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Introduction

Superstring vacua without spacetime supersymmetry

No perturbative vacuum (runaway potential)

Only cosmological solutions

Often develops a tachyon in the descent of the potential

A non-perturbative non-supersymmetric vacuum?

S-duality symmetry without supersymmetry?



Scherk–Schwarz example

Take the orbifold of type IIB by (−1)F δ 1
2
where F is the spacetime

fermion number and δ 1
2
the half-period shift X 9 → X 9 + 2πR.

anti-periodic boundary conditions for the spacetime fermions

The one-loop potential energy is
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and drives the radius R to small values until it diverges negatively
at R =

√
2α′.

There is a complex scalar of mass m2 = R2

α′2− 2
α′ that becomes

tachyonic at the critical radius.



Scherk–Schwarz example

The SS generator (−1)F δ 1
2
commutes with the duality group

SL(2,Z), so one may wishfully hope that the theory admits
SL(2,Z) duality symmetry such that one could presomptluously
hope to determine the non-perturbative potential

V SS(S = C0+ie−ϕ,R =
√
2α′eφ)

as a real analytic modular function of S with possibly a metastable
minimum at finite R >

√
2α′.



Outline

Dabholkar-Park and S-duality
A new Scherk-Schwarz orientifold
D-brane spectrum and M-theory

[ G. Bossard, G. Casagrande and E. Dudas, 2411.00955]



Notations

We use the Bianchi–Sagnotti notation for the superstring partition
function [Angelantonj Sagnotti]
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that captures the spectrum of the theory with Od and Vd counting
bosons and Sd and Cd counting fermions.



Notations

For example, the Scherk–Schwarz torus partition function can be
written [Rohm]
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Dabholkar-Park and dualities

Type IIB /(Ωδ 1
2
) with Ω the worldsheet orientation reversal and δ 1

2

the half-period translation X 9 → X 9 + 2πR.
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Using S−1ΩS = (−1)FL the left-handed spacetime fermion
number, one obtains that it is S-dual to the asymmetric
orbifold Type IIB /((−1)FLδ 1

2
)
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Dabholkar-Park and dualities
Compactifying on an additional circle and using T-duality one
obtains respectively Type IIA /(I8Ωδ 1

2
) (with I8 the spacetime

reflection) and Type IIA /((−1)FLδ 1
2
).

At strong coupling M-theory on a Klein bottle.



Orientation reversal as a duality

The metaplectic cover [Pantev Sharpe]{
1, (−1)F

}
→ Mp(2,Z) → GL(2,Z)

is defined as the type IIB GL(2,Z) duality symmetry on bosons
and the compensating R-symmetry O(2) acting on spacetime
fermions [Sen Dabholkar]
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so that S−1ΩS = (−1)FL .



Adiabatic argument

One must be careful with the formal identity S−1ΩS = (−1)FL in
string theory. If there are strong arguments to believe that type IIB
/(Ωδ 1

2
) is S-dual to type IIB /((−1)FLδ 1

2
), it is not true that type

IIB /Ω = type I is S-dual to type IIB /(−1)FL = type IIA.

Must take into account the open sector
Type I is S-dual to heterotic Spin(32)

Valid if adiabatic deformation of type IIB [Vafa Witten]

In the large radius limit type IIB /(Ωδ 1
2
) ≈ type IIB.

Must have an interpretation in M-theory on an elliptic fibration.



Dabholkar-Park stable branes

The stable branes in M-theory are M5 and M9 branes wrapping
homology cycles of the Klein bottle times T d

[Gaberdiel Schafer-Nameki]

H0(K2,Z) = Z , H1(K2,Z) = Z⊕Z2 , H2(K2,Z) = 0 ,

or M2 and KK6 branes wrapping the (orientation bundle) twisted
homology Ĥn(K2, Ẑ) = H2−n(K2,Z) cycles of the Klein bottle
times T d

Ĥ0(K2, Ẑ) = Z2 , Ĥ1(K2, Ẑ) = Z , Ĥ2(K2, Ẑ) = Z .

Predicts a single stable D3-brane orthogonal to the coordinate X 9

D30128 →
T-duality

M2012 , D30123 →
T-duality

M50123810 .



Dabholkar-Park stable branes

For R >
√
2α′, the stable D3 brane is a D3 brane at X 9 = 0 and

its image D3 brane at X 9 = πR [Bergman Gimon Horava] . A pair of
them can rotate such that the D3–D3 annihilate each others.
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For R <
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2α′ the configuration becomes unstable and dilutes into

a D4 brane wrapping the ninth circle.
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]∑
m

(−1)mq
α′
R2m

2



Dabholkar-Park stable branes

For a stack of N1 D3-branes at distance L = 2πaR of a stack of N2

D3-branes, the tree-level amplitude is
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which gives minimum potential energy at a = 1
2 , where the N1

branes are at the position of the N2 anti-branes.
There is a complex (N1,N2) tachyon if |L− πR | < 4π
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A new Scherk–Schwarz string

One takes the orientifold of type IIB by Ω(−1)FLδ 1
4
. This generates

a Z4 group

Ĝ =
{
1,Ω(−1)FLδ 1

4
, (−1)F δ 1

2
,Ω(−1)FR δ 3

4

}
,

including the Scherk–Schwarz generator (−1)F δ 1
2
.

