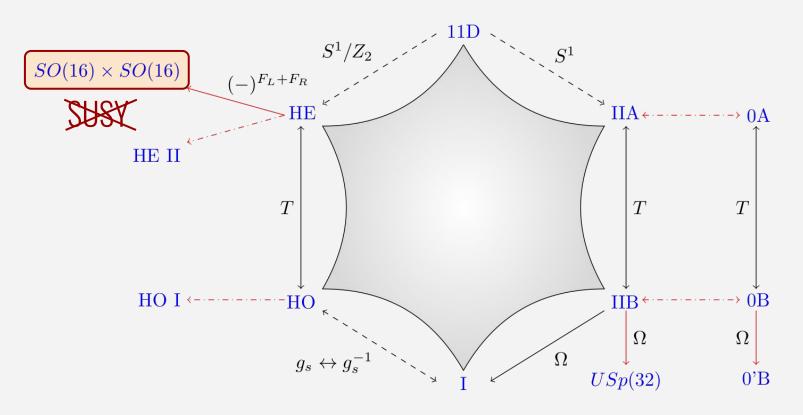
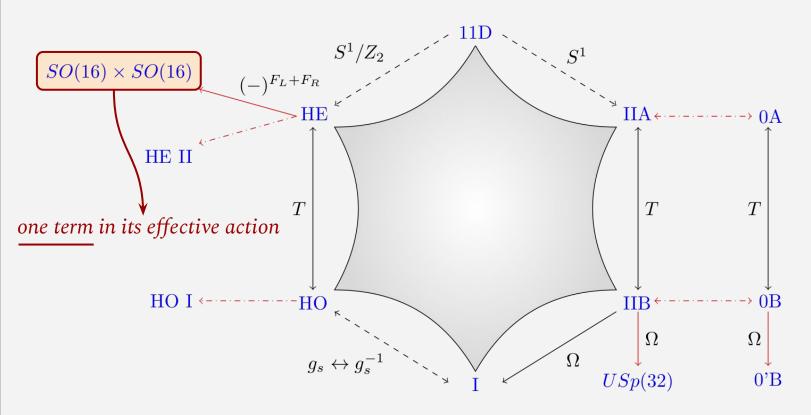


Fivebrane anomalies & discrete Θ-angles


Ivano Basile | Max Planck Institut für Physik


"What is string theory?"

"What is string theory?" — a tiny step

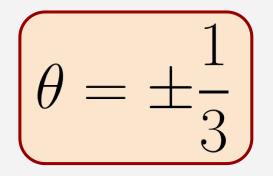
"What is string theory?" — a tiny step

How to make progress?

- dynamical crutch: supersymmetry
 - > protects some quantities from corrections, fixes their form, ...
 - > may ultimately be necessary for full vacuum stability and/or holography
- kinematic crutch: topology
 - anomalies, θ-terms: robust against continuous deformations
 - need not rely on supersymmetry

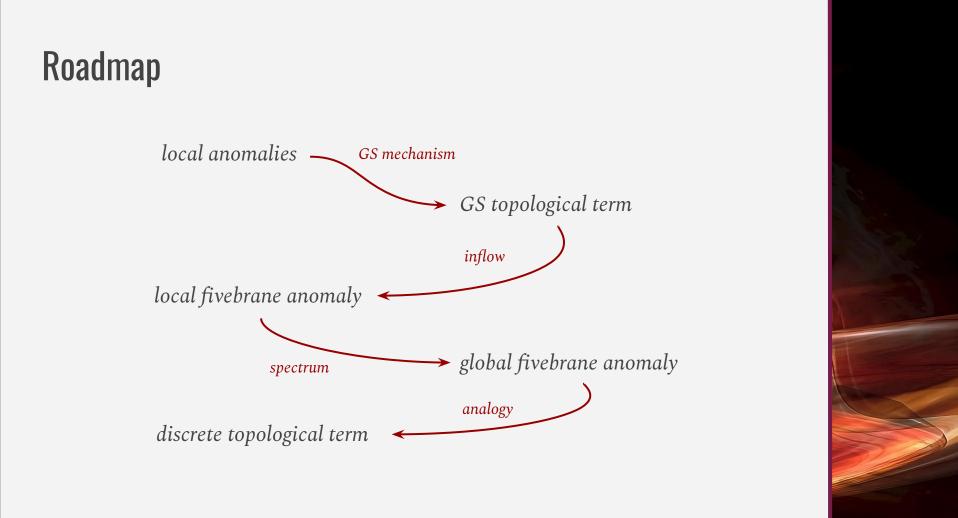
this talk: θ-term in 10d heterotic

The gravitational O-term


- phase in Euclidean path integral
 - invariant under cobordism: classify evaluating on generators

