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   In this talk I will sketch the proof of an unusual BPS equation, and explain

  why it is interesting. The context is  Defect CFT 

Defects are non-local observables that have played a key role in the early
 development of QFT,  and occupy center stage in its modern versions

1.  The BPS equation

 Heavy quarks (Wilson lines), Kondo impurities,  BCFT,

generalized symmetries, quantum devices, . . . 



 Two universal characteristics of a defect are 

  (a)   the energy-momentum stored in its fields

 (b)   its resistance to deformations

In a CFT these depend on two parameters that control the 1-point function

 and  the 2-point function of the defect-displacement operator       

⟨Tμν⟩

  This latter is defined by the Ward identity of broken translation symmetry

∂μT μj = δ(d−p)(x⊥) Dj

⟨DjDk⟩

  Here      is the dimension of the defect:  p
p = 0
p = 1

p = d − 1

local operator

line defect

interface/boundary

. . . .



 For a static (hyper)planar defect the unbroken conformal symmetry implies:  

⟨T αβ(x)⟩ = aT ( ) ηαβ

|x⊥ |d , ⟨T αj(x)⟩ = 0d − p − 1
d

⟨T ij(x)⟩ = aT [ xixj

|x⊥ |d+2 − (p + 1
d ) δ ij

|x⊥ |d ]

⟨Dj(y)Dk(0)⟩ =
CD δ jk

|y |2p+2

CD  is not defined for local operators (p = 0)

aT  is not defined for boundaries/interfaces 

stress

energy

(p = d − 1)



 defined 

 These parameters (part of the DCFT data) enter in many physical observables.

 the BPS equation reads (0 < p < d − 1)

CD

aT
= −

2(d − 1)(p + 2)Γ(p + 1)

d πp−d/2 Γ( p
2 + 1)Γ( d − p

2 )

 When both are

Unitarity

Positivity of energy

⟹ CD > 0

⟹ aT < 0

Other than that  the parameters vary independently.  

Lewkowycz, Maldacena 1312.5682;  Bianchi, Lemos, Meineri 1805.04111;  

 . . .   Bianchi, Lemos 1911.05082  

p = 1, d = 4

conjectured ∀p, d



First I will reexpress this `BPS' equation  in two different ways which bring

I will outline the proof of this conjecture at the end of the talk

 to light two very different physical implications/interpretations.



2.   Gravitational tension  =  Inertial  tension 

In  AdS/CFT a  p-dimensional  defect  is  

Maldacena '98,  Karch-Randall '01, . . .

(the boundary anchor) of a  p-brane
∂ AdS

Local operators (p=0) in particular are endpoints

is a  black hole whose mass is not locally defined 

But (an extension) of   ADM mass/energy  exists in  aAdS  spacetime
Abbot, Deser '82 ,  Hawking, Horowitz '96 , . . .

of particle worldlines. For large operators the dual



It is the dilatation charge of the dual operator, e.g.  for unit-radius AdS    

m0 [ 1 +
3

2m0
+

9
8m 2

0
+ ⋯

4

+GNm0 + (GNm0)2 + ⋯ ]

λCompton ≪ 1

rSchwarzschild ≪ 1

 The  ADM mass resums the classical GR corrections, whereas  Δ  resums

=
+ GR corrections

3
2

+ m 2
0 +

9
4Δ =

 everything  (quantum fluctuations, intermediate scales etc) . It is exact if one

 knows the dual microscopic CFT.  

 Can one define similarly an invariant brane tension ? 



 The answer is yes.  One can define the invariant gravitational tension of a p-brane

  in AdS as an integral of the dilatation current around the dual defect on

σgr ∝ ∮ dsj xμ⟨Tμj⟩

⟹ σgr = γgr aT

 all other scales≪ #

S(d−p−1)

∂ AdS

 If a DCFT is known this is exact. Otherwise can be used as a proxy to find the ADM
 definition of tension in GR defined in the early days of holography

Myers '99;  Townsend & Zamaklar '01; Traschen, Fox '01;  Harmark, Obers '04  



 But for extended objects  (p>0)  there is another measure of tension, that one  

#
x y

 would use for a (non-gravitating) violin string. It is an inertial tension or stiffness

σin = γin CD

 As opposed to the ADM tension that depends on the metric far from the brane, 

 stiffness depends on the behaviour of the displacement field near the AdS boundary



 The universal prefactors γgr and γin  can be fixed by requesting that for a

 classical, probe brane in GR both tensions reduce to the (bare) tension of the

 effective Nambu-Goto action. For this, one must extract         and         in  

γin =
π p/2 Γ( p

2 + 1)

(p + 2)Γ(p + 1)
γgr = −

2(d − 1)π(d−p)/2

d Γ( d − p
2 )

,

Inserting in the (conjectured)  BPS equation one finds

σgr = σin
  CB, Chen 2404.14998 

The result is: 

aT CD

 Einstein gravity + Nambu-Goto using the appropriate Witten diagrams. 



