Unitarity and Gravitational Radiation-Reaction at Two and Three Loops

Meeting on Gravity, Strings and Supersymmetry Breaking

Carlo Heissenberg (IPhT, CEA Saclay) Scuola Normale Superiore, Pisa, April 3rd, 2025

Background material:

- 2306.16488: Report on the gravitational eikonal
 Paolo Di Vecchia, CH, Rodolfo Russo, Gabriele Veneziano
- 2312.07452, 2402.06361: Analysis of the NLO waveform In collaboration with Alessandro Georgoudis, CH, Rodolfo Russo
- 2406.03937: Angular momentum losses from the NLO waveform CH, Rodolfo Russo

New results:

• 2501.02904: Radiation-Reaction and Angular Momentum Loss at $\mathcal{O}(G^4)$ CH

Introduction

Elastic Eikonal and Deflection Angle

Eikonal Operator and Gravitational Waveform

Energy and Angular Momentum Losses

Introduction

Elastic Eikonal and Deflection Angle

Eikonal Operator and Gravitational Waveform

Energy and Angular Momentum Losses

Two-Body Problem: Analytical Approximation Methods

• Post-Newtonian (PN): expansion

"for small G and small v"

$$rac{Gm}{rc^2}\sim rac{v^2}{c^2}\ll 1\,.$$

• Post-Minkowskian (PM): expansion "for small *G*"

$${Gm\over rc^2}\ll 1\,,\qquad {
m generic}\,\,{v^2\over c^2}\,.$$

• Self-Force: expansion

in the near-probe limit $m_2 \ll m_1$ or

$$m = m_1 + m_2, \qquad \nu = rac{m_1 m_2}{m^2} \ll 1.$$

• Soft limit: expansion in the limit of small frequencies

$$\omega \ll \frac{v}{r}$$
.

Key Idea: Extract the PM gravitational dynamics from scattering amplitudes.

• Weak-coupling expansion \leftrightarrow PM expansion

Weak-coupling: $\mathcal{A}_0 = \mathcal{O}(G)$ $\mathcal{A}_1 = \mathcal{O}(G^2)$ $\mathcal{A}_2 = \mathcal{O}(G^3)$ $\mathcal{A}_3 = \mathcal{O}(G^4)$ \underline{PM} :1PM2PM3PM4PMState of the art:[Driesse et al. '24; Bern et al. '24]SPM, 1SF from WQFT]

- Lorentz invariance \leftrightarrow generic velocities
- Study scattering events, then export to bound trajectories
 (V_{eff}, analytic continuation...) [Kälin, Porto '19; Saketh, Steinhoff, Vines, Buonanno '21; Cho, Kälin, Porto '21]

Introduction

Elastic Eikonal and Deflection Angle

Eikonal Operator and Gravitational Waveform

Energy and Angular Momentum Losses

Kinematics of Classical Post-Minkowskian (PM) Scattering

In this way, $v_1 \cdot b_J = v_2 \cdot b_J = 0$ and $\tilde{u}_1 \cdot b_e = \tilde{u}_2 \cdot b_e = 0$. Classical PM regime:

$$\frac{Gm^2}{\hbar} \underset{CL}{\gg} 1 \,, \qquad \frac{Gm}{b} \underset{PM}{\ll} 1 \,, \qquad \boxed{\frac{\hbar}{m} \ll Gm \ll b} \qquad \sigma = \frac{1}{\sqrt{1-v^2}} \ge 1 \text{ (generic)}.$$

Kinematics of the Elastic $2 \rightarrow 2$ Amplitude

Defining velocities by
$$p_1^\mu=-m_1v_1^\mu,\ p_2^\mu=-m_2v_2^\mu$$

$$\boxed{\sigma}=-v_1\cdot v_2=\frac{1}{\sqrt{1-v^2}}$$

with v the speed of either object as measured by the other one.