$$M_d \to \exp\left(2\pi i S_{\rm top}[M_d]\right)$$

- ignore YM fields. spacetime is a string manifold: " $dH = p_1/2$ ".
 - cobordism generated by "exotic spheres" (Milnor). simple case: Sp(2) manifold


 $\Omega_{10}^{\text{string}} = \mathbb{Z}_2 \times \mathbb{Z}_3$

Punchline to captivate audience (Tachikawa, Zhang, 2024) (IB, Larotonda, WIP)

this θ-term is non-zero.

- > tracking conventions, looks like Tachikawa-Zhang got opposite sign
- different method: "direct" (us) vs "indirect" (them)
- same physics? worldsheet analog: "Arf stacking" (Smith, Lin, Tachikawa, Zheng, 2023)

Previously, on "strings & SUSY breaking"...

anomaly cancellation: anomaly factorization + H-field

type I & heterotic: Green-Schwarz mechanism (Green, Schwarz, 1984) (Sagnotti, 1992)

 $I_{12} = X_4 X_8 \qquad dH_3 = X_4$

worldsheet modular invariance (Schellekens, Warner, 1986) (Lerche, Nilsson, Schellekens, Warner, 1988)

Sugimoto & heterotic: same story

type 0'B: richer story w/ many RR fields

(Dixon, Harvey, 1986) (Alvarez-Gaume, Ginsparg, Moore, Vafa, 1986) (Sagnotti, 1995-1997) (Sugimoto, 1999)

- Iast episode: "Dai-Freed" anomalies also cancel (IB, Debray, Delgado, Montero, 2023)
 - byproduct: proposal for fivebrane chiral spectrum

Fivebrane anomaly inflow

- *fivebranes couple to H-field & provide solitons:*
 - > induce new gauge variation of eff. action localized on worldvolume
 - *inflow:* variation cancelled by chiral d.o.f. on the brane (Callan, Harvey, 1985)
 - **upshot:** its anomaly polynomial is X₈ + other stuff (Dixon, Duff, Plefka, 1992) (Mourad, 1997)

soliton analysis led us to propose a chiral spectrum see also (Blaszczyk, Nibbelink, Loukas, Ruehle, 2015)

$(16,1) \oplus (1,16) \ominus 4 \times (1,1) \ominus SD$

From local to global

- fivebranes flux transverse S^3
 - ➢ global anomaly captured by 7d TFT
 - \succ inflow: take spacetime as fibration $S^3
 ightarrow M_{10}
 ightarrow N_7$

in particular: Witten's anomaly for normal SU(2) bundle captured by (Tachikawa, Zhang, 2024)

$$S^3 \rightarrow Sp(2) \rightarrow S^7$$

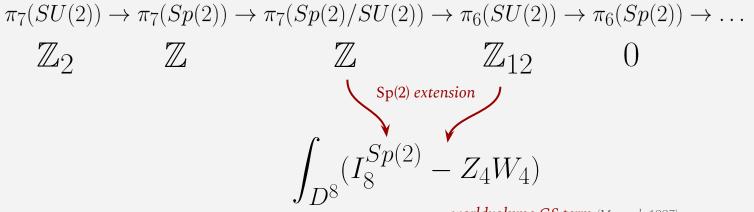
10d θ -term = fivebrane anomaly! $\pi_6(SU(2)) = Z_{12}$

(Witten, 1982) (Elitzur, Nair, 1984) (Kiritsis, 1986) (Bershadsky, Vafa, 1997) (Garcia-Etxebarria, Hayashi, Ohmori, Tachikawa, Yonekura, 2017)

