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Motivation

• BH spectroscopy aims in the understanding of QNMs (the characteristic oscillations of a
perturbed BH), which are triggered by BH interactions.

• The produced GWs carry information (mass, spin, enviroment and underlying theory).
• The QNM are usual in the linear regime and obey the linear Regge-Wheller-Zerilli equation.
• In high frequency dominance, (eikonal regime) the corresponding QNMs are linked to

spherical harmonics with large angular quantum numbers (ℓ ≫ 1).
• This regime is tied to a collection of null geodesics focused around the so-called photon ring

(the birth place of QNMs).
• QNMs in the eikonal regime can be treated as small perturbations around the Penrose limit of

the background geometry centered on the photon ring.



• Full nonlinear numerical simulations have shown clear signs of non-linearities, the
Quadratic-QNMs (QQNMs), due to nonlinear nature of General Relativity.

• At second order in perturbation theory, linear mode couplings lead to QQNMs.
• These modes probe GR deeper in the nonlinear regime, and therefore are of paramount

importance.
• Our aim is see if QQNMs in the eikonal regime can be treated similarly to the linear QNMs,

also at second-order in perturbation theory in the Penrose limit of the background
Schwarzschild geometry.
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1. (Very brief) Introduction to QNMs.







Bucciotti, Juliano, Kuntz & Trincherini, 2024

Rnum
ℓ×ℓ ∼ 0.2 ℓ large



2. The Penrose Limit

Theorem
Penrose: Every spacetime has a pp-wave as a limit.

The Penrose limit associates to every space-time metric 𝑔𝑎𝑏, with line element d𝑠2, and a null
geodesic 𝛾 in that space-time, a (limiting) plane wave metric:
1) Write the metric in coordinates 𝑉, 𝑍, 𝑍̄ “adapted” to 𝛾, with the remaining coordinate 𝑈 playing
the role of the affine parameter and 𝛾(𝑈) coinciding with the geodesic at 𝑉 = 𝑍 = 𝑍̄ = 0.
2) Change coordinates to

(𝑈,𝑉, 𝑍, 𝑍̄) = (𝑢, 𝜆2𝑣, 𝜆𝑧, 𝜆𝑧)

for some real 𝜆 and to take the limit

lim
𝜆→0

𝜆−2d𝑠2 = d𝑠2
𝛾 .



The resulting metric d𝑠2
𝛾 is the so-called Penrose limit of the initial space-time, which, recast in

Brinkmann coordinates, has the plane-parallel (pp) wave form

d𝑠2
𝛾 = 2d𝑢d𝑣 + 𝐻 (𝑢, 𝑧, 𝑧)d𝑢2 − 2d𝑧d𝑧. (1)

The coordinate 𝑢 plays the role of the affine parameter along the geodesic, and the function 𝐻

controls the geodesic deviation properties along the transverse coordinates 𝑧 and 𝑧. For the
Schwarzschild black hole of mass 𝑀 and metric

d𝑠2 = 𝑓 (𝑟)d𝑡2 − 𝑓 −1(𝑟)d𝑟2 − 𝑟2(d𝜃2 + sin2 𝜃d𝜙2),
𝑓 (𝑟) = 1 − 2𝑀/𝑟, (2)

the Penrose limit around the circular photon ring located at 𝑟0 = 3𝑀 and 𝜃 = 𝜋/2 has the metric (1)
with

𝐻 (𝑧, 𝑧) = − 1
3𝑀2 (𝑧

2 + 𝑧2), (3)

with 𝑢 = −𝑡/3 and 𝑣 = −𝑡 + 3
√

3𝑀𝜙 in terms of Schwarzschild coordinates.



Linear Perturbations
For a generic pp-wave space-time such as the one described by the metric (1), Einstein (vacuum)
equations reduce to

𝐻𝑧𝑧̄ = 0. (4)

For such spacetimes, metric perturbations ℎ𝜇𝜈 that satisfies the linearized Einstein vacuum
equations can be expressed in terms of a complex scalar field Φ, the Hertz potential, which satisfies

1
2
□Φ = −Φ𝑧𝑧̄ −

1
2
𝐻 (𝑧, 𝑧)Φ𝑣𝑣 +Φ𝑢𝑣 = 0. (5)

Indeed, having a solution of the scalar wave equation (5), one can construct solutions of spin-two
states by using the spin-raising operator. The latter is written as

𝑅+ =d𝑢 𝜕𝑧̄ + d𝑧 𝜕𝑣 ,
𝑅− =d𝑢 𝜕𝑧 + d𝑧 𝜕𝑣 . (6)



