Quantum Magnetic Monopoles

arXiv:2411.18741

- Dirac (1948): electric charges + magnetic monopoles + EM field. Action + Quantum theory
- Strange non-locality
- Dirac string attached to each monopole
- Dirac quantisation condition \Longrightarrow quantum theory well-defined and independent of positions of strings
- Dirac veto: position of strings arbitrary, so long as they do not intersect worldlines of electrically charged particles

B

- Heavy monopole: treat as (semi-) classical background
- Quantise electrons and EM field in monopole background
- Remove location of monopole from spacetime, leaving space of non-trivial topology. EM field : U(1) bundle over this
- Gauge connection A_{α} in each patch U_{α} , no Dirac strings
- Magnetic charge is topological
- Use for `t Hooft lines in N=4 SYM

Wu-Yang Monopoles

Kristjansen and Zarembo

Light monopoles

- SUSY theories can have light or massless monopoles
- If monopoles are light and dynamical, Wu-Yang approach problematic
- Quantum monopole doesn't have definite location. Instead there is a wave function
- No clear choice of which points to exclude from spacetime for Wu-Yang bundle
- In path integral, sum over all monopole trajectories. Different bundle for each trajectory?

Dirac Approach Revisited

- Quantises system of dynamical electrons and monopoles plus EM field
- Dirac: field equations independent of positions of strings
- Independence of actions and path integral on positions of strings: generalised symmetries
- These generalised symmetries are anomalous. Restriction to configurations in which anomaly is zero = Dirac veto
- Anomaly cancellation?

CMH arXiv:2411.18741

Maxwell with Sources

 $d^{\dagger}F = j$

Electric 1-form current j, Magnetic 1-form current \tilde{j} Conserved: $d^{\dagger}i = 0$

4 dimensions, F is 2-form field strength

$$dF = *\tilde{j}$$

$$d^{\dagger}\tilde{j} = 0$$

Maxwell with Sources

$$d^{\dagger}F = j$$

Electric 1-form current j, Magnetic 1-form current \tilde{j} $d^{\dagger} i = 0$ Conserved:

Dirac: introduce 2-form \tilde{J} with

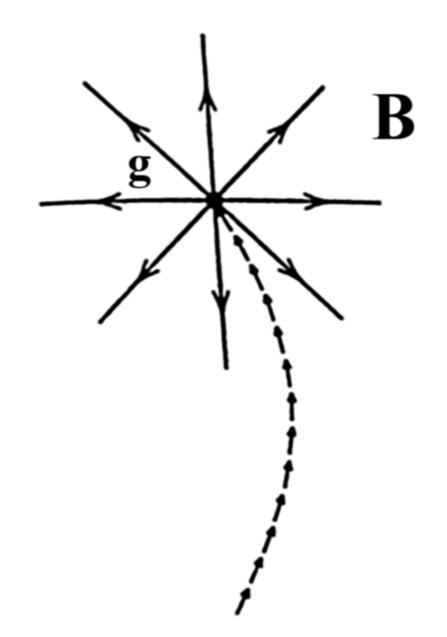
 $d^{\dagger} \tilde{J} = \tilde{j}$

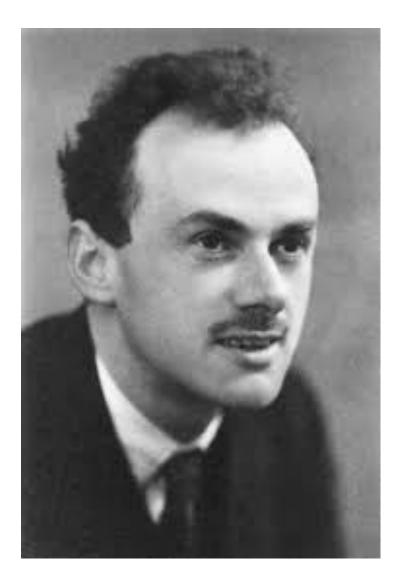
$$dF = *\tilde{j}$$

$$d^{\dagger}\tilde{j} = 0$$

Dirac string is attached to each magnetic monopole, going to infinity. 2-form \tilde{J} is the current density for these strings: if \tilde{i} localised on the world-line of a magnetic monopole,

then \tilde{J} is localised on the world-sheet of the corresponding Dirac string.





