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Introduction

Superstring vacua without spacetime supersymmetry
‘> No perturbative vacuum (runaway potential)
> Only cosmological solutions

> Often develops a tachyon in the descent of the potential

A non-perturbative non-supersymmetric vacuum?

> S-duality symmetry without supersymmetry?



Scherk—Schwarz example

Take the orbifold of type IIB by (—1)F6% where F is the spacetime

fermion number and §: the half-period shift X° — X° 4+ 27R.
2
‘> anti-periodic boundary conditions for the spacetime fermions

The one-loop potential energy is
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and drives the radius R to small values until it diverges negatively

at R = v2d/.

. 2
There is a complex scalar of mass m? = %—% that becomes

tachyonic at the critical radius.



Scherk—Schwarz example

The SS generator (—1)Fd1 commutes with the duality group
2

SL(2,7), so one may wishfully hope that the theory admits
SL(2,7Z) duality symmetry such that one could presomptluously
hope to determine the non-perturbative potential

V3 (S = Go+ie™?, R = V2a/e¥)

as a real analytic modular function of & with possibly a metastable
minimum at finite R > /2.



Outline

© Dabholkar-Park and S-duality
©® A new Scherk-Schwarz orientifold
©® D-brane spectrum and M-theory

[ G. Bossard, G. Casagrande and E. Dudas, 2411.00955]



Notations

We use the Bianchi-Sagnotti notation for the superstring partition
function [Angelantonj Sagnotti]
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that captures the spectrum of the theory with O4 and Vj counting
bosons and Sy and Cy counting fermions.



Notations

For example, the Scherk—Schwarz torus partition function can be
written  [Rohm]
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Dabholkar-Park and dualities

Type IIB /(Qé%) with € the worldsheet orientation reversal and 5%
the half-period translation X° — X° + 27R.
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Using S71QS = (—1)ft the left-handed spacetime fermion

number, one obtains that it is S-dual to the asymmetric
orbifold Type 1B /((—1)"t41)
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Dabholkar-Park and dualities

Compactifying on an additional circle and using T-duality one
obtains respectively Type IIA /(/g201) (with /g the spacetime
2

reflection) and Type A /((—=1)t51).
2
> At strong coupling M-theory on a Klein bottle.
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Orientation reversal as a duality

The metaplectic cover  [Pantev Sharpe]
{1,(-1)F} - Mp(2,Z) — GL(2,Z)

is defined as the type 11B GL(2,7Z) duality symmetry on bosons
and the compensating R-symmetry O(2) acting on spacetime
fermions  [Sen Dabholkar]
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Adiabatic argument

One must be careful with the formal identity S~1QS = (—1)ft in

string theory. If there are strong arguments to believe that type IIB

/(9261) is S-dual to type 1B /((—1)Fd1), it is not true that type
2 2

lIB /Q = type | is S-dual to type IIB /(—1)Ft = type IIA.

* Must take into account the open sector
> Type | is S-dual to heterotic Spin(32)

* Valid if adiabatic deformation of type [IB  [vafa witten]
> In the large radius limit type IIB /(Qé%) ~ type IIB.

* Must have an interpretation in M-theory on an elliptic fibration.



Dabholkar-Park stable branes

The stable branes in M-theory are M5 and M9 branes wrapping
homology CyCleS of the Klein bottle times Td [Gaberdiel Schafer-Nameki]

Ho(K2,Z) =7, Hi(KyZ)=Z®7Z>, Ha(K2,Z)=0,
or M2 and KK6 branes wrapping the (orientation bundle) twisted

homology ﬁn(Kg,Z) = H27"(Ky,7Z) cycles of the Klein bottle
times T

Ho(Ka, 2) = 7o, Hi(Ka,2) =7, Ho(Ka,2Z) =17 .

Predicts a single stable D3-brane orthogonal to the coordinate X°

D3o128 . — M2012, D30123 _ — Mbo123810 -
T-duality T-duality



Dabholkar-Park stable branes

For R > v/2a/, the stable D3 brane is a D3 brane at X° = 0 and
its image D3 brane at X? = TR [Bergman Gimon Horava] . A pair of
them can rotate such that the D3—-D3 annihilate each others.
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For R < v/2¢a' the configuration becomes unstable and dilutes into
a D4 brane wrapping the ninth circle.
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Dabholkar-Park stable branes

For a stack of N; D3-branes at distance L = 2waR of a stack of N>
D3-branes, the tree-level amplitude is
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which gives minimum potential energy at a = % where the N;
branes are at the position of the Ny anti-branes.
There is a complex (N, o) tachyon if |L — 7R| < 47V o/
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A new Scherk—Schwarz string

One takes the orientifold of type IIB by Q(—1)f:51. This generates
1
a Za group

G= {1,(-1)f41, (-1)F 61, Q(-1)"33} ,

including the Scherk—Schwarz generator (—1)’:6%.

The partition function is the sum of 1/2 the Scherk—Schwarz torus
partition function and the Klein bottle
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A new Scherk—Schwarz string

The Klein bottle contribution to the tree-level vacuum vacuum
amplitude gives

K =
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with no coupling to the untwisted sector.

n

> A twisted O-plane, no coupling to gravity
<> No interpretation in type IIA because R > v2c'.

