

Commutator vanishes outside FLC $\rightarrow \mathcal{T}(q^{\mu})$ analytic for Im q^{μ} in FLC

S - Matrix

with Delladio, Janssen, Longo, Senatore 23 Also Hui, Kourkoulou, Nicolis, Podo, Zhou 23

What if the low energy states do exist at high energy?

$$\begin{split} \mathcal{L} &= \partial \Phi^{\dagger} \cdot \partial \Phi + m^2 \, \Phi^{\dagger} \Phi - \lambda (\Phi^{\dagger} \Phi)^2 \qquad \Phi = \frac{\rho}{\sqrt{2}} e^{i\theta/v} \qquad \theta = \mu^2 t/2 + \pi \\ \rho = v + h \\ \mathcal{L} &= \frac{1}{2} (\partial h)^2 + \frac{1}{2} (\partial \pi)^2 + \frac{1}{2v^2} \left(\mu^2 \dot{\pi} + (\partial \pi)^2 \right) \left(h^2 + 2vh \right) - \frac{\lambda}{4} (h^2 + 2vh)^2 \\ \text{Integrating out h one gets low energy EFT} \\ \text{for Goldstone } \pi & 0.5 \\ \frac{1}{2} \left(\left. \tilde{\pi}_{-k} \right. \left. \tilde{h}_{-k} \right. \right) \left(\left. \frac{k^2}{-i\mu^2 \omega/v} \right. \left. \frac{i\mu^2 \omega/v}{k^2 - M^2} \right) \left(\left. \frac{\tilde{\pi}_k}{\tilde{h}_k} \right) \right| \left. \frac{0.3}{0.2} \right| \\ \frac{1}{0.1} \qquad \qquad E_- \\ \frac{1}{0.1} \qquad \qquad E_- \\ \frac{1}{0.1} \qquad \qquad E_- \\ \frac{1}{0.1} \qquad \qquad E_+ \left(k \right)^2 \equiv k^2 + \frac{1}{2} \left(M^2 + \frac{\mu^4}{v^2} \right) \pm \sqrt{\frac{\mu^4}{v^2} k^2 + \frac{1}{4} \left(M^2 + \frac{\mu^4}{v^2} \right)^2} \end{split}$$

LSZ reduction

$$\phi^{a}(t,\boldsymbol{x}) \equiv \sum_{l=\pm} \int \frac{\mathrm{d}^{3}\boldsymbol{k}}{(2\pi)^{3} 2E_{l}(\boldsymbol{k})} \left(Z_{l}^{a}(\boldsymbol{k})a_{l}(\boldsymbol{k})e^{-i(E_{l}(\boldsymbol{k})t-\boldsymbol{k}\cdot\boldsymbol{x})} + \mathrm{h.c.} \right) , \ a \in \{\pi,h\}$$

Imposing EOM and CCR one gets e.g.

$$Z_{-}^{\pi}(\mathbf{k}) = \sqrt{\frac{M^2 + \mathbf{k}^2 - E_{-}(\mathbf{k})^2}{E_{+}(\mathbf{k})^2 - E_{-}(\mathbf{k})^2}}$$

LSZ formula, using polology

$$\prod_{i}^{n} \int \mathrm{d}^{4} y_{i} \, e^{i p_{i} \cdot y_{i}} \prod_{j}^{m} \int \mathrm{d}^{4} x_{j} \, e^{-i k_{j} \cdot x_{j}} \langle 0 | T(\pi(y_{1}) \dots \pi(y_{n}) \pi(x_{1}) \dots \pi(x_{m})) | 0 \rangle \sim$$

$$\prod_{i}^{n} \frac{i Z_{-}^{\pi}(\boldsymbol{p}_{i})}{p_{i}^{0\,2} - E_{-}^{2}(\boldsymbol{p}_{i}) + i\varepsilon} \prod_{j}^{m} \frac{i \bar{Z}_{-}^{\pi}(\boldsymbol{k}_{j})}{k_{j}^{0\,2} - E_{-}^{2}(\boldsymbol{k}_{j}) + i\varepsilon} \langle \boldsymbol{p}_{1} \dots \boldsymbol{p}_{n} | S | \boldsymbol{k}_{1} \dots \boldsymbol{k}_{m} \rangle$$

 $Z^h_{\pm}(\mathbf{k}) \equiv \langle \Omega | h(0) | \mathbf{k}, \pm \rangle$

(Another procedure is to write creation/annihilation operators in terms of fields: different LSZ expression, but same conclusions)

Lack of analyticity

The usual arguments of S-matrix analyticity breaks down

$$S = -\int d^4x d^4y \, e^{i(q_2 \cdot y - q_1 \cdot x)} \frac{-\partial_{y^0}^2 - E_-^2(-i\partial_{y_i})}{Z_-^{\pi}(-i\partial_{y_i})} \frac{-\partial_{x^0}^2 - E_-^2(-i\partial_{x_i})}{\bar{Z}_-^{\pi}(-i\partial_{x_i})} \langle \boldsymbol{p}_2 | T(\pi(y)\pi(x)) | \boldsymbol{p}_1 \rangle$$

$$S = (2\pi)^4 \delta^{(4)} (p_2 + q_2 - p_1 - q_1) i\mathcal{T}$$

$$\mathcal{T} = i \int d^4 z \, e^{iqz} \frac{-\partial_{z^0/2}^2 - E_-^2(-i\partial_{z_i/2})}{Z_-^{\pi}(-i\partial_{z_i/2})} \frac{-\partial_{z^0/2}^2 - E_-^2(-i\partial_{z_i/2})}{\bar{Z}_-^{\pi}(-i\partial_{z_i/2})} \langle \boldsymbol{p}_2 | \theta(z^0) [\pi(\frac{z}{2})\pi(-\frac{z}{2}))] | \boldsymbol{p}_1 \rangle$$
Vanishes outside FLC in z

 $\mathcal{T}(q^{\mu})$ analytic for Im q^{μ} in FLC

Without Lorentz invariance Z(k) and E(k) introduce non-analyticities