Dual velocities: $\mathbf{v}_1^{\mu} = \sigma \check{\mathbf{v}}_2^{\mu} + \check{\mathbf{v}}_1^{\mu}$, $\mathbf{v}_2^{\mu} = \sigma \check{\mathbf{v}}_1^{\mu} + \check{\mathbf{v}}_2^{\mu}$ obey $\check{\mathbf{v}}_i \cdot \mathbf{v}_j = -\delta_{ij}$.

• From q to b: Fourier transform $[q \sim \mathcal{O}(\frac{\hbar}{b})]$

$$\tilde{\mathcal{A}}^{(4)}(b) = \frac{1}{4Ep} \int \frac{d^{D-2}q}{(2\pi)^{D-2}} e^{ib \cdot q} \mathcal{A}^{(4)}(q), \qquad \boxed{1 + i\tilde{\mathcal{A}}^{(4)}(b) = e^{2i\delta(b)}}$$

with
$$2\delta = 2\delta_0 + 2\delta_1 + 2\delta_2 + \cdots \sim \frac{Gm^2}{\hbar} \left(\log b + \frac{Gm}{b} + \left(\frac{Gm}{b}\right)^2 + \cdots\right)$$

• From *b* to *Q*: stationary-phase approximation $[Q \sim \mathcal{O}(p \cdot \frac{Gm}{b})]$

$$\int d^{D-2}b \, e^{-ib \cdot Q} e^{i2\delta(b)} \implies Q_{\mu} = \frac{\partial \operatorname{Re} 2\delta}{\partial b_{e}^{\mu}}$$

Tree-Level Amplitude and 1PM Impulse

• Tree-level amplitude in $D = 4 - 2\epsilon$ dimensions

• Matching to the eikonal exponentiation [Kabat, Ortiz '92; Bjerrum-Bohr et al. '18]

$$e^{2i\delta_0} \xrightarrow["small G"]{} 1+i\tilde{\mathcal{A}}_0^{(4)} \implies 2\delta_0 = \tilde{\mathcal{A}}_0^{(4)}$$

• From $2\delta_0$, we obtain the leading-order deflection

$$p_{1} \xleftarrow{} p_{4} \qquad Q_{1PM} = -\frac{\partial 2\delta_{0}}{\partial b} = \frac{4Gm_{1}m_{2}\left(\sigma^{2} - \frac{1}{2}\right)}{b\sqrt{\sigma^{2} - 1}}$$

$$p_{2} \xleftarrow{} p_{3} \qquad \Theta_{1PM} = \frac{4GE\left(\sigma^{2} - \frac{1}{2}\right)}{b(\sigma^{2} - 1)}.$$

Impulse from the Eikonal Phase up to One Loop

• Tree level: $i\tilde{\mathcal{A}}_0 = 2i\delta_0$, so

$$2\delta_0 = \tilde{\mathcal{A}}_0^{(4)} = \frac{2Gm^2\nu(\sigma^2 - \frac{1}{2-2\epsilon})}{\sqrt{\sigma^2 - 1}} \frac{\Gamma(-\epsilon)}{(\pi b^2)^{-\epsilon}}, \qquad Q_{1\rm PM}^{\mu} = -\frac{4Gm^2\nu(\sigma^2 - \frac{1}{2})}{b\sqrt{\sigma^2 - 1}} \frac{b_e^{\mu}}{b}.$$

• One loop: By the unitarity, $i\tilde{\mathcal{A}}_1 - \frac{1}{2!}(2i\delta_0)^2 = i\operatorname{Re}\tilde{\mathcal{A}}_1 = 2i\delta_1$, so

$$2\delta_1 = \operatorname{Re} \tilde{\mathcal{A}}_1^{(4)} = \frac{3\pi G^2 m^3 \nu \left(5\sigma^2 - 1\right)}{4b\sqrt{\sigma^2 - 1}} \,, \qquad Q_{2\mathsf{PM}}^{\mu} = -\frac{3\pi G^2 m^3 \nu \left(5\sigma^2 - 1\right)}{4b^2 \sqrt{\sigma^2 - 1}} \frac{b_{\mathsf{e}}^{\mu}}{b} \,.$$

The 3PM Eikonal in General Relativity [Di Vecchia, CH, Russo, Veneziano '20, '21]

