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Background material:

e 2306.16488: Report on the gravitational eikonal

Paolo Di Vecchia, CH, Rodolfo Russo, Gabriele Veneziano

e 2312.07452, 2402.06361: Analysis of the NLO waveform

In collaboration with Alessandro Georgoudis, CH, Rodolfo Russo

e 2406.03937: Angular momentum losses from the NLO waveform
CH, Rodolfo Russo

New results:

e 2501.02904: Radiation-Reaction and Angular Momentum Loss at O(G*)
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Two-Body Problem: Analytical Approximation Methods

e Post-Newtonian (PN): expansion
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e Self-Force: expansion ° . expansion
in the near-probe limit my < my or in the limit of small frequencies
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General Relativity from Scattering Amplitudes

Key ldea: Extract the PM gravitational dynamics from scattering amplitudes.

e Weak-coupling expansion <+ PM expansion
Weak-coupling:  Ag = O(G) A = O(G?) Ay = O(G3) As = O(G*)

PM: 1PM 2PM 3PM 4PM
State of the art:
[[Driesse et al. '24; Bern et al. '24]

5PM, 1SF from WQFT]
e |orentz invariance <+ generic velocities

e Study scattering events, then export to bound trajectories

(Veﬂ', ana|ytiC Continuation...) [Kalin, Porto '19; Saketh, Steinhoff, Vines, Buonanno '21; Cho, Kalin, Porto '21] 6



Elastic Eikonal and Deflection Angle



Kinematics of Classical Post-Minkowskian (PM) Scattering

3 1
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In this way, vi - by = w - by =0 and iy - be = i - be = 0. Classical PM regime:
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Kinematics of the Elastic 2 — 2 Amplitude

1
By = =(py — ry)
Py = E(Pg — Py)

q"|=p + Py =—p5 —Ps

Defining velocities by p}' = —myvy', py = —mo vy

1
o)==

with v the speed of either object as measured by the other one.

Dual velocities: v} = oV}’
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The Elastic Eikonal

e From q to b: Fourier transform [g ~ (9(%)]

,,2((4)(b) _ 1 dD—2q eib,qA(4)( ) 1+ I./Z((4)(b) — 62i5(b)
4Ep | (2m)D-2 9

with 26 = 280 + 26y + 28 + -+ ~ S (log b+ 2 + (S2)* + )

e From b to Q: stationary-phase approximation [Q ~ O(p - G—,;")]

/dD—Zbe—ib.Qei26(b) — Q.= 8;;35
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Tree-Level Amplitude and 1PM Impulse

e Tree-level amplitude in D = 4 — 2¢ dimensions

—

pL ————— P4 327nGmZm3(o? — 52
Ag‘l) q) = 1 2(2 2—2) .
Tq q
2 1
p2 ———p3 AW () = 46mima(0” — 5=5) T(—e

2Ve? -1 (mh2)™¢

° MatChlng to the e|k0na| eXpOnentiatiOn [Kabat, Ortiz '92; Bjerrum-Bohr et al. '18]

e 14 iAW — 25, = AP

“small G”

e From 2Jp, we obtain the leading-order deflection
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Impulse from the Eikonal Phase up to One Loop

) 20
1+/FT Ne216, 25:260+251+ Qungu
o Tree level: i/io = 2idp, SO
284 = .A'(4) _ 2Gm21/(a2 B 2}26) r(_e) QH _ _4Gm2y(o'2 — %) ig
0= 2 _ 1 (mb2)—¢’ 1PM bvVo2 -1 b~

e One loop: By the unitarity, iy — %(2id)? = i Re A1 = 2i61, so

B 3rG2mPy (502 — 1) 3rG2mPy (502 — 1) bl

261 = Re AW = , b= Ze
1= 4byo? — 1 Qpr 4202 -1 b
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The 3PM Eikonal in General Relativity

e Eikonal phase:

Re26, = 12 — — arccosho

4G3mim3 | s (120% — 1002 + 1) o (140% +25)  4o* — 1202 —
2m1m2(02—1)% 3vo2 -1 02 —1
+ Re205R

2(8 —50%) 20 (202 —3)

3(02 —1) i (02 —1)3/2
e Infrared divergent exponential suppression:

arccosh o .