Recap

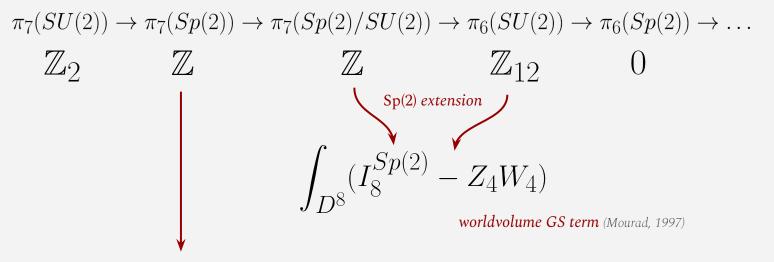
- ***** Z_3 -valued 10d gravitational θ -term captured by the phase of Z[Sp(2)]
 - > well-defined in non-susy heterotic where $X_8 = 0$ w/o YM fields
 - > **inflow:** captured by global normal-bundle anomaly of fivebranes on S⁷

Recap


- * Z_3 -valued 10d gravitational θ -term captured by the phase of Z[Sp(2)]
 - > well-defined in non-susy heterotic where $X_8 = 0$ w/o YM fields
 - *inflow:* captured by global normal-bundle anomaly of fivebranes on S⁷

computation: "global SU(2) anomaly = local Sp(2) anomaly" (Tachikawa, Zhang, 2024)

$$\pi_7(SU(2)) \to \pi_7(Sp(2)) \to \pi_7(Sp(2)/SU(2)) \to \pi_6(SU(2)) \to \pi_6(Sp(2)) \to \dots$$


$$\mathbb{Z}_2 \qquad \mathbb{Z} \qquad \mathbb{Z} \qquad \mathbb{Z}_{12} \qquad 0$$

computation: "global SU(2) anomaly = local Sp(2) anomaly" (Tachikawa, Zhang, 2024)

worldvolume GS term (Mourad, 1997)

computation: "global SU(2) anomaly = local Sp(2) anomaly" (Tachikawa, Zhang, 2024)

maps to trivial SU(2) configuration = $12 \times \text{generator of } Z_{12}$

computation: "global SU(2) anomaly = local Sp(2) anomaly" (Tachikawa, Zhang, 2024)

$$\pi_7(SU(2)) \to \pi_7(Sp(2)) \to \pi_7(Sp(2)/SU(2)) \to \pi_6(SU(2)) \to \pi_6(Sp(2)) \to \dots$$

$$12\mathcal{A}(1) = \mathcal{A}(12) = \int_{D^8} (I_8^{Sp(2)} - Z_4 W_4) = \int_{S^8} (I_8^{Sp(2)} - Z_4 W_4) = \int_{S^8} \frac{t}{48} \operatorname{Tr} F^4 = t$$

add hemisphere w/ trivial SU(2) extension
generator Sp(2) bundle on S⁸

computation: "global SU(2) anomaly = local Sp(2) anomaly" (Tachikawa, Zhang, 2024)

$$\pi_7(SU(2)) \to \pi_7(Sp(2)) \to \pi_7(Sp(2)/SU(2)) \to \pi_6(SU(2)) \to \pi_6(Sp(2)) \to \dots$$

$$12\mathcal{A}(1) = \mathcal{A}(12) = \int_{D^8} (I_8^{Sp(2)} - Z_4 W_4) = \int_{S^8} (I_8^{Sp(2)} - Z_4 W_4) = \int_{S^8} \frac{t}{48} \operatorname{Tr} F^4 = t$$