Related work at 3PM: Bern, Cheung, Roiban, Shen, Solon, Zeng '19; Damour '20; Herrmann, Parra-Martinez, Ruf, Zeng '21, Bjerrum-Bohr, Damgaard,

Planté, Vanhove '21; Brandhuber, Chen, Travaglini, Wen '21]

• Eikonal phase:

$$\operatorname{Re} 2\delta_{2} = \frac{4G^{3}m_{1}^{2}m_{2}^{2}}{b^{2}} \left[\frac{s\left(12\sigma^{4}-10\sigma^{2}+1\right)}{2m_{1}m_{2}\left(\sigma^{2}-1\right)^{\frac{3}{2}}} - \frac{\sigma\left(14\sigma^{2}+25\right)}{3\sqrt{\sigma^{2}-1}} - \frac{4\sigma^{4}-12\sigma^{2}-3}{\sigma^{2}-1} \operatorname{arccosh}\sigma \right]$$

+
$$\operatorname{Re} 2\delta_{2}^{\mathrm{RR}},$$

$$\operatorname{Re} 2\delta_{2}^{\mathrm{RR}} = \frac{G}{4}Q_{1\mathrm{PM}}^{2}\mathcal{I}(\sigma), \quad \mathcal{I}(\sigma) \equiv \frac{2(8-5\sigma^{2})}{3(\sigma^{2}-1)} + \frac{2\sigma\left(2\sigma^{2}-3\right)}{(\sigma^{2}-1)^{3/2}} \operatorname{arccosh}\sigma.$$

• Infrared divergent exponential suppression:

$$\operatorname{Im} 2\delta_2 = \frac{1}{\pi} \left[-\frac{1}{\epsilon} + \log(\sigma^2 - 1) \right] \operatorname{Re} 2\delta_2^{\operatorname{RR}} + \cdots$$

• Re $2\delta_2^{RR}$ contributes half-odd-PN corrections (odd in velocity) to Θ_{3PM}

Unitarity and Analyticity Fix the Radiation-Reaction Contribution

• Unitarity determines the imaginary part of the two-loop eikonal,

$$2 \operatorname{Im} 2\delta_2 = \operatorname{FT}$$

• IR divergence comes from low frequencies, use the soft graviton theorem:

$$- \sqrt{8\pi G} \sum_{a} \frac{p_a^{\mu} p_a^{\nu}}{p_a \cdot \mathbf{k}} - \mathbf{as} \ \mathbf{k}^{\alpha} \to 0$$

• Then, using the natural upper cutoff $\omega^* \simeq \frac{v}{b}$, we find

$$\operatorname{Im} 2\delta_2 = \frac{G}{2\pi} \left[-\frac{1}{2\epsilon} + \log \sqrt{\sigma^2 - 1} \right] Q_{1 \operatorname{PM}}^2 \mathcal{I}(\sigma) + \cdots$$

• By analyticity, $i \log(1 - \sigma^2 - i0) = i \log(\sigma^2 - 1) + \pi$, hence

$$\operatorname{Re} 2\delta_2^{\operatorname{RR}} = \lim_{\epsilon \to 0} \left[-\pi\epsilon \operatorname{Im} 2\delta_2 \right] = \frac{G}{4} Q_{1\operatorname{PM}}^2 \mathcal{I}(\sigma) \,.$$

At high energy, as $\sigma
ightarrow \infty$ and $s \sim 2m_1m_2\sigma$, i.e. in the massless limit:

- The *complete* eikonal phase is <u>smooth</u>, although the conservative and radiation-reaction parts separately diverge like $\log \sigma$
- Its expression is the same in $\mathcal{N} = 8$ supergravity and in GR,

$${
m Re}\, 2\delta_2 \sim \, Gs \, {\Theta_s^2\over 4} \,, \qquad \Theta_s \sim {4G\sqrt{s}\over b}$$

in agreement with [Amati, Ciafaloni, Veneziano '90].