Re 265" = %Q%PMI(U)v I(o) =

1 1
Im 20, = = {—6 + log(0? — 1) | Re205R 4 ...

e Re265R contributes half-odd-PN corrections (odd in velocity) to @spy s



Unitarity and Analyticity Fix the Radiation-Reaction Contribution

e Unitarity determines the imaginary part of the two-loop eikonal,

e |R divergence comes from low frequencies, use the soft graviton theorem:

e Then, using the natural upper cutoff * o %, we find

G 1 —

e By analyticity, ilog(l — 0% — i0) = ilog(c® — 1) + =, hence

G
Re205R = lim [—me Im 265] = —- R%mI(0). "
=



Smoothness and Universality of Re 2/, at High Energy

At high energy, as 0 — oo and s ~ 2mymyo, i.e. in the massless limit:

e The complete eikonal phase is smooth, although the conservative and
radiation-reaction parts separately diverge like log o

e lts expression is the same in AV = 8 supergravity and in GR,

2
0 o 4G5

Re 26, ~ Gs =5
i b

in agreement Wlth [Amati, Ciafaloni, Veneziano '90].
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Eikonal Operator and Gravitational Waveform
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Kinematics of the 2 — 3 Amplitude

Bl = 2(ph — o)

B= 5k~ ) e
@ =P+ Py k

9% |=pPs +pP3 pP3 = G2 — p2

0=q +q5 + K

More invariants, besides g2, g3, also
[0]=—vi-w, :—vl-k, :—v2-k.

We denote by E, w the total energy and the graviton frequency in the CoM frame,
w12

1l 1
E=y/~(p+p)?, w:E(P1+p2)-k=E(m1w1+m2w2), ae=-—".




2 — 3 Amplitude up to One Loop

= Ao+ A+ -

with Ag the tree-level amplitude, and

V«=&+é@+ﬂ+ém+qy

where B1 = Re A; and the unitarity cuts can be depicted as follows,

C1



Inelastic Final State

Eikonal Exponentiation of Graviton Exchanges + Coherent Radiation:
e2i3(b1,b2) _ eiReza(b)eifk[W(k)af(k)JrW*(k)a(k)] _

e Final state, schematically:
lout) = e2/(b1:b2) in)

e Unitarity:
(outfout) = (in|in) =1

e The asymptotic metric fluctuation h,, = g, — 1), sourced by the scattering

(the waveform) is expressed formally as

oo (x) = V327G {out| Al (x)fout) ~ 28 / e~ UVT,, (wn) ;’ﬂ - (ee)
0

KRr ™

where K = v/87G, r is the distance from the observer and U the retarded time.

L ~ - 19
Normalization WHY = x wH¥.



The Waveform Kernel

e Working with “eikonal” variables, we can use the following radiation kernel,
W= A+ [Bl-i—é.(cl-l-Cz)].

o Tree level: Ay is a relatively simple rational function

e One loop: We isolate the even and odd parts of By under wy s — —wi 2,
Bi = Bio + Bie,

and Bip = tho) + B% is fixed by unitarity and analyticity in terms of the
tree-level amplitude,

3
o (0®=3)
(02 — 1)3/2

while B1g and c¢;, ¢ represent new one-loop data.

B) — nGEw Ay, B =— 7GEw Ag

20



Infrared Divergences Revisited

e |R divergences due to ¢, o,

] 1
éCl = 2iGm1W1 (—2 + |Og > ./40 + 2 (reg)

exponentiate in momentum space,
W — e—gGEw [Ao+81+ic] _ e—éGEereg,
where 3 L C = Yoo 12 (21Gmaw3 Iog Ya c(reg))
e The divergence can be canceled by redefining the origin of retarded time

4G [ - d
() ~ € /0 e U (wn) 57 + (c.c)

18 ™

e It resums velocity corrections to the Einstein quadrupole formula up to O(G3):

e Ay, B 10 and Bg give integer PN corrections (even powers of v)

(reg)’ (reg)

° B% and ¢ give half-odd PN corrections (odd powers of v) 21



Energy and Angular Momentum Losses
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Emitted Energy-Momentum and Angular Momentum

o We define for later convenience the notation

<
KalX, 91 = D907k %3, V0, OuslX, V] = DP9 R0 b =05, 42, ¥

e The operator insertion for the energy-momentum (out|P|out) = P* leads to

leads to
a IRV VARY) _ o 0 2 de
= [rewwy, [ = [0 50) 5

e For the angular momentum, one has (out|J,slout) = J,5 with

JoB — —i/ O°P[W, W]
k
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Emitted Energy-Momentum at O(G3) (Two Loops)

e To leading order
%(Ga):/nga 6 = K[Ao, Ao
e Note that A} = Ao‘b»—)—b (the tree-level amplitude is real!). So,
K§ = KGlo - (1)
o Writing K§ = fy, 0§ + fu, 09 + f, b* + fi k* (here ; - uj = —¢;;) we deduce
fur,(—b- k) = +fu,(b-k), fo(—b-k)=—fp(b-k), Ff(=b-k)=+fi(b-k).
e Therefore, the integrand b- Ko = f, b?> + fi b - k is odd under b- k — —b - k,
b-Ppesy =0
in agreement with the explicit result [Herrmann, Parra-Martinez, Ruf, Zeng "21]