 Although the relevant Witten diagrams are tree-level, this calculation

 is non-trivial because there are no global Fefferman-Graham coordinates

 for both bulk and brane fields. Absolute normalizations matter, and one uses

 different boundary cutoffs for ⟨Tμν⟩ ⟨DjDk⟩and

 To ensure consistency,  we calculated also the 2pt function ⟨TμνDj⟩
 and checked that it verifies the Ward identities of broken translation symmetry

⟨Tμν Dj⟩ ∼ ∂ j⟨Tμν⟩and⟨Dj ∂μTμk⟩ ∼ ⟨DjDk⟩ ∫x∥

∫x⊥

⟨TD⟩ ∼ ⟨DD⟩ ⟨TD⟩ ∼ ⟨T⟩and Schematically , so these fix unambiguously both bulk fields



CD = − 18aT =
6
π2

λ∂λ log (

σgr = σin =
λ

2π [ 1 + O(
1

λ
)

An example:  the F-string in AdS5 × S5

1
N

eλ/8N L1
N−1(−

λ
4N

))
modified Laguerre

line defect in ↔ 𝒩 = 4 SYM

; Pestun '09 ; Drukker, Gross '00 Erickson, Semenoff, Zarembo '00

+ O(
λ

N2
) ]+ O(

λ
N

)

σNG
Compton BH radiusD − string

Compton

Both tensions receive different types of corrections, but they remain equal ! 



Usually susy equations relate mass or tension to charge.

 whence the title of the talk. 

 The equality does not hold for non-supersymmetric Wilson lines

This one relates two tensions,



3.  Radiation from accelerating defects 

 Let me now recall the problem at the origin of the conjecture. Lewkowycz, Maldacena '13

 were trying to reconcile two different calculations of the energy radiated by an 

  accelerating  half-BPS quark in                          : 𝒩 = 4 SYM

(i)   from an instanteous ``kick"   

 (ii)  from a uniformly- accelerating quark which is conformal to a static one

∝ (Bremstrahlung function) =
1
12

CD

 Correa, Henn, Maldacena, Sever '12; 

 Fiol, Garolera, Lewkowwycz  '12 

 They attributed this disagreement  to the problem of separating radiation from the

  self-energy stored in fields of the quark.



T̃ μν = T μν + ξ (ημν □ − ∂μ∂ν)𝒪

 They also noticed that the supersymmetric multiplet of          contains a scalarTμν

 with dimension                        , and proposed that the problem is resolved if theΔ𝒪 = d − 2
 radiation is computed with the modified energy-momentum tensor

The intuition is correct, but the role of supersymmetry remained unclear. 

To better understand it we note first that  

⟨𝒪(x)⟩ =
a𝒪

|x⊥ |d−2
⟨𝒪(x)Dj(y)⟩ = b𝒪

xj |x⊥ |p−d+2

|x − y |2(p+1)⟹

with b𝒪 = 2p Γ(
p + 1

2
)π−(p+1)/2 (d − 2) a𝒪 .

conserved but not traceless



The 1pt function of the modified stress tensor reads

 Provided that                it is  possible to remove the stress of the static fields by choosing

ξdefect =
aT

d(d − 2) a𝒪
⟹ ⟨T̃ ik⟩ = 0

⟨T̃ μν⟩ = ⟨T μν⟩ + ξa𝒪 (ημν □ − ∂μ∂ν) |x⊥ |2−d

 The leading singularity of         can be absorbed in the renormalized CFT defect tension, T̃ αβ

T μν
tot (x) = mren ∫ dτ δ(d)(x − Y(τ)) ·Yμ ·Yν + T̃ μν

reg(x)e.g. for a line defect :

not to confuse 

The problem arises because the fields have singular stress, ⟨T ik⟩ ≠ 0

a𝒪 ≠ 0

with dual brane



This does not seem to require susy.  But unbroken susy ensures two things: 