Introduction

Elastic Eikonal and Deflection Angle

Eikonal Operator and Gravitational Waveform

Energy and Angular Momentum Losses

Kinematics of the $2 \rightarrow 3$ Amplitude

$$\bar{p}_{1}^{\mu} = \frac{1}{2}(p_{4}^{\mu} - p_{1}^{\mu})$$

$$\bar{p}_{2}^{\mu} = \frac{1}{2}(p_{3}^{\mu} - p_{2}^{\mu})$$

$$\bar{q}_{1}^{\mu} = p_{1}^{\mu} + p_{4}^{\mu}$$

$$\bar{q}_{2}^{\mu} = p_{2}^{\mu} + p_{3}^{\mu}$$

$$0 = q_{1}^{\mu} + q_{2}^{\mu} + k^{\mu}$$

$$p_{1} \qquad p_{4} = q_{1} - p_{1}$$

$$k$$

$$p_{2} \qquad p_{3} = q_{2} - p_{2}$$

More invariants, besides q_1^2 , q_2^2 , also

$$\overline{\sigma} = -v_1 \cdot v_2, \qquad \overline{\omega_1} = -v_1 \cdot k, \qquad \overline{\omega_2} = -v_2 \cdot k.$$

We denote by E, ω the total energy and the graviton frequency in the CoM frame,

$$E = \sqrt{-(p_1 + p_2)^2}, \qquad \omega = \frac{1}{E} (p_1 + p_2) \cdot k = \frac{1}{E} (m_1 \omega_1 + m_2 \omega_2), \qquad \alpha_{1,2} = \frac{\omega_{1,2}}{\omega}.$$

$2 \rightarrow 3$ Amplitude up to One Loop

Brandhuber et al. '23; Herderschee, Roiban, Teng 23; Elkhidir, O'Connell, Sergola, Vazquez-Holm '23] [Georgoudis, CH, Vazquez-Holm '23]

$$\mathcal{A} =$$
 $\mathcal{A}_0 + \mathcal{A}_1 + \cdots$

with \mathcal{A}_0 the tree-level amplitude, and

$$\mathcal{A}_1 = \mathcal{B}_1 + rac{i}{2}(s+s') + rac{i}{2}(c_1+c_2)$$

where $\mathcal{B}_1 = \operatorname{Re} \mathcal{A}_1$ and the unitarity cuts can be depicted as follows,

Inelastic Final State [Di Vecchia, CH, Russo, Veneziano '22]

cf. Kosower, Maybee, O'Connell '18; Damgaard, Planté, Vanhove '21; Cristofoli et al. '21]

Eikonal Exponentiation of Graviton Exchanges + Coherent Radiation:

$$e^{2i\hat{\delta}(b_1,b_2)} = e^{i\operatorname{Re} 2\delta(b)}e^{i\int_k \left[\tilde{W}(k)a^{\dagger}(k) + \tilde{W}^*(k)a(k)\right]}$$

• Final state, schematically:

$$|{
m out}
angle=e^{2i\hat{\delta}(b_1,b_2)}|{
m in}
angle$$

• Unitarity:

$$\langle {\sf out} | {\sf out}
angle = \langle {\sf in} | {\sf in}
angle = 1$$

• The asymptotic metric fluctuation $h_{\mu\nu} = g_{\mu\nu} - \eta_{\mu\nu}$ sourced by the scattering (the waveform) is expressed formally as

$$h_{\mu
u}(x) = \sqrt{32\pi G} \langle \operatorname{out}|\hat{H}_{\mu
u}(x)|\operatorname{out}
angle \sim rac{4G}{\kappa r} \int_0^\infty e^{-i\omega U} \tilde{W}_{\mu
u}(\omega n) rac{d\omega}{2\pi} + (ext{c.c.})$$

where $\kappa = \sqrt{8\pi G}$, r is the distance from the observer and U the retarded time. Normalization $\tilde{W}^{\mu\nu} = \kappa \tilde{w}^{\mu\nu}$. • Working with "eikonal" variables, we can use the following radiation kernel,

$$W = \mathcal{A}_0 + \left[\mathcal{B}_1 + \frac{i}{2}\left(c_1 + c_2\right)
ight].$$