$$add \ hemisphere \ w/ \ trivial \ SU(2) \ extension \ only \ surviving \ term \ from \ Sp(2) \ extension \ only \ surviving \ term \ from \ Sp(2) \ extension \ only \ surviving \ term \ from \ Sp(2) \ extension \ only \ surviving \ term \ from \ Sp(2) \ extension \ only \ surviving \ term \ from \ Sp(2) \ extension \ only \ surviving \ term \ from \ Sp(2) \ extension \ only \ surviving \ term \ from \ Sp(2) \ extension \ only \ surviving \ term \ from \ Sp(2) \ extension \ only \ surviving \ term \ from \ Sp(2) \ extension \ only \ surviving \ term \ from \ Sp(2) \ extension \ only \ surviving \ term \ from \ Sp(2) \ extension \ surviving \ term \ from \ Sp(2) \ extension \ surviving \ term \ from \ Sp(2) \ extension \ surviving \ term \ from \ Sp(2) \ extension \ surviving \ Sp(2) \ extension \ surviving \ term \ from \ Sp(2) \ extension \ surviving \ term \ from \ Sp(2) \ extension \ surviving \ term \ from \ Sp(2) \ extension \ surviving \ term \ from \ Sp(2) \ extension \ surviving \ term \ from \ Sp(2) \ extension \ surviving \ term \ from \ Sp(2) \ extension \ surviving \ term \ from \ Sp(2) \ extension \ surviving \ term \ from \ Sp(2) \ extension \ surviving \ term \ from \ Sp(2) \ extension \ surviving \ term \ surviving \ term \ surviving \ term \ from \ Sp(2) \ surviving \ term \ surviving \ surviving \ term \ surviving \ surviving \ term \ surviving \ te$$

generator Sp(2) bundle on S

upshot: $\theta = t/12$ determined by Sp(2) extension

Direct vs indirect

- **Tachikawa-Zhang:** difference of SUSY anomalies (Schellekens, Warner, 1987)
 - ➤ "SO(32)": Sp gauge theory; "E₈×E₈": E-string theory
 - > the latter computed via M-theory inflow (Ohmori, Shimizu, Tachikawa, 2014)
 - result: t = -4. we tracked their chirality conventions
- **our method:** test fivebrane chiral spectrum (IB, Debray, Delgado, Montero, 2023)
 - determined normal-bundle representations imposing inflow à la (Mourad, 1997)
 - result: t = 4. sign can hide in many places/mistakes. if correct:

same physics? chiral spectrum vs M-theory inflow?

Going a bit deeper

- * why Z_3 -valued?
 - in heterotic vacua, topological data of internal CFT = "TMF class"

(Hopkins, 1995) (Stolz, Teichner, 2008) (Hopkins, 1995) (Stolz, Teichner, 2008)

global anomaly cancellation à la Schellekens-Warner torsional bilinear pairing (Tachikawa, Yamashita, 2023) (Tachikawa, (Yamashita), 2021)

$$TMF_d \times TMF_{-22-d} \supset \mathbb{A}_d \times \mathbb{A}_{-22-d} \rightarrow \mathbb{R}/\mathbb{Z}$$
$$(M_d, CFT_{int}) \mapsto \exp 2\pi i S_{top}[M_d]$$

Going a bit deeper

- * why Z_3 -valued?
 - in heterotic vacua, topological data of internal CFT = "TMF class"

(Hopkins, 1995) (Stolz, Teichner, 2008)

invariants: elliptic genera + "torsional stuff"

$$\begin{array}{c} \operatorname{Z_3} \textit{for d=10} \\ \swarrow & \swarrow \\ \operatorname{TMF}_d \times \operatorname{TMF}_{-22-d} \supset \mathbb{A}_d \times \mathbb{A}_{-22-d} \rightarrow \mathbb{R}/\mathbb{Z} \\ (M_d, \operatorname{CFT_{int}}) \mapsto \exp 2\pi i S_{\operatorname{top}}[M_d] \end{array}$$

Going a bit deeper

- why Z₃-valued?
 - in heterotic vacua, topological data of internal CFT = "TMF class"
 - invariants: elliptic genera + "torsional stuff"

- only other non-trivial case of the story: 8d non-SUSY
 - \succ we performed a bottom-up analysis, found formula for θ -term
 - future work 8d non-SUSY heterotic landscape? patterns in discrete data?

(Hopkins, 1995) (Stolz, Teichner, 2008)

Outlook

thank you!

- chipping away at non-perturbative strings
 - > anomalies & **topology**: beyond SUSY (?)
 - *fivebranes* play a pivotal role
 - > extend to **more general** anomalies
- deeper insight on the landscape?
 - > TMF & bordism: "global Schellekens-Warner"
 - > wishlist: new aspects of dualities?