The modified energy-momentum tensor is the same for all defects

It does not violate the Null Energy Condition

  Let's verify these statements with a simple example:  𝒩 = 2 SQED4

W = exp(∫ ds (ieAμ
·Yμ + g | ·Y | ̂nIϕI)) , ̂nI ̂nI = 1 .where

  A general conformal  line defect is a charge coupling linearly to the scalar fields

 The defect is half-BPS  iff  e = ± g



T(s)
μν = ∂μϕ∂νϕ −

1
2

ημν |∂ϕ |2 +
1
6

(ημν□ − ∂μ∂ν)ϕ2 ,

The e-m tensor, displacement & classical background fields are:

T(v)
μν = F ρ

μ Fνρ −
1
4

ημν |F |2 ,

Dj = eF0j + g ∂ jϕ ,

ϕclass =
g

4π |x⊥ |
and F0j

class =
exj

4π |x⊥ |3 .

𝒪 = ϕ2The scalar operator is                    and ⟨ϕ2⟩ =
g2

16π2 |x⊥ |2 , so to cancel the static stress

ξdefect =
aT

8a𝒪
= −

g2 + 3e2

24g2



The stress can be removed  for any          .e, g e = g
 In this case                     , and the improvement preciselyξ = − 1/6 removes the              contribution

Tμν
Rϕ2∫

 to            which violates the Null Energy Condition.
no definite sign 
for kμkν∂μ∂νϕ2

But something special happens for              : 

  Supersymmetry guarantees that the modification of Tμν

 the transverse stress stored in the static  fields, also removes the  

 NEC-violating radiation. 

This generalizes to all superconformal defects:

that cancels



To see why consider the energy flux in the background of a moving defect:

⟨ T0k(x) e ∫ yjDj ⟩ = ⟨ T0k ⟩ + ∫ yj ⟨ T0k(x) Dj(0) ⟩ + ⋯

x⊥

x2 = 0
x0  The 2pt function is fixed by Ward identities

 in terms of               and                   ;

 it has singularities at               and            .x2 = 0 x⊥ = 0

⟨Tμν⟩ ⟨DjDk⟩



 Explicitly:

⟨T0k(x)Dj(y)⟩ =
(x − y)0

|x⊥ | d−p |x − y |2p+4 (−𝔟3 δkj |x⊥ |2 + (𝔟3 − 2𝔟1) xkxj + 4𝔟1
xkxj |x⊥ |2

|x − y |2 )

(p + 1)𝔟2 + 𝔟1 =
d
2

𝔟3 , 𝔟3 = 2 p+2π−(p+1)/2 Γ(
p + 3

2
) aT ,

and 2p 𝔟2 − (2d − p − 2) 𝔟3 =
(d − p)Γ( d − p

2 )

π(d−p)/2
CD .

Billo, Goncalves, Lauria, Meineri '16 

 where the Ward identities of broken translation symmetry impose 

2d 𝔟1 = (p + 2)𝔟3

  In terms of the above parameters the BPS equation reads



The NEC-violating radiation comes from the leading lightcone singularity:

⟨T0k(x)Dj(y)⟩ = −
32 𝔟1 |x⊥ |p+2−d

p(p + 1)(p + 2)
∂0∂k∂ j ( 1

|x − y |2p ) + subleading .

For 4d line defects,*  replacing the Green function by the retarded propagator                  

1
4π2 |x − y |2 → ΔR(x − y) =

iθ(x0 − y0)
2π

δ( |x − y |2 )

and integrating by parts, as in the Lienard-Wiechert calculation, gives a flux 

 which has no definite sign  (contrary to the usual              )

∝ ·a
∝ a2

derivative of 
acceleration

* This generalizes using the analytic continuation of Euclidean-space CFT correlators



This term is absent in Maxwell theory for which               .𝔟1 = 0

It can be removed in from the modified e-m tensor                 more generally               ⟨T̃i0Dj⟩

ξNEC b𝒪(p + 1)(p + 2) = 𝔟1

To remove the static stress, on the other hand, requires

ξstress b𝒪(p + 1) =
aT

d
(p + 1) 2p Γ(

p + 1
2

)π−(p+1)/2 =
𝔟3

2d
.