- Tree level: \mathcal{A}_0 is a relatively simple rational function
- One loop: We isolate the even and odd parts of \mathcal{B}_1 under $\omega_{1,2} \mapsto -\omega_{1,2}$,

$$\mathcal{B}_1 = \mathcal{B}_{1O} + \mathcal{B}_{1E} \,,$$

and $\mathcal{B}_{1O} = \mathcal{B}_{1O}^{(h)} + \mathcal{B}_{1O}^{(i)}$ is fixed by unitarity and analyticity in terms of the tree-level amplitude,

$$\mathcal{B}_{1O}^{(h)} = \pi G E \omega \, \mathcal{A}_0 \,, \qquad \mathcal{B}_{1O}^{(i)} = - \frac{\sigma \left(\sigma^2 - \frac{3}{2}\right)}{(\sigma^2 - 1)^{3/2}} \, \pi G E \omega \, \mathcal{A}_0$$

while \mathcal{B}_{1E} and c_1 , c_2 represent new one-loop data.

Infrared Divergences Revisited

• IR divergences due to c_1 , c_2 ,

$$\frac{i}{2} c_1 = 2iGm_1\omega_1 \left(-\frac{1}{2\epsilon} + \log\frac{\omega_1}{\mu}\right) \mathcal{A}_0 + \frac{i}{2} c_1^{(\text{reg})}$$

exponentiate in momentum space,

$$W = e^{-\frac{i}{\epsilon} GE\omega} \left[\mathcal{A}_0 + \mathcal{B}_1 + \frac{i}{2} \mathcal{C} \right] = e^{-\frac{i}{\epsilon} GE\omega} W^{\text{reg}} ,$$

where $\frac{i}{2} \mathcal{C} = \sum_{a=1,2} \left(2iGm_a \omega_a \log \frac{\omega_a}{\mu} + \frac{i}{2} c_a^{(\text{reg})} \right)$

• The divergence can be canceled by redefining the origin of retarded time

$$h_{\mu\nu}(x) \sim rac{4G}{\kappa r} \int_0^\infty e^{-i\omega U} \tilde{W}^{
m reg}_{\mu\nu}(\omega n) \, rac{d\omega}{2\pi} + ({
m c.c.})$$

- It resums velocity corrections to the Einstein quadrupole formula up to \$\mathcal{O}(G^3)\$:
 \$\mathcal{A}_0\$, \$\mathcal{B}_{10}\$ and \$\mathcal{B}_E\$ give integer PN corrections (even powers of \$\nu\$)
 - $\mathcal{B}_{10}^{(i)}$ and $c_1^{(\text{reg})}$, $c_2^{(\text{reg})}$ give half-odd PN corrections (odd powers of v)

Introduction

Elastic Eikonal and Deflection Angle

Eikonal Operator and Gravitational Waveform

Energy and Angular Momentum Losses

Emitted Energy-Momentum and Angular Momentum

[Herrmann, Parra-Martinez, Ruf, Zeng '21; Manohar, Ridgway, Shen '22] [Di Vecchia, CH, Russo, Veneziano '22]

• We define for later convenience the notation

$$\boldsymbol{K}_{\alpha}[\tilde{X},\tilde{Y}] = D^{\mu\nu,\rho\sigma} \boldsymbol{k}_{\alpha} \, \tilde{X}^{*}_{\mu\nu} \, \tilde{Y}_{\rho\sigma} \,, \qquad \boldsymbol{O}_{\alpha\beta}[\tilde{X},\tilde{Y}] = D^{\mu\nu,\rho\sigma} \tilde{X}^{*}_{\mu\nu} \boldsymbol{k}_{[\alpha} \frac{\overleftrightarrow{\partial}}{\partial \boldsymbol{k}^{\beta]}} \, \tilde{Y}_{\rho\sigma} + 2\tilde{X}^{*}_{\mu[\alpha} \, \tilde{Y}^{\mu}_{\beta]}$$