The Dirac Formalism $dF = *\tilde{j} \qquad \qquad d^{\dagger}\tilde{J} = \tilde{j}$

Solve: $F = *\tilde{J} + dA$

- $\implies \quad d(F *\tilde{J}) = 0$

1-form potential A

The Dirac Formalism $dF = * \tilde{j} \qquad \qquad d^{\dagger} \tilde{J} = \tilde{j}$

 $\implies d(F - *\tilde{J}) = 0$ $F = *\tilde{J} + dA$

 $S[A] = S_{particles} + \left[\frac{1}{2}F \wedge *\right]$ $S_{particles} = \sum (mass) \times (length of worldline)$

1-form potential A

$$F - A \wedge *j$$

Dual formulation

Also: Dirac strings for electric charges, 2-form current J

 $d^{\dagger}J = j$

 $d^{\dagger}F = j$ Solve

 $*F = *J + d\tilde{A}$

Dual potential \tilde{A} $\tilde{F} = *F$

 $S[\tilde{A}] = \int \frac{1}{2} \tilde{F} \wedge *\tilde{F} - \tilde{A} \wedge *\tilde{j}$

Currents

Particle of electric charge q, world-line is a curve \mathscr{C} , $x^{\mu} = X^{\mu}(\tau)$

$$q \int_{\mathscr{C}} A = q \int d\tau A_{\mu}(X(\tau)) \frac{dX^{\mu}}{d\tau} = \int_{\mathscr{M}} A$$

$$j^{\mu}(x) = q \int d\tau \frac{dX^{\mu}}{d\tau} \delta(x - X(\tau))$$

 $1 = q_{O_{\mathscr{C}}}$

 $d^{\dagger}J = j$ $J = q\delta_{\mathcal{D}}$

 $\wedge *j$ Multivalued. Dirac quantisation: $W(\mathscr{C}) = e^{\frac{i}{\hbar}q\int_{\mathscr{D}}F}$ well-defined

 $\delta_{\mathscr{C}}$ 1-form delta-function

 \mathscr{D} is a 2-surface with boundary \mathscr{C}

Wilson Loops

 \mathscr{C} a closed curve bounding 2-surface \mathscr{D}

$$q \int_{\mathscr{C}} A = q \int_{\mathscr{D}} F$$
$$\int_{\mathscr{M}} A \wedge *j = \int_{\mathscr{M}} F \wedge$$