Thus ξNEC = ξdefect iff  the BPS condition is obeyed, as claimed.  

by choosing the subtraction parameter            



Choosing        to remove  the NEC-violating term gives more generally 

⟨ T̃0k(x)Dj(y)⟩ = − 𝔟3(1 −
1
d

)
|x⊥ |p−d+2

|x − y |2p+4 (x0 − y0)δkj + [non susy]

ξ

vanishes iff BPS
fixed by boosting
the static fields

i.e. susy cancels all             terms which arise from `dragging of the stress'.  If z is ak ≠ j
 complex transverse coordinate we then have                          .⟨ T̃ 0z Dz⟩ = 0 Equivalently, the BPS

⟨ T 0z(x)Dz(y)⟩ ∝
∂

∂x0

∂
∂z̄ ( z |x⊥ |p−d+2

|x − y |2p+2 )
equation reads

This is the starting point of the general proof 



4.  The proof

. . . . or rather its close cousin 

⟨ T zz(x) Dz(y)⟩ ∝
∂2

∂z2 ( z̄ |x⊥ |p−d+2

|x − y |2p+2 ) if superconformal ,

 I  sketch here the main steps, and refer to   CB, Bianchi, Chen 2501.13197 for details.

It suffices to prove this relation for all  minimally-superconformal  defects, i.e. 

given a pair               for the  minimal  bulk susy that admits susy    -defects.  (d, p)
We assume that these latter preserve transverse-rotation symmetry. 

p



A physical interpretation of (1.1) was given in ref. [4] which pointed out that in

AdS/CFT there are two ways to assign an invariant tension to a p-brane dual of a

conformal defect. There is a gravitational tension �gr = �gr|aT | that extends the

notion of ADM mass,1 but also an inertial tension or sti↵ness �in = �inCD. The

coe�cients �gr and �in were fixed in [4] by requiring that both tensions reduce to the

parameter of the Nambu-Goto action in the limit of a classical probe brane coupled

to gravity. The conjecture (1.1) turns out to imply that �gr = �in, even when the

brane is quantized and/or back-reacts strongly. A BPS equation usually relates the

mass or tension of an object to its charge. Here it relates two tensions, whence the

title of our paper.

Clearly CD is not defined when p = 0 (i.e. for local operators), and we will

see that aT is not defined for p = n� 1 (i.e. for interfaces or boundaries). Thus

(1.1) applies to 0 < p < n�1. Our proof works for all superconformal defects that

preserve the transverse-rotation symmetry so(n�p). It is guided by, but supersedes

earlier results for special cases [3, 6–8]. We only need to prove (1.1) for the minimal

(mutually-compatible) number of bulk and defect supersymmetries. For each pair

(n, p) there is at most one such minimal embedding of the defect superalgebra into

the bulk superalgebra. The list is given in the table below.

defect (n,N ) superalgebra p-embedding

line

(3,2) osp(2|4;R) su(1, 1|1)� u(1)c
(4,2) su(2, 2|2) osp(4⇤|2)

(5,1) F (4; 2) D(2, 1; 2; 0)� su(2)c

surface

(4,1) su(2, 2|1) su(1, 1|1)� su(1, 1)c � u(1)c
(5,1) F (4; 2) D(2, 1; 2; 0)� so(2, 1)c
(6,1) osp(8⇤|2) osp(4⇤|2)� so(2, 1)c � so(3)c

p = 3 (5,1) F (4; 2) osp(2|4;R)� u(1)c

p = 4 (6,1) osp(8⇤|2) su(2, 2|1)� u(1)c

Table 1. The minimal supersymmetric DCFTs discussed in the paper. The second column
gives the smallest N that a n-dimensional SCFT must have to admit p-dimensional superconformal
defects. The corresponding bulk superalgebras and maximal p-embeddings are given in the third and
fourth columns. The subscript ‘c’ denotes bosonic subalgebras that commute with the preserved
supercharges (for details see section 2). For missing (p, n) pairs superconformal and rotation-
invariant defects do not exist.

Our proof relies on reformulating (1.1) as a property of the two-point function

hhT µ⌫Dj
ii, where Dj is the displacement operator. This will shed light on the role of

supersymmetry for defect dynamics. We mentioned already that (1.1) was originally

motivated by studies of the radiation from an accelerating ‘quark’ [9–19]. What

1For earlier discussions of the gravitational or ADM-like tension see [5] and references therein.

– 2 –

d

d

d

Minimally-superconformal  defects



 multiplet contains a  scalar that can be used to define          . When it does not  the               

Note that the 6d theory has no odd-dimensional susy defects.  

𝒩 = 1 𝒩 = 2

 discussion of  

T̃ μν

radiation does not apply.  But the BPS equation makes no reference 
 to a scalar or to         , so our proof holds in all cases.