• The operator insertion for the energy-momentum $\langle \text{out}|\hat{P}^{\alpha}|\text{out}\rangle = P^{\alpha}$ leads to leads to

$$\boldsymbol{P}^{\alpha} = \int_{k} \boldsymbol{K}^{\alpha}[\tilde{W}, \tilde{W}], \qquad \int_{k} = \int 2\pi \theta(k^{0}) \,\delta(k^{2}) \,\frac{d^{D}k}{(2\pi)^{D}}$$

• For the angular momentum, one has $\langle {
m out}|\hat{J}_{lphaeta}|{
m out}
angle=m{J}_{lphaeta}$ with

$$oldsymbol{J}^{lphaeta}=-i\int_koldsymbol{O}^{lphaeta}[ilde{W}, ilde{W}]$$

Emitted Energy-Momentum at $\mathcal{O}(G^3)$ (Two Loops)

• To leading order

$$oldsymbol{P}^lpha_{\mathcal{O}(G^3)} = \int_k oldsymbol{\mathcal{K}}^lpha_0\,, \qquad oldsymbol{\mathcal{K}}^lpha_0 = oldsymbol{\mathcal{K}}^lpha[ilde{\mathcal{A}}_0, ilde{\mathcal{A}}_0]$$

• Note that $\tilde{\mathcal{A}}_0^* = \tilde{\mathcal{A}}_0 \big|_{b\mapsto -b}$ (the tree-level amplitude is real!). So,

$$\boldsymbol{K}_{0}^{\alpha} = \boldsymbol{K}_{0}^{\alpha}\big|_{b \to -b} \,. \tag{1}$$

- Writing $\mathbf{K}_0^{\alpha} = f_{u_1} \check{u}_1^{\alpha} + f_{u_2} \check{u}_2^{\alpha} + f_b b^{\alpha} + f_k k^{\alpha}$ (here $\check{u}_i \cdot u_j = -\delta_{ij}$) we deduce
 - $f_{u_{1,2}}(-b \cdot k) = +f_{u_{1,2}}(b \cdot k), \quad f_b(-b \cdot k) = -f_b(b \cdot k), \quad f_k(-b \cdot k) = +f_k(b \cdot k).$
- Therefore, the integrand $b \cdot \mathbf{K}_0 = f_b b^2 + f_k b \cdot k$ is odd under $b \cdot k \mapsto -b \cdot k$,

$$b \cdot \boldsymbol{P}_{\mathcal{O}(G^3)} = 0$$

in agreement with the explicit result [Herrmann, Parra-Martinez, Ruf, Zeng '21]

Take-home message: Some components vanish by analyticity considerations.

Emitted Angular Momentum at $\mathcal{O}(G^3)$ (Two Loops)

• To leading order

$$\boldsymbol{J}_{\mathcal{O}(G^3)}^{\alpha\beta} = -i \int_{k} \boldsymbol{O}_{0}^{\alpha\beta}, \qquad \boldsymbol{O}_{0}^{\alpha\beta} = \boldsymbol{O}^{\alpha\beta}[\tilde{\mathcal{A}}_{0}, \tilde{\mathcal{A}}_{0}]$$

- ... [intermediate steps left to the reader as an exercise!]
- We can show that the integrand $u_1 \cdot \boldsymbol{O}_0 \cdot u_2$ is odd under $b \cdot k \mapsto -b \cdot k$,

$$u_1\cdot \boldsymbol{J}_{\mathcal{O}(G^3)}\cdot u_2=0$$

in agreement with the explicit result [Manohar, Ridgway, Shen '22]

The nontrivial components: $u_{1,2} \cdot P_{\mathcal{O}(G^3)}$ and $b \cdot J_{\mathcal{O}(G^3)} \cdot u_{1,2}$ can be evaluated by reducing them to (cut) **two-loop** integrals

[Herrmann, Parra-Martinez, Ruf, Zeng '21; Manohar, Ridgway, Shen '22] [Di Vecchia, CH, Russo, Veneziano '22].