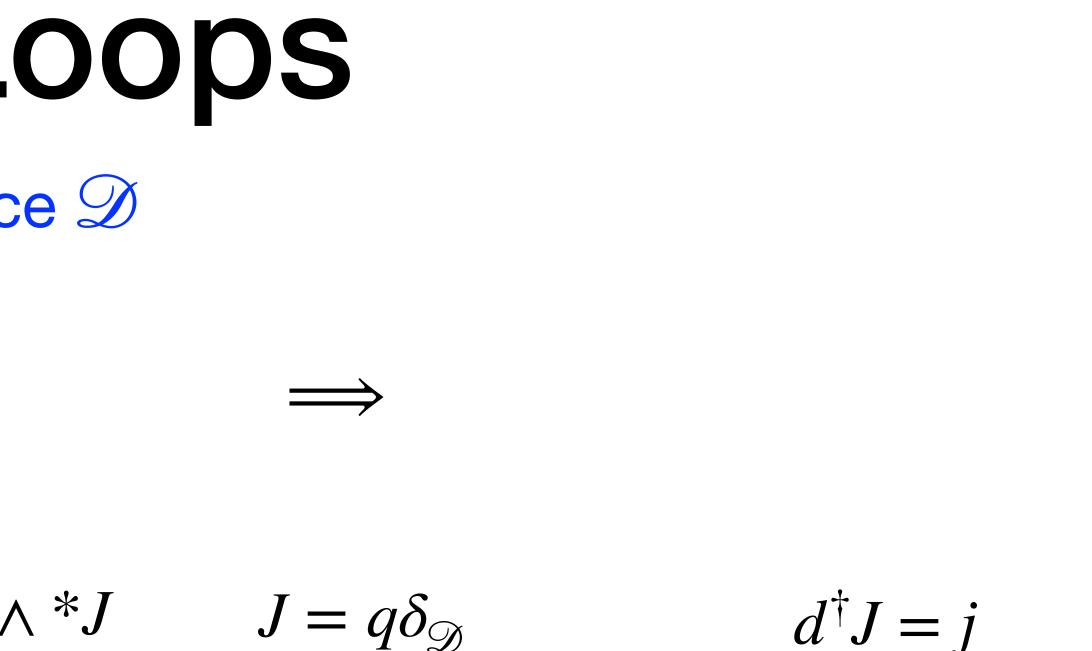
For two surfaces $\mathscr{D}, \mathscr{D}'$ with same boundary \mathscr{C}

$$q\int_{\mathscr{D}'} F - q\int_{\mathscr{D}} F = q\int_{\mathscr{D}'-\mathscr{D}}$$

 $W(\mathscr{C}) = e^{\frac{i}{\hbar}q\int_{\mathscr{D}}F}$ Then

well-defined if

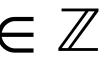
$$pq = 2\pi n, \quad n \in$$



$F = 2\pi pq$

Magnetic charge p

Dirac quantisation



N particles, i = 1, ..., N

Masses m_i , electric charges q_i and magnetic charges p_i moving

Worldlines \mathscr{C}_i given by $x^{\mu} = X_i^{\mu}(\tau_i)$ $j(x) = \sum_{i=1}^{N} q_i \delta_{\mathcal{C}_i}(x), \quad \tilde{j}(x) = \sum_{i=1}^{N} q_i \delta_{\mathcal{C}_i}(x)$ $S_{particles} = \sum_{i} m_{i} \int d\tau_{i} \sqrt{\dot{X}_{i}^{2}}$

Dirac's Action

$$S[A] = S_{particles} + \int \frac{1}{2} F \wedge *F - A \wedge *j \qquad F = *\tilde{J} + dA$$

• Veto \implies field equations independent of positions of strings

$$= \sum_{i=1}^{N} p_i \delta_{\mathscr{C}_i}(x) \qquad \tilde{J} = \sum_i p_i \delta_{\mathscr{D}_i}$$

3-form symmetries

$$d^{\dagger}J = j \qquad d^{\dagger}\tilde{J} = \tilde{j}$$

 $\delta J = d^{\dagger} \rho \qquad \delta \tilde{J} = d^{\dagger} \tilde{\rho}$

 $F = *\tilde{J} + dA \qquad *F = *J + d\tilde{A}$ $\delta A = * \tilde{\rho}$

Symmetry of action with 3-form parameter ρ

Don't determine J, \tilde{J} completely

SYMMETRY

invariant if

 $\delta \tilde{A} = *\rho$

Interpretation of Symmetry

Smooth deformation of Dirac string world-sheet ${\mathscr D}$ to ${\mathscr D}'$:

Family of Dirac string world-sheets $\mathscr{D}(\xi)$ parameterised by ξ with

$\mathcal{D}(0) = \mathcal{D} \text{ and } \mathcal{D}(1) = \mathcal{D}'$

Family of 2-dimensional world-sheets sweeps out a 3-dimensional surface ${\mathscr E}$

$$\tilde{J}' - \tilde{J} = pd^{\dagger}\delta$$

Change in \tilde{J} for infinitesimal deformation of \mathscr{D} , of the form $\delta \tilde{J} = d^{\dagger} \tilde{\rho}$ where $\tilde{\rho}$ is a 3-form current localised on \mathscr{E}