Take-home message: Some components vanish by analyticity considerations. o



Emitted Angular Momentum at O(G3) (Two Loops)

e To leading order

I = _i/,( 05", 057 = 0°7 Ao, Ay

e ... [intermediate steps left to the reader as an exercise!]
e We can show that the integrand uy - Og - up is odd under b- k — —b - k,
uy - JO(G3) Uy = 0
in agreement with the explicit result Manohar, Ridgway, Shen '22]

The nontrivial components: w12 - Pp(g3) and b+ Jo(g3) - u1,2 can be evaluated by
reducing them to (cut) two-loop integrals

[Herrmann, Parra-Martinez, Ruf, Zeng '21; Manohar, Ridgway, Shen '22] [Di Vecchia, CH, Russo, Veneziano '22].
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Emitted Energy and Angular Momentum at O(G*)

To next-to-leading order, we split P%(G4) = P .4+ P54 and J%/[E)G“) = Ji‘rﬁad + Jg‘gd
e Integer-PN contributions (even in velocity):
P 4 = z/k Re K“[Ao, BY) + Big], 432, = /klm 0°°[ Ao, BY) + Bie]
e Half-odd-PN contributions (odd in velocity):
Saa = | (2Re kLo, )~ 1m Ko, €1).
g8 /k (21m 07 Ao, BY] + Re 07140, €))
These (naively) involve three-loop integrals.

Can their analytic structure dictated by unitarity help us?

26



Emitted Energy and Angular Momentum at O(G*)

e The integer-PN contributions (even in velocity) behave as the O(G3) ones,
b-Pirag =0, ur - Jirad -2 =0

and w12 - Pirag and b - Jypaq - U1 2 indeed involve integrals at tree loops
e For the half-odd-PN contributions (odd in velocity) we find instead

u12 - Porag = 2uﬁ2/ Re Ka[ﬂo,[;’gho)] two loops
k
b Poyrag = —b* / Im K [ Ao, C] three loops
K
u12 - Jorad - b= 2uf"2bﬁ/ Im Oag[flo, B:(lho)] two loops
K

Uy - Jogad - Up = u‘fug / Re Oag[flg,(f] three loops
k

The 2rad energy and angular momentum (in the CM) only involve two-loop integrals!



Results: Half-Odd-PN Emitted Energy

e Warm-up: 2rad emitted energy, P54 = Pﬁ + (- )b

4 2 2
= ST o (Wi + £O0) +(12)]

with
(i)

i f (i)
£V = S —+1

arccosh o i (arccosh o)?
1 ) SR
(02 — 1)3/2 3 (02 —1)2

for i = 1,2 and polynomials in o denoted by 7‘1(7'.2)73 (here omitted for brevity)

o Perfectly matches [pips, kitin, Liu, Porto 221, Where Qf* and Q5 where calculated up to
O(G*), using
P* = —Qf — Q5.
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Results: Half-Odd-PN Angular Momentum Loss

e New result: 2rad emitted angular momentum, Jgﬁd = JTB + (- )ugaug]
2

G*m?m

I3 = 200 [y (FOS ) + FOB W)+ (16:2)]

with

; (@ ; h y (arccosh o)?
Fi)_ _ & (i) arccosho (i)
(02 —1)2 T & (02 —1)5/2 & (o2 1)
for i = 1,2 and polynomials in o denoted by gl('%3 (here omitted for brevity)
e Adding the static contribution [cH, Russo 24)
G2p
TS Qipm Z(0)?

we obtain the 2rad angular momentum loss in the CM frame Jy,aq

J2rad - J2rad + erad s «.72rad =

e The first few terms in its PN expansion agree with (gini, Damour, Geralico 21, 22]
G*M®> ,  [448 1184  220256v\ ,
J2rad - 73V Poo | —/— - 00 to
b 5 21 1575




Summary and Outlook

e The eikonal approach provides a framework to calculate scattering observables,
including the impulse, the waveform and the emitted energy and angular
momentum.

e The unitarity and analyticity properties of the waveform at next-to-leading order
greatly simplify the calculation of half-odd-PN (2rad) contributions to the
radiated energy and angular momentum at O(G*) (three loops — two loops)

For the future:

e Calculate the integer-PN (1rad) contributions!
e Inclusion of tidal/spin effects

e NNLO waveform? Nonlinear memory effect

30
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