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AS OF TODAY, WE DON’T HAVE ANY EVIDENCE OF
SUPERSYMMETRY IN NATURE

SUPERSYMMETRY, IF PRESENT, MUST BE BROKEN
AT SUITABLE HIGH ENERGY SCALES

ABSENCE OF SUPERSYMMETRY RAISES MANY QUESTIONS WHICH
MAY LEAD TO A BETTER UNDERSTANDING OF STRING THEORY
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WAYS TO BREAK SUPERSYMMETRY

Coordinate Dependent Compactifications (1

Mixing Branes and Orientifold planes 2,

Adding (magnetic) fluxes ©),

[Bachas 1995]



COORDINATE DEPENDENT COMPACTIFICATIONS

Scherk-Schwarz compactification is an elegant way of breaking  [Scherk, Schwarz 1979]
supersymmetry via compactification

Use symmetries of the action to impose different periodicities
for fields in a given supermultiplet
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The radius of the circle sets the scale of supersymmetry breaking.
SUSY is recovered in the infinite R limit



String theory is very constrained, and any deformation of the Rohm 1984]

spectrum is subject to modular invariance Kounnas, Rostand 1990]
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The twisted sector (the second line) introduces new states which
include KK and winding excitations of the NS-NS vacuum



In a theory of (quantum) gravity, the geometric moduli and the
Wilson lines are dynamical fields, and one should study their
dynamics to ensure the stability of the construction

Actually, it is expected that in the (pseudo) moduli space Narain, Sarmadi 1987]
Nair et al 1987]

non-tachyonic theories are continuously connected to tachyonic ones ,
Ginsparg, Vafa 1987]

For instance, this is what happens for the heterotic models
upon toroidal compactification



In closed strings, the absence of tachyons is reflected into a
distribution of excitations which enjoys misaligned supersymmetry [Dienes 1994]
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The vanishing of the effective central charge implies then
classical stability of the string spectrum
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Are coordinate-dependent compactifications (Scherk-Schwarz)

really a deformation of the original spectrum?



What happens when we cross the critical point?
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Closed string tachyon condensation is not fully understood. [Antoniadis, Derendinger,
. . Kounnas 1999]
In some cases, a linear dilaton background emerges Hellerman, Swanson 2007]

and space-time is lower dimensional Kaidi 2020]



How can we avoid tachyons?

Asymmetric orbifolds have been advocated to eliminate

geometric moduli and Wilson lines.

However, new moduli typically emerge in the twisted sector which

(in principle) can equally deform the vacuum and yield tachyons

After all, most asymmetric orbifold become symmetric

(and, thus, geometric) in some dual frame



For example, take the asymmetric Z4 orbifold

Z =X +1iY, Z1,R = XLR H1YLR

41, — GiW/QZL ; /R — G_iW/QZR :

Upon T-duality along the Y direction

ZLR = XLR +1YLR = XL R TYLR

and the orbifold becomes again geometrical

with all its geometrical (neutral) moduli



As an example, consider an asymmetric Z, orbifold of the [CA, Florakis, Leone,
SO(16)xSO(16) heterotic string on the SO(8) lattice Perugini 2024]

Sector fields SO(16) x SO(16) x SO(8)
Untwisted gy, Buy, ¢ (1,1,1)
A, (120,1,1) + (1,120,1) + (1,1, 28)
s (128,1,1) + (1,128,1)
YR (16,16,1)
Twisted Yy, (128,1,1) +(1,128,1)
YR (16,16,1)
44 (120,1,1) + (1,120,1) + (1,1, 28)
1A, (1,1,1)
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To eliminate these scalars one has to combine the asymmetric [CA, Florakis, Leone,

orbifold with extra symmetries (i.e. outer automorphism) Perugini 2024]

Sector fields SO(16)2 x SO(8)1
Untwisted 9w, By, @ (1,1)

A, (120,1) + (1, 28)

YL+ YR (128,1)

YR (136,1)

4¢ + 1. (120, 1)
Twisted 4¢ + YL, (120,1) + (1,8, + 8, + 8.)

( )

4¢0 + YR 128,1




BRANE SUPERSYMMETRY BREAKING

[Sugimoto 1999]

| Antoniadis, Dudas,
Sagnotti 1999]

As the name suggests,
it takes place in orientifold models  [Sagnotti 1987]
with branes and orientifold planes

[t does not have a counterpart
in heterotic strings



Already in D=10 there are two options:

Supersymmetric type I superstring Brane Supersymmetry Breaking
G=5S0(32) G=USp(32)

open-string spectrum open-string spectrum
n=4  anti-sym. anti-sym. n=4  anti-sym. T T Ny sym.
n=3 sym. sym. n=3 Sym. T QT A T anti-sym.
n=2  anti-sym. anti-sym. n=2  anti-sym. " AR T (T sym.
n — 1 Sym. Sym. n — ]. Sym_ """"""""""""""""""""" anti'Sym.
n=0  anti-sym. B P —3 anti-sym. n=0  anti-sym. E—a S sym.

