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General set-up

Set-up

L : X → X transfer operator of hyperbolic dynamical system T

Want

Calculate spectral data of L

How?

Take sequence of finite-rank discretisations (Lk) with Lk → L

Hope

spectral data of Lk → spectral data of L
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Analytic scenario

Best case

Underlying system T is analytic: then possible to choose X such that
L : X → X is ‘very’ compact

Quantifying compactness

Let X be a Banach space, and A : X → X a bounded operator. Then for
n ∈ N

sn(A) := inf {‖A− F‖ : rankF < n} (n ∈ N)

is called the n-th approximation number of A.

Properties

sn(A)→ 0 implies A compact

if X is Hilbert, then
I sn(A)→ 0 iff A compact
I sn(A) =

√
λn(AA∗) (= n-th singular value of A)
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Analytic scenario ...

Assumption

Underlying system T is hyperbolic and analytic on a subset of Cd

Fact I

Possible to choose X such that L : X → X satisfies, for some a > 0

sn(L) = O(exp(−an1/d))

B-Jenkinson 08, Slipantschuk-B-Just 22, Jézéquel 22

Fact II

Often ∃ discretisation scheme (Lk) such that, for some 0 < a′ ≤ a

‖L − Lk‖ = O(exp(−a′k1/d))

Wormell 19, B-Slipantschuk, Wormell-Vytnova

Fact III
Often X can be chosen to be a Hilbert space
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Analytic scenario......

Consequences

Since ‖L − Lk‖ → 0 it follows

spectral data of Lk → spectral data of L

Main problem

For a given N ∈ N, how close is spectral data of LN to that of L?
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Main problem quantified

Definition

Given σ, σ′ ⊂ C closed, and z ∈ C, write

dist(z , σ) = inf
λ∈σ
|z − λ|

d̂ist(σ, σ′) = sup
z∈σ

dist(z , σ′)

The Hausdorff distance of σ and σ′ is defined as

Hdist(σ, σ′) = max(d̂ist(σ, σ′), d̂ist(σ′, σ))

Note

Hdist is a metric on the set of closed subsets of C.

Main problem

If A and B are compact operators, find explicitly computable upper
bounds for Hdist(σ(A), σ(B)).
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Finite dimensional prototype

Theorem (Ostrowski 57, Henrici 62, Elsner 85)

Let n ∈ N. Then there is Cn > 0 such that for any n × n matrices A,B we
have

Hdist(σ(A), σ(B)) ≤ Cn(2M)1−1/n ‖A− B‖1/n ,

where M := max {‖A‖ , ‖B‖}.

Remark

Ostrowski, Henrici: Cn ≤ n

Elsner: Cn = 1, provided ‖ · ‖ is spectral norm

1 ≤ Cn = O(1) for arbitrary matrix norms
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Basic approach

Key ingredient

Need resolvent estimates of the form

‖(zI − A)−1‖ ≤ gA

(
1

dist(z , σ(A))

)
,

for some function gA : R+
0 → R+

0 .

Example

If A is normal (that is A∗A = AA∗), then

‖(zI − A)−1‖ =
1

dist(z , σ(A))
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Basic tool: Bauer-Fike Lemma

Lemma (Bauer and Fike 60)

Let A : X → X be bounded. Suppose there is an increasing surjection
gA : R+

0 → R+
0 such that

‖(zI − A)−1‖ ≤ gA

(
1

dist(z , σ(A))

)
.

Then, for any bounded B : X → X we have

d̂ist(σ(B), σ(A)) ≤ hA(‖A− B‖) ,

where

hA(x) =
1

g−1A (1/x)
.
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Proof of Bauer-Fike Lemma

Write E = B − A.

Claim

z ∈ σ(B) \ σ(A) =⇒ 1

‖E‖
≤ ‖(zI − A)−1‖

Proof of claim

Let z ∈ σ(B) \ σ(A) and suppose to the contrary that
‖E‖‖(zI − A)−1‖ < 1. Then

zI − B = (zI − A)
(
I − (zI − A)−1E

)
But

(
I − (zI − A)−1E

)
is invertible, so zI − B is invertible, so z 6∈ σ(B).
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Wrapping up

If z ∈ σ(B) \ σ(A) then, by the Claim

‖E‖−1 ≤ ‖(zI − A)−1‖ ≤ gA

(
1

dist(z , σ(A))

)
=⇒ g−1A (‖E‖−1) ≤ 1

dist(z , σ(A))

=⇒ dist(z , σ(A)) ≤ 1

g−1A (‖E‖−1)
= hA(‖A− B‖)

QED

Corollary

If A and B are normal, then

Hdist(σ(A), σ(B)) ≤ ‖A− B‖ .
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Resolvent bounds for trace class operators

Theorem (B& Güven 15)

Let A : X → X be a trace class operator on a Hilbert space X , that is,∑∞
n=1 sn(A) <∞. Then

‖(zI − A)−1‖ ≤ 1

dist(z , σ(A))

∞∏
n=1

(
1 +

sn(A)

dist(z , σ(A))

)2

Proof relies on following classic bound for trace class operators A

‖(I + A)−1‖ ≤
∏∞

n=1(1 + sn(A))∏∞
n=1 |1 + λn(A)|

which in turn follows from the following bound for an N × N matrix

‖A−1‖ =

∏N−1
n=1 sn(A)

| det(A)|
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Resolvent bounds for operators with summable
approximation numbers

Theorem (B 24)

Let A : X → X, where X is an arbitrary Banach space, have summable
approximation numbers, that is,

∑∞
n=1 sn(A) <∞. Then

‖(zI − A)−1‖ ≤ c

dist(z , σ(A))

∞∏
n=1

(
1 +

c sn(A)

dist(z , σ(A))

)4

where c is a constant not depending on A or X with c ≤
√

2e.

Proof relies on Banach space Weyl inequality due to Pietsch 80.
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Applications to transfer operators of analytic systems

Corollary

Suppose (Lk) is a discretisation of L with ‖L − Lk‖ = O(exp(−a′k1/d)).
Moreover suppose that there is M > 0 with

sn(L) ≤ M exp(−an1/d)

sn(Lk) ≤ M exp(−an1/d)

Then there is an explicitly computable function Ha,d : R+
0 → R+

0 with

Hdist(σ(L), σ(Lk)) ≤ MHa,d

(
‖L − Lk‖

M

)
= O(exp(−ck1/d(d+1)))

where c > 0.
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