The spin-two field reads

ℎ𝜇𝜈d𝑥𝜇d𝑥𝜈 = ℎ++𝜇𝜈d𝑥𝜇d𝑥𝜈 + ℎ−−𝜇𝜈 d𝑥𝜇d𝑥𝜈 (7)

where

ℎ++𝜇𝜈d𝑥𝜇d𝑥𝜈 =𝑅+
[
𝑅+(Φ)

]
,

ℎ−−𝜇𝜈 d𝑥𝜇d𝑥𝜈 =𝑅−
[
𝑅− (Φ̄)

]
. (8)

Then in the radiation gauge (which also implies the transverse-free and traceless conditions)

∇𝜇ℎ𝜇𝜈 = 𝑔𝜇𝜈ℎ𝜇𝜈 = 0, ℎv𝜇 = 0, (9)

the metric perturbed by the spin-two fields ℎ𝜇𝜈 is at first-order

d𝑠2 = 2d𝑢d𝑣 +
[
𝐻 +Φ𝑧̄ 𝑧̄ + Φ̄𝑧𝑧

]
d𝑢2 + 2Φ𝑣𝑧̄d𝑢d𝑧 + 2Φ̄𝑣𝑧d𝑢d𝑧

+ Φ𝑣𝑣d𝑧2 + Φ̄𝑣𝑣d𝑧2 − 2d𝑧d𝑧. (10)



The linearized Einstein equations are satisfied if Φ satisfies the equation

−Φ𝑧𝑧̄ −
1
2
𝐻 (𝑧, 𝑧)Φ𝑣𝑣 +Φ𝑢𝑣 = 0.

For the QNMs, we first look for linear solutions to the above equation and demand an outgoing
boundary condition for the unstable direction, and a decaying boundary condition for the stable
direction. For the fundamental mode, we get (Fransen, Giataganas et al.)

Φ(𝑢, 𝑣, 𝑧, 𝑧) =𝐴𝑒−𝑖𝑃𝑢𝑢+𝑖𝑃𝑣𝑣+ 3
4 ℓ𝜔

2 (1+𝑖) (𝑧2+2𝑖𝑧𝑧̄+𝑧̄2 )

× 𝐻𝑛 (
√︁
−3𝑖(𝑛 − ℓ)𝜔𝑥1)𝐻𝑛2 (

√︁
3(𝑛2 − ℓ)𝜔𝑥2), (11)

where
𝑃𝑢 =

3
2
𝜔(𝑖 − 1), 𝑃𝑣 = ℓ𝜔 ≡ 𝜔ℓ , 𝜔 =

1
3
√

3𝑀
. (12)

The QNM frequencies are

𝜔𝑛ℓ =

(
ℓ + 1

2

)
𝜔 + 𝑖𝜔

(
1
2
+ 𝑛

)
. (13)



The lesson
The pp-wave limit of the Schwarzschild BH captures the QNM frequencies at large ℓ.

and

The question
Is this an accident, or we can use it also at second order.



The answer
Penrose limit can go even beyond first-order perturbation theory.

We will examine in the sequence how second-order perturbations of the Schwarzschild BH, can be
approximated by their pp-wave limit.
It is more convenient to work with the Weyl scalars. We first need to find the appropriate null
tetrad. The latter in the coordinates (𝑢, 𝑣, 𝑧, 𝑧) is given up to first-order by

ℓ𝜇 =𝑎(1, 0, 0, 0),

𝑛𝜇 =
1
𝑎

[
1
2
(𝐻 +Φ𝑧𝑧 + Φ̄𝑧̄ 𝑧̄), 1, 0, 0

]
𝑚𝜇 =

(
−1

2
Φ𝑣𝑧̄ , 0,−

1
2
Φ𝑣𝑣, 1

)
,

𝑚̄𝜇 =

(
−1

2
Φ̄𝑣𝑧 , 0, 1,−

1
2
Φ̄𝑣𝑣

)
, (14)

so that the first-order metric (10) can be also written as

d𝑠2 = 2ℓ(𝜇𝑛𝜈) − 2𝑚 (𝜇𝑚̄𝜈) . (15)



A simple comparizon with perturbations of the form

d𝑠2 = 2d𝑢d𝑣 + (ℎ+ − 𝑖ℎ×)d𝑧2 + (ℎ+ + 𝑖ℎ×)d𝑧2 − 2d𝑧d𝑧. (16)

reveals that

ℎ+ =
1
2

(
Φ𝑣𝑣 + Φ̄𝑣𝑣

)
, ℎ× =

1
2𝑖

(
Φ̄𝑣𝑣 −Φ𝑣𝑣

)
(17)