Emitted Energy and Angular Momentum at $\mathcal{O}(G^4)$

To next-to-leading order, we split $P^{\alpha}_{\mathcal{O}(G^4)} = P^{\alpha}_{1rad} + P^{\alpha}_{2rad}$ and $J^{\alpha\beta}_{\mathcal{O}(G^4)} = J^{\alpha\beta}_{1rad} + J^{\alpha\beta}_{2rad}$

• Integer-PN contributions (even in velocity):

$$\boldsymbol{P}_{1\mathsf{rad}}^{\alpha} = 2 \int_{k} \operatorname{Re} \boldsymbol{K}^{\alpha} [\tilde{\mathcal{A}}_{0}, \tilde{\mathcal{B}}_{1O}^{(i)} + \tilde{\mathcal{B}}_{1E}], \qquad \boldsymbol{J}_{1\mathsf{rad}}^{\alpha\beta} = 2 \int_{k} \operatorname{Im} \boldsymbol{O}^{\alpha\beta} [\tilde{\mathcal{A}}_{0}, \tilde{\mathcal{B}}_{1O}^{(i)} + \tilde{\mathcal{B}}_{1E}]$$

• Half-odd-PN contributions (odd in velocity):

$$\begin{aligned} \boldsymbol{P}_{2\mathsf{rad}}^{\alpha} &= \int_{k} \left(2 \operatorname{Re} \boldsymbol{K}^{\alpha} [\tilde{\mathcal{A}}_{0}, \tilde{\mathcal{B}}_{1O}^{(h)}] - \operatorname{Im} \boldsymbol{K}^{\alpha} [\tilde{\mathcal{A}}_{0}, \tilde{\mathcal{C}}] \right), \\ \boldsymbol{J}_{2\mathsf{rad}}^{\alpha\beta} &= \int_{k} \left(2 \operatorname{Im} \boldsymbol{O}^{\alpha\beta} [\tilde{\mathcal{A}}_{0}, \tilde{\mathcal{B}}_{1O}^{(h)}] + \operatorname{Re} \boldsymbol{O}^{\alpha\beta} [\tilde{\mathcal{A}}_{0}, \tilde{\mathcal{C}}] \right) \end{aligned}$$

These (naively) involve three-loop integrals.

Can their analytic structure dictated by unitarity help us?

Emitted Energy and Angular Momentum at $\mathcal{O}(G^4)$

• The integer-PN contributions (even in velocity) behave as the $\mathcal{O}(G^3)$ ones,

$$b\cdot oldsymbol{P}_{1\mathsf{rad}}=0\,,\qquad u_1\cdot oldsymbol{J}_{1\mathsf{rad}}\cdot u_2=0$$

and $u_{1,2} \cdot \boldsymbol{P}_{1rad}$ and $b \cdot \boldsymbol{J}_{1rad} \cdot u_{1,2}$ indeed involve integrals at tree loops

• For the half-odd-PN contributions (odd in velocity) we find instead

$$u_{1,2} \cdot \boldsymbol{P}_{2\mathsf{rad}} = 2u_{1,2}^{\alpha} \int_{k} \operatorname{Re} \boldsymbol{K}_{\alpha}[\tilde{\mathcal{A}}_{0}, \tilde{\mathcal{B}}_{1O}^{(h)}] \quad \text{two loops}$$
$$b \cdot \boldsymbol{P}_{2\mathsf{rad}} = -b^{\alpha} \int_{k} \operatorname{Im} \boldsymbol{K}_{\alpha}[\tilde{\mathcal{A}}_{0}, \tilde{\mathcal{C}}] \quad \text{three loops}$$
$$u_{1,2} \cdot \boldsymbol{J}_{2\mathsf{rad}} \cdot b = 2u_{1,2}^{\alpha} b^{\beta} \int_{k} \operatorname{Im} \boldsymbol{O}_{\alpha\beta}[\tilde{\mathcal{A}}_{0}, \tilde{\mathcal{B}}_{1O}^{(h)}] \quad \text{two loops}$$
$$u_{1} \cdot \boldsymbol{J}_{2\mathsf{rad}} \cdot u_{2} = u_{1}^{\alpha} u_{2}^{\beta} \int_{k} \operatorname{Re} \boldsymbol{O}_{\alpha\beta}[\tilde{\mathcal{A}}_{0}, \tilde{\mathcal{C}}] \quad \text{three loops}$$

The 2rad energy and angular momentum (in the CM) only involve two-loop integrals!