There is no tadpole and therefore no open sector.



Twisted O-planes

Example of twisted O-plane in a supersymmetric theory:

Type 1IB on T# with the orientifold action 7, where
Z4(21,22) = (iZl, *I.Z2) on T4. (QZ4)2 = Zz.

*  The twisted O-plane only couples to the twisted sector
* There is no open string and no gravitational anomaly
(nH = 12, nr = 9)

Among the 16 Z; fixed points, 4 are Z4 fixed points. Blowing up
the sixteen Z, fixed points by giving expectation values to the
twisted hyper-multiplets, the Z4 fixed points are blown up to two
7 fixed points at the north and south poles of the blown up CP!.
We get Qo with ¢ an automorphism with eight fixed points of K3.



Twisted O-planes

Example of twisted O-plane in a supersymmetric theory:

Among the 16 Z; fixed points, 4 are Z4 fixed points. Blowing up
the sixteen Z, fixed points by giving expectation values to the
twisted hyper-multiplets, the Z, fixed points are blown up to two
Z, fixed points at the north and south poles of the blown up CP*.
We get Qo with ¢ an automorphism with eight fixed points of K3.

X % Q O

—>
X ® @ @

There is a O5 at the north pole and a O5_ at the south pole
with a B-field on the CIP*. In the limit of zero size one obtains a
twisted O5-plane.



In type IIB supergravity

Using the basis introduced earlier one can write

Q(-1)Ft = (‘01 ° ) ® < ° _01 >R _ s,

and define this orientifold as type IIB /(5241) with $* = (—1)F.
4
We have the Fourier expansion

(8, S, G (X%, x) = §j¥w (8 S, G ™(x),

(B2, &) (x°,x) = Ze(zmﬂ)'%(Bz,Q)(m)(X),
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M-theory compactification
After a T-duality along an additional circle of radius Rp, one

obtains M-theory on M3 = T3/Z2 with the freely acting Z,
involution defined as lg1001
4

(X8, X%, X1 5 (=X8 X% + 7R, —X10)
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M-theory compactification

M3 = T3/7Z; is defined as the quotient of R3 by
(X8, X%, X0) ~ (X® + 21a/ /Ry, X° + 27 R, X' + 27e3®A V)
and the freely acting Z involution defined as
(X8 X%, X)) — (=X8 X° + 7R, —X™9) .
This space is orientable with the homology

Ho(M3,Z) =7, Hi(M3,2) =Z D Ly ® Lo, Hy(M3,Z) =7, H3(M3,Z) =7



Stable Z>-branes

One checks that all the perturbative stable branes correspond to
membranes wrapping cycles in M3.

For example a single D5-brane orthogonal to the SS circle of radius
R is stable as a D3-brane in Dabholkar—Park

2 2 N2+N2
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They correspond to

Db5o123s8 _— Mbo123410, D5o123a5 _— KK6p123458 ,
T-duality T-duality

wrapping a Z» cycle along X8 or X0 in Ms3.
The same for a single D1-brane orthogonal to the SS circle with

Dlol — M2018, Dlog — KK(XIO)

T-duality T-duality



Stable D3-branes

N D3-branes orthogonal to the SS circle are stables and give N' = 4
super Yang-Mills at low energy. They correspond in M-theory to

D3o12s _— M2012, D3o123 _— Mbo123810 -
T-duality T-duality

N D3-branes wrapping the SS circle are stables and give a Z4

orbifold of N = 4 super Yang-Mills with gauge group U(2N) on S!

at low energy. They correspond in M-theory to

D3o1g80 _— M2019, D3p120 _— Mb0128910 -
T-duality T-duality



Stable D3-branes

N D3-branes wrapping the SS circle are stables and give a Z4
orbifold of N = 4 super Yang-Mills with gauge group U(2N) on S*
at low energy, define with the unitary matrix

g_( 0 inNX,\,>
Tyxn 0 ’

by the automorphism

ZAUX) = =sAUX +7R)TST, Zigy(X) = sp(X +7R)TsT,
Zidai(X) = ichai( X +TR)TST,  ZIAL(X) = —icAL (X + 7R) sl .

The one-loop beta function vanish and the coupling

S = % + ig%’; may be well defined.




A non-pertubative extension of the one-loop potential

A naive extrapolation of the one-loop potential gives
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with 3" c(n)g” = 11,51 %. Predicting “tachyonic” closed string
scalar with the (m, n)-string mass
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For an unstable D1 wrapping the SS circle this predicts
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in agreement with the perturbative computation.



Conclusion

©® Define a fourth non-supersymmetric SS orientifold
> completing the three SS orientifolds

[Blum Dienes Antoniadis Dudas Sagnotti Mourad]

©® Analysed the perturbative probe branes spectrum
© M-theory interpretation of stable branes
> Argument for S-duality symmetry

*

Check S-duality at higher order
Can one determine the exact potential
> stabilise the axio-dilaton and the radius moduli
* New orientifolds in lower dimensions with twisted O-planes

*