E

Generalised Symmetries in Maxwell Theory

dF = 0

F, * *F* conserved 2-form currents F = dA

0-form gauge symmetry $\delta A = d\sigma$ $\delta A = \lambda$ 1-form symmetry Constrained parameter: regard as global symmetry

1-form symmetries modulo 0-form symmetries: Cohomology class $[\lambda]$

Gaiotto, Kapustin, Seiberg, Willett

d * F = 0

 $d\lambda = 0$

Gauging 1-form Symmetry

Seek theory with symmetry for *unconstrained* λ

Introduce 2-form gauge field B

 $\delta B = d\lambda, \ \delta A = \lambda$

F = dA - B

$$S = \int \frac{1}{2} F \wedge *F$$

invariant

Dual Symmetry

$$*F = d\tilde{A}$$
$$\delta \tilde{A} = \tilde{\lambda}, \quad \delta \tilde{B} = d\tilde{\lambda}$$
$$*F = d\tilde{A} - \tilde{B}$$

Dual Gauge Symmetry in Original Theory

$$F = dA$$

Couple \tilde{B} to Noether current F $S = \frac{1}{2} \int F \wedge *F + \tilde{B} \wedge F$

Invariant under $\delta \tilde{B} = d\tilde{\lambda}$

Anomaly

Obstruction to gauging both symmetries

$$S = \int \frac{1}{2} F \wedge *F + \tilde{B} \wedge dA$$

Invariant under $\delta \tilde{B} = d\tilde{\lambda}$

Under $\delta B = d\lambda$, $\delta A = \lambda$

 $S = \left[\frac{1}{2}F \wedge *F + \tilde{B} \wedge F\right]$ Alternative action

 $\delta S = - \int d\tilde{\lambda} \wedge B$ Invariant under $\delta B = d\lambda$, $\delta A = \lambda$, but

F = dA - B

 $\delta S = \int d\lambda \wedge \tilde{B}$

Obstruction to simultaneous gauge of λ , $\tilde{\lambda}$ 1-form symmetries:

"Mixed Gauge Anomaly"

Ungauged theory has "mixed 't Hooft anomaly" in λ , $\tilde{\lambda}$ 1-form symmetries

Gaiotto, Kapustin, Seiberg, Willett

Obstruction to simultaneous gauge of λ , $\tilde{\lambda}$ 1-form symmetries:

"Mixed Gauge Anomaly"

Anomaly can be cancelled by adding a 5-d action on a 5-d space with boundary the 4-d spacetime

$$S_5 = \int B \wedge a$$

Ungauged theory has "mixed 't Hooft anomaly" in λ , $\overline{\lambda}$ 1-form symmetries

Gaiotto, Kapustin, Seiberg, Willett

 $d\tilde{B}$

Dirac Action

Write

$F = *\tilde{J} + dA \quad \rightarrow \quad F = dA - B$

Dirac action becomes gauged Maxwell theory, with Dirac string currents J, \tilde{J} reinterpreted as gauge fields \tilde{B}, B . 1-form symmetries with 1-form parameters $\lambda, \tilde{\lambda}$

$\rho = * \tilde{\lambda}, \ \tilde{\rho} = * \lambda$ $B = - * \tilde{J}, \ \tilde{B} = - * J$

The anomaly and the veto

Under gauge transformation $\delta B = d\lambda$, $\delta A = \lambda$

$$\delta S = \int_{\mathscr{M}} \lambda \wedge *j = \sum_{i} q_{i} \int_{\mathscr{M}} \lambda$$

moving the Dirac strings:

$$\lambda = \sum_{i} p_i * \delta_{\mathscr{C}_i},$$

$$\delta S = \sum_{i,j} q_i p_j \int_{\mathscr{M}} \delta_{\mathscr{C}_j} \wedge \delta_{\mathscr{C}_i}$$