The table was compiled by examining all possible superalgebra embeddings.
We have adapted to our purposes and extended the methods in 

D'Hoker, Estes, Gutperle, Krym, Sorba  '08; Gutperle, Kaidi, Raaj  '17; Agmon, Wang '20 

T̃ μν

cf. also M. Duff's 'superconforrmal brane scan' 

Note also that in all cases other than 4d              and 3d              the stress-tensor      



In order to unify the proofs we chose special bases of     - matrices and convenientγ
defect orientations. 

In six dimensions we add �6 = iI4 with �̄6 = �iI4 while all other (�̄i)↵̇� are the same

as (�i)↵�̇ . The charge conjugation matrices are C
(3) = C

(4) = i�2 and C
(5) = C

(6) =

�1 ⌦ i�2. In n = 3, 5 the ↵ index is lowered by multiplying C
(n) on the right. In

four dimensions both the the ↵ and the ↵̇ indices are lowered by the same matrix

(C(4))↵̇�̇ = (C(4))↵�. In six dimensions the ↵̇ index is lowered by (C(6))↵̇�, and the ↵

index is lowered by (C(6)T )↵�̇.

Choosing the �-matrices as above, and orienting the static (hyper)planar defects

in a convenient way, leads to the preserved supercharges listed in table 2. All the

defects are half-BPS, so there are four unbroken supercharges in the 5d and 6d

N = 1 and 4d N = 2 cases. The 4d N = 1 and 3d N = 2 DCFTs have two

unbroken supercharges.

n p defect directions preserved supercharges

6
2 3,4 Q1

1, Q
1
3, Q

2
1, Q

2
3

4 3,4,5,6 Q1
1, Q

1
2, Q

2
3, Q

2
4

5

1 5 Q1
1, Q

1
4, Q

2
1, Q

2
4

2 3,4 Q1
1, Q

1
3, Q

2
1, Q

2
3

3 3,4,5 Q1
1, Q

1
2, Q

2
3, Q

2
4

4
1 4 Re{Q1

1, Q
1
2, Q

2
1, Q

2
2}

2 3,4 Q1, Q̄2

3 1 3 Q1, Q̄2

Table 2. The preserved supercharges for all the DCFTs of table 1. The directions 1,2 are always
transverse to the defect worldvolume, while the parallel directions are shown in the third column
above. For (n, p) = (4, 1), the supercharges are complex and only the real parts shown in the table
are unbroken. Our proof uses Ward identities of the first preserved supercharge in each case.

The transformation of Tµ⌫ under the Q-generators has the universal form

QA
↵ (Tµ⌫) =

1
4 (@⇢J

A
µ�)(�

⇢
⌫)↵

� + (µ $ ⌫) , (5.4)

where the index A can be dropped if the R-symmetry is u(1). The proof relies on

Ward identities associated with a single preserved supercharge: Q1
1 in 6d and 5d,

Re(Q1
1) in 4d N = 2, and Q1 in 4d N = 1 and 3d. Our choice of �-matrices and of

defect orientation was meant to simplify the action of this preserved supercharge on

the (zz) component of the energy-momentum tensor.

A second fact that we will need is that there exists a fermionic defect operator ⇤

in the displacement multiplet such that Q(⇤) = Dz. Note first that there is always

a broken supercharge Qbr such that {Q,Qbr} = Pz, and let ⇤ be the corresponding

goldstino. One has Q(⇤) = Dz up to a derivative of a lower bosonic component.

Indeed, when there is a scalar � in the displacement multiplet, there could also

be total derivative terms @�. However, we see that this never happens from the

explicit form of the transformation law recorded in Appendix C.

– 19 –

In order to unify the proofs we chose special bases of    γ - matrices and of
the defect orientation. The transverse coordinate is 

d

d

QA
α

spinor

R-sym

z = x1 + ix2



Let me show the proof for            , all other dimensions work  in the same way.