• Warm-up: 2rad emitted energy, $P^{lpha}_{2 rad} = P^{lpha}_{\parallel} + (\cdots) b^{lpha}$

$$\boldsymbol{P}_{\parallel}^{\alpha} = \frac{G^4 m_1^2 m_2^2}{b^4} \Big[m_1 (\mathcal{E}^{(1)} \check{u}_1^{\alpha} + \mathcal{E}^{(2)} \check{u}_2^{\alpha}) + (1 \leftrightarrow 2) \Big]$$

with

$$\mathcal{E}^{(i)} = \frac{f_1^{(i)}}{\sigma^2 - 1} + f_2^{(i)} \frac{\operatorname{arccosh} \sigma}{(\sigma^2 - 1)^{3/2}} + f_3^{(i)} \frac{(\operatorname{arccosh} \sigma)^2}{(\sigma^2 - 1)^2}$$

for i = 1, 2 and polynomials in σ denoted by $f_{1,2,3}^{(i)}$ (here omitted for brevity)

• Perfectly matches [Dlapa, Kälin, Liu, Porto '22], where Q_1^{α} and Q_2^{α} where calculated up to $\mathcal{O}(G^4)$, using

$$oldsymbol{P}^lpha=-Q_1^lpha-Q_2^lpha$$
 .

Results: Half-Odd-PN Angular Momentum Loss

• New result: 2rad emitted angular momentum, $J_{2rad}^{\alpha\beta} = J_{\perp}^{\alpha\beta} + (\cdots)u_1^{[\alpha}u_2^{\beta]}$

$$\boldsymbol{J}_{\perp}^{\alpha\beta} = \frac{G^4 m_1^2 m_2^2}{b^3} \Big[m_1 (\mathcal{F}^{(1)} b^{[\alpha} u_1^{\beta]} + \mathcal{F}^{(2)} b^{[\alpha} u_2^{\beta]}) + (1 \leftrightarrow 2) \Big]$$

with

$$\mathcal{F}^{(i)} = \frac{g_1^{(i)}}{(\sigma^2 - 1)^2} + g_2^{(i)} \frac{\operatorname{arccosh} \sigma}{(\sigma^2 - 1)^{5/2}} + g_3^{(i)} \frac{(\operatorname{arccosh} \sigma)^2}{(\sigma^2 - 1)^3}$$

for i = 1, 2 and polynomials in σ denoted by $g_{1,2,3}^{(i)}$ (here omitted for brevity)

• Adding the static contribution [CH, Russo '24]

$$J_{2\mathsf{rad}} = oldsymbol{J}_{2\mathsf{rad}} + \mathcal{J}_{2\mathsf{rad}} \,, \qquad \mathcal{J}_{2\mathsf{rad}} = rac{G^2 p}{2b} \, Q_{1\mathsf{PM}}^2 \, \mathcal{I}(\sigma)^2$$

we obtain the 2rad angular momentum loss in the CM frame J_{2rad}

• The first few terms in its PN expansion agree with [Bini, Damour, Geralico '21, '22]

$$J_{2\mathsf{rad}} = \frac{G^4 M^5}{b^3} \nu^2 p_{\infty} \left[\frac{448}{5} + \left(\frac{1184}{21} - \frac{220256\nu}{1575} \right) p_{\infty}^2 + \cdots \right]$$

Summary and Outlook

- The **eikonal approach** provides a framework to **calculate scattering observables**, including the **impulse**, the **waveform** and the emitted **energy and angular momentum**.
- The unitarity and analyticity properties of the waveform at next-to-leading order greatly simplify the calculation of half-odd-PN (2rad) contributions to the radiated energy and angular momentum at O(G⁴) (three loops → two loops)

For the future:

- Calculate the integer-PN (1rad) contributions!
- Inclusion of tidal/spin effects
- NNLO waveform? Nonlinear memory effect