 $\lambda \wedge *\delta_{\mathscr{C}_i}$

For a λ arising from change of $\tilde{J} = \sum p_i \delta_{\mathcal{D}_i}$ that results from

$$\delta S = \sum_{i,j} q_i p_j \int_{\mathscr{M}} \delta_{\mathscr{C}_j} \wedge$$

3-dimensional surface \mathscr{E}_i

Veto: None of these must cross any of the electric worldlines \mathscr{C}_i

For $i \neq j$ Dirac veto $\Longrightarrow \delta_{\mathscr{C}_i} \wedge \delta_{\mathscr{C}_i} = 0$

For i = j, \mathscr{C}_i is tangent to $\mathscr{C}_i \Longrightarrow \delta_{\mathscr{C}}$ Dirac Veto =

Dirac Veto: restricts to configurations of background gauge fields B, B for which anomaly vanishes

Family of Dirac string world-sheets $\mathscr{D}_{i}(\xi)$ parameterised by ξ sweeps out a

$$\delta_{\mathscr{C}_i} \wedge \delta_{\mathscr{C}_i} = 0$$

$$\Rightarrow \delta S = 0$$

Dodging the veto: Anomaly inflow

Anomaly can be cancelled by adding a 5-d action on a 5-d space with boundary the 4-d spacetime

- 4-d Spacetime M boundary of 5-d space X
- Gauge fields on M
- Charged particles on M are ends of charged strings on X
- Dirac strings on M are boundary of Dirac membranes on X

3-forms
$$J_3 = *\tilde{B}_2, \quad \tilde{J}_3 = *B_2$$

$$S_5 = \int B \wedge d\tilde{B}$$

Dodging the veto: D3-brane

- Electric charges on D3: Fundamental strings ending on D3
- Magnetic charges on D3: D-strings ending on D3
- F strings and D strings mutually local, so no veto?

Dodging the veto: D3-brane

- Electric charges on D3: Fundamental strings ending on D3
- Magnetic charges on D3: D-strings ending on D3
- F strings and D strings mutually local, so no veto?

Anomalous variation of S_{Dirac} can be cancelled by δC_4

 $F = dA - B, \quad B = b_{NSNS} + *J$

Conclusion

- Dirac's action has generalised 1-form symmetries
- Veto is restriction to configurations in which anomaly vanishes
- Treats case in which electric and magnetic particles both light and dynamical
- Generalisations: p-form gauge fields coupling to branes: higher form symmetries.
 Born-Infeld and Chern-Simons interactions. Self-dual.
- Embed in string theory: D3 brane action
- Issue: Requires \tilde{j} to be conserved off-shell to write $d^{\dagger}\tilde{J} = \tilde{j}$
- Field theory for electric and magnetic particles? [Zwanziger, Schwinger]

p-form delta-function

For any p form ω on \mathcal{M} $\omega = \omega \wedge *\delta_{\mathcal{N}}$

If $\mathcal{N} \subset \mathcal{M}$ specified by $x^{\mu} = X^{\mu}(\sigma^{a})$

For submanifolds with boundary:

$$\delta_{\partial J}$$

For p-dimensional submanifold $\mathcal{N} \subset \mathcal{M}$ define **p-form delta-function**: $\delta_{\mathcal{N}}$

de Rham current

 $\delta_{\mathcal{N}}(x) = \begin{bmatrix} d^{p}\sigma & \varepsilon^{a_{1}a_{2}\dots a_{p}} \frac{\partial X^{\mu_{1}}}{\partial \sigma^{a_{1}}} \frac{\partial X^{\mu_{2}}}{\partial \sigma^{a_{2}}} \dots \frac{\partial X^{\mu_{p}}}{\partial \sigma^{a_{p}}} \delta(x - X(\sigma)) \end{bmatrix}$

 $\mathcal{M} = d^{\dagger} \delta_{\mathcal{M}}$