One needs the susy transformations of the          supermultiplet, 

d = 6
T μν schematically

O
Q⟶ χA

α
Q⟶ jI

μ ⊕ Hμνρ
Q⟶ JA

μα
Q⟶ Tμν

QA
α (O) = χA

α

QA
α (χB

β ) = jI
μ (γμ)αβ(σI)AB + Hμνρ (γμνρ)αβ εAB + (∂μO) (γμ)αβ εAB

QA
α ( jI

μ) =
1
2

JB
μα (σI)B

A −
1
5

(∂ν χB
β ) (σI)B

A(γμ
ν)α

β

QA
α (Hμνρ) = −

1
48

JA
[μ|β| (γνρ])α

β +
1
30

(∂σ χA
β ) (γσγ̄μνρ)α

β

QA
α (JB

μβ) = 2 Tμν (γν)αβ εAB −
2
5

(∂ν jI
ρ) (γμ

νρ − 4 δμ
ργν)αβ εAC(σI)C

B −
2
5

(∂νHρσλ) (−δμ
νγρσλ + 6 δμ

ργνσλ + 18 δμ
ρηνσγλ)αβ εAB

QA
α (Tμν) =

1
4

(∂ρJA
μβ) (γρ

ν)α
β + (μ ↔ ν)



 NB: To derive these one begins with the most general ansatz for Q(A) consistent with 
the field content of the multiplet and all bosonic symmetries. One imposes the 
conservation and zero- trace conditions of A, if any. Finally  the coefficients for each 
tensor structure are fixed by requiring that {Q,Q} = 2P, that is {Q,Q}(A) = 2∂A.

  see e.g. M. Trépanier, KCL thesis (2021)

The  choice of    -matrices and defect orientation simplifies the action of the

supercharge                 on         :  

γ

Q ≡ Q1
1 T zz

Q(Tzz) =
1
2

∂zJ1
z1 , Q( j3

z ) =
1
2

J1
z1 +

1
5

∂z χ1
1 , Q(O) = χ1

1

It is also such that there exists a fermionic defect operator       such that                      ,Q(Λ) = DzΛ

Goldstino of susy

without a derivative of the scalar partner, when one exists.



we find

Q ⟨Tzz(x) Λ(y)⟩ = 0 ⟨Tzz(x) Dz(y)⟩ +
1
2

∂z ⟨J1
1z(x) Λ(y)⟩ = 0

Q ⟨j3
z (x) Λ(y)⟩ = 0 ⟨j3

1z(x) Dz(y)⟩ +
1
2

⟨J1
1z(x) Λ(y)⟩ +

1
5

∂z ⟨χ1
1(x) Λ(y)⟩ = 0

Q ⟨O(x) Λ(y)⟩ = 0 ⟨O(x) Dz(y)⟩ + ⟨χ1
1(x) Λ(y)⟩ = 0

Now combining the Ward identities 

⟹

⟹

⟹

⟨Tzz(x)Dz(y)⟩ =
∂
∂z

⟨j3
z (x)Dz(y)⟩ −

1
5

∂2

∂z2
⟨O(x)Dz(y)⟩ ∝

∂2

∂z2 ( z̄ |x⊥ |p−d+2

|x − y |2p+2 )

where the last last step follows from the standard conformal identities qed.

only codim=2

With minor variations the same proof works for all superconformal defects.



5.  Conclusion

Take away lesson:   Susy leads to a linear relation between the energy stored

in the fields of a defect and its displacement norm. This implies:

  Equality of the inertial and gravitational tensions

  NEC restoration also removes the static stress

Remarks:    
  For                   defects it relates the coefficients of the first two
  (Graham-Witten) B-type anomalies. For surface defects

p = even

Tμ
μ

Defect
=

1
24π (a(2)R + d (2)

1 K̄i
abK̄

ab
i − d (2)

2 Wab
ab) + odd

3π2

4
CD −

12(d − 1)πd/2

d Γ(d/2 − 1)
aT



For             there are 22 B-type parity-even anomalies. The coefficients of the first two p = 4

 are  d (4)
1 = −

π4

72
CD , d (4)

2 =
5π3

6
aT

Chalabi, Herzog, O'Bannon, Robinson, Sisti '21 Graham, Reichert  '17; 

 . A holographic probe calculation (Wilmore energy 

of submanifolds) gives d (4)
1 = 2d (4)

2 = − π2σ0  in agreement with the leading-order 

 Witten diagrams, but little is known about  quantum & gravitational corrections.

Revisit the (academic?) problem of radiation reaction for a moving charge. 

Dirac '38; Landau, Lifshitz 62; Rohrlich '90; Teitelboim '70

The radiation-reaction force contains the Schott term  fμ =
2
3

e2(a2uμ + ·aμ) ⟸ aμuμ

whose ab initio calculation has been the subject of controversy.

Could susy help ? (in progress)



 two tensions 

Thank  you  for  your  attention 