Then, the Weyl scalars are

Ψ0 = − 𝐶𝜇𝜈𝜌𝜎 ℓ𝜇𝑚𝜈ℓ𝜌𝑚𝜎 , Ψ1 = −𝐶𝜇𝜈𝜌𝜎 ℓ𝜇𝑛𝜈ℓ𝜌𝑚𝜎 ,

Ψ2 = − 𝐶𝜇𝜈𝜌𝜎 ℓ𝜇𝑚𝜈𝑚̄𝜌𝑛𝜎 , Ψ3 = −𝐶𝜇𝜈𝜌𝜎 ℓ𝜇𝑛𝜈𝑚̄𝜌𝑛𝜎 , Ψ4 = −𝐶𝜇𝜈𝜌𝜎 𝑛𝜇𝑚̄𝜈𝑛𝜌𝑚̄𝜎 , (18)

and the two Weyl scalars we will be interested below, Ψ0 and Ψ4, are

Ψ0 =
1
2
𝑎2(ℎ+ − 𝑖ℎ×)𝑣𝑣 , (19)

Ψ4 =
1

2𝑎2 (ℎ+ + 𝑖ℎ×)𝑣𝑣 . (20)



For completeness, the corresponding non-zero spin coefficients in the basis (14) up to first-order are

𝜏 (1) = −1
2
Φ𝑣𝑣𝑧̄ ,

𝜌 = 0,

𝜎 (1) =
1
2
𝑎Φ𝑣𝑣𝑣 ,

𝜅 = 0,

𝛾 (1) =
1

2𝑎
Φ𝑣𝑧̄𝑧̄ ,

𝜆 (1) =
1
𝑎

(
Φ̄𝑣𝑧𝑧̄ +

1
4
𝐻Φ̄𝑣𝑣𝑣 −

1
2
Φ̄𝑢𝑣𝑣

)
,

𝜇 (1) =
1

2𝑎
(
Φ𝑣𝑧̄𝑧̄ + Φ̄𝑣𝑧𝑧

)
,

𝛼 = 0,

𝛽 (1) = −1
2
Φ𝑣𝑣𝑧̄ ,

𝜖 = 0,

𝜈 (0) = − 1
2𝑎2 𝐻𝑧̄

𝜈 (1) = − 1
4𝑎2

(
2Φ𝑧̄ 𝑧̄ 𝑧̄ + 2Φ̄𝑧𝑧𝑧̄ + 𝐻𝑧Φ̄𝑣𝑣

)
𝜋 (1) = −1

2
Φ̄𝑣𝑣𝑧 .

(21)



The non-zero Weyl scalars turn out to be

Ψ
(1)
0 =

1
2
𝑎2Φ𝑣𝑣𝑣𝑣 Ψ

(1)
1 = −1

2
𝑎Φ𝑣𝑣𝑣𝑧̄ , Ψ

(1)
2 =

1
2
Φ𝑣𝑣𝑧̄𝑧̄ ,

Ψ
(1)
3 = − 1

2𝑎
Φ𝑣𝑧̄𝑧̄ 𝑧̄ , Ψ

(0)
4 =

1
2𝑎2 𝐻𝑧̄ 𝑧̄ (22)

and

Ψ
(1)
4 =

1
𝑎2

(
1
2
Φ𝑧̄ 𝑧̄ 𝑧̄ 𝑧̄ +

1
2
Φ̄𝑧𝑧𝑧̄ 𝑧̄ +

1
4
𝐻𝑧Φ̄𝑣𝑣𝑧̄ +

1
4
𝐻𝑧̄Φ̄𝑣𝑣𝑧 +

1
2
𝐻Φ̄𝑣𝑣𝑧𝑧̄

+1
2
𝐻𝑧𝑧̄Φ̄𝑣𝑣 +

1
8
𝐻2Φ̄𝑣𝑣𝑣𝑣 − Φ̄𝑢𝑣𝑧𝑧̄ −

1
2
𝐻Φ̄𝑢𝑣𝑣𝑣 +

1
2
Φ̄𝑢𝑢𝑣𝑣

)
. (23)



3. Second-order equation for the Weyl scalar Ψ0
For Petrov-type D spacetimes like the Kerr black hole, the first-order Ψ (1)

4 is completely
determined by the zeroth-order background (Teukolsky equation) and similarly, the second-order
Ψ

(2)
4 is determined purely by first-order quantities. For Petrov-type N, like the pp-wave

background we are considering here, this is not true any longer. In fact, the first-order Ψ (1)
4 is

determined now by the other first-order Weyl scalars and similarly the second-order Ψ (2)
4 is

determined by the second-order quantities. In other words, to determine Ψ