The partition function is the sum of 1/2 the Scherk–Schwarz torus
partition function and the Klein bottle
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A new Scherk–Schwarz string

The Klein bottle contribution to the tree-level vacuum vacuum
amplitude gives

K̃ =
25R
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∑
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with no coupling to the untwisted sector.

A twisted O-plane, no coupling to gravity
No interpretation in type IIA because R >

√
2α′.

There is no tadpole and therefore no open sector.



Twisted O-planes

Example of twisted O-plane in a supersymmetric theory:

Type IIB on T 4 with the orientifold action ΩZ4 where
Z4(z1, z2) = (iz1,−iz2) on T 4. (ΩZ4)

2 = Z2.

The twisted O-plane only couples to the twisted sector
There is no open string and no gravitational anomaly

(nH = 12, nT = 9)

Among the 16 Z2 fixed points, 4 are Z4 fixed points. Blowing up
the sixteen Z2 fixed points by giving expectation values to the
twisted hyper-multiplets, the Z4 fixed points are blown up to two
Z2 fixed points at the north and south poles of the blown up CP1.
We get Ωσ with σ an automorphism with eight fixed points of K3.



Twisted O-planes

Example of twisted O-plane in a supersymmetric theory:

Among the 16 Z2 fixed points, 4 are Z4 fixed points. Blowing up
the sixteen Z2 fixed points by giving expectation values to the
twisted hyper-multiplets, the Z4 fixed points are blown up to two
Z2 fixed points at the north and south poles of the blown up CP1.
We get Ωσ with σ an automorphism with eight fixed points of K3.

There is a O5+ at the north pole and a O5− at the south pole
with a B-field on the CP1. In the limit of zero size one obtains a
twisted O5-plane.



In type IIB supergravity

Using the basis introduced earlier one can write
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and define this orientifold as type IIB /(S2δ 1
4
) with S4 = (−1)F .

We have the Fourier expansion
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M-theory compactification

After a T-duality along an additional circle of radius RB, one
obtains M-theory on M3 = T 3/Z2 with the freely acting Z2

involution defined as I810δ 1
4

(X 8,X 9,X 10) → (−X 8,X 9 + πR,−X 10)



M-theory compactification

M3 = T 3/Z2 is defined as the quotient of R3 by

(X 8,X 9,X 10) ≈
(
X 8 + 2πα′/RB,X

9 + 2πR,X 10 + 2πe
2
3
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√
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and the freely acting Z2 involution defined as

(X 8,X 9,X 10) → (−X 8,X 9 + πR,−X 10) .

This space is orientable with the homology

H0(M3,Z) = Z , H1(M3,Z) = Z⊕ Z2 ⊕ Z2 , H2(M3,Z) = Z , H3(M3,Z) = Z .



Stable Z2-branes
One checks that all the perturbative stable branes correspond to
membranes wrapping cycles in M3.

For example a single D5-brane orthogonal to the SS circle of radius
R is stable as a D3-brane in Dabholkar–Park
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They correspond to

D5012348 →
T-duality
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KK60123458 ,

wrapping a Z2 cycle along X 8 or X 10 in M3.
The same for a single D1-brane orthogonal to the SS circle with
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Stable D3-branes

N D3-branes orthogonal to the SS circle are stables and give N = 4
super Yang-Mills at low energy. They correspond in M-theory to

D30128 →
T-duality

M2012 , D30123 →
T-duality

M50123810 .

N D3-branes wrapping the SS circle are stables and give a Z4

orbifold of N = 4 super Yang-Mills with gauge group U(2N) on S1

at low energy. They correspond in M-theory to

D30189 →
T-duality
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M50128910 .



Stable D3-branes

N D3-branes wrapping the SS circle are stables and give a Z4

orbifold of N = 4 super Yang-Mills with gauge group U(2N) on S1

at low energy, define with the unitary matrix
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The one-loop beta function vanish and the coupling
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may be well defined.



A non-pertubative extension of the one-loop potential

A naive extrapolation of the one-loop potential gives
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in agreement with the perturbative computation.



Conclusion

Define a fourth non-supersymmetric SS orientifold
completing the three SS orientifolds

[Blum Dienes Antoniadis Dudas Sagnotti Mourad]

Analysed the perturbative probe branes spectrum
M-theory interpretation of stable branes

Argument for S-duality symmetry

Check S-duality at higher order
Can one determine the exact potential

stabilise the axio-dilaton and the radius moduli
New orientifolds in lower dimensions with twisted O-planes