Fermions Bosons Fermions Bosons

[Sugimoto 1999]

D9 branes and O9. planes D9 anti-branes and O9. planes



Already in D=10 there are two options:

Supersymmetric type I superstring Brane Supersymmetry Breaking
G=50(32) G=USp(32)
open-string spectrum open-string spectrum
n =4 anti-sym. anti-sym. n=4 anti-sym. sym.
n=3 sym. sym. n=3 sym. anti-sym.
n =2 anti-sym. anti-sym. n =2 anti-sym. Sym.
n=1 sym. sym. n=1 sym. anti-sym.
TTD anteym T ;s et TTU ey T E—3) o
Fermions Bosons Fermions Bosons

[Sugimoto 1999]

Supersymmetry is hardly broken

Supersymmetry is exact
PELSY Y (in open strings) at the string scale!

Tree-level dilaton tadpole



BSB in D=10 after T-dualities

Although tachyon-free by constructions, [CA, Dudas 2007]
there is evidence that these vacua are only metastable,
and could decay into supersymmetric type I superstrings
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BSB in D=10 after T-dualities

Although tachyon-free by constructions, [CA, Dudas 2007]
there is evidence that these vacua are only metastable,
and could decay into supersymmetric type I superstrings

‘z‘m D3 The gauge theory is .z.(m —1)D3
® ® naturally driven towards
strong coupling

O34 03



Lower dimensional vacua with BSB

Often, in lower dimensions BSB is not an option but the
only vacuum consistent with the orientifold construction

[s this a metastable vacuum?
In the “simple” Z, orbifold compactification similar
processes might occur

However, in other orbifold compactifications the
cancellation of twisted tadpoles make the model
extremely rigid and its fate is far from being obvious

| Antoniadis, Dudas,
Sagnotti 1999]

|CA, Dudas 2007]

|CA, Condeescu,
Dudas, Leone 2024]



O+ O-_DISENTANGLING SCALES

|C.A., Antoniadis; C.A. Cardella]

Cosmological constant scale: A ~ R™*

Gaugino mass scale: Mgaygino ~ 1/vV &'



Which vacuum for BSB (or non-susy) models?

For the SO(16) x SO(16) heterotic theory

AdS; x S? x §° x St

[s supposed to be a stable vacuum, [Baykara, Robbins,
even when the one-loop vacuum energy is added Sethi 2023]

[s it really stable in string theory?



Which vacuum for BSB (or non-susy) models?

Whenever supersymmetry is broken a tadpole for the
dilaton emerges at some order in perturbation theory

Minkowski is no-longer a vacuum solution.
Spontaneous compactification a la Dudas-Mourad?
Fluxes vs vacuum energy can yield (stable) AdS vacua

What are the end-of-the-world branes?

|[Dudas, Mourad 2000]

|Basile, Mourad,
Raucci, Sagnotti,

Tomasiello, ...]



THANK YOU



THE KLEIN BOTTLE AMPLITUDE WITH BSB

The big difference is that these orientifold planes carry twisted charge.

This is possible, because the new orientifold projection yields tensor
multiplets from each g2 fixed point, and a tensor multiplet also contains

a non-dynamical (twisted) 6-form

Which O-planes do carry this twisted charge?



THE KLEIN BOTTLE AMPLITUDE WITH BSB




THE KLEIN BOTTLE AMPLITUDE WITH BSB

Only Z4 O-planes are fractional

4
K ~ Z 2° X2,0
a=1



ADDING D-BRANES. THE LIGHT SPECTRUM

Clearly, this construction calls for fractional D9 and anti-D5 branes [ADS 1999]
4
ni + no + 2m = 32, Z dl,a -+ dz,a = 32, untwisted
a=1
ny —mng =0, di,qa —d2,q =0, g+g’ twisted
ni+ne —2m =20, g2 twisted, Z» f.p.’s

ny+ne —2m +4 (dl,a -+ dgja) = 32, 92 twisted, Z4 f.p.’s
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ADDING D-BRANES. THE LIGHT SPECTRUM

Gep = SO(8)? x U(8) | x [USp(4) x USp(4)]*

(28,1,1;1,1)+(1,28,1;1,1) + (1,1,64; 1,

4

9

4

)+ > (1,1,1;64,1,) + (1,1,1;1,,6,)

> (8,1,1;4,,1,) 4 (1,8,1;1,,4,)

a=1

> (1,1,8+8;4,,1,) + (1,1,8 + 8;1,,4,)

a=1

LH fermion

Hyper

LH (half) fermion

real scalar
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ADDING DEFECTS. D1 AND D5’ BRANES

Gor = SO(8) x SO(8) x U(8) | x [USp(4) x USp(4)]'

Gp1 = SO(r1) x SO(rg) x U(r)
Gps = USp(r1) x USp(rz) x U(r)

Anomaly inflow is cancelled on defects by a unitary theory [Kim, Shiu, Vafa 2019]

Witten interpretation of branes seems to fail [Witten 1995]

D5’ branes are instantons for D9’s
D5 branes are not instanton for D9’s

D1 branes are not instanton for D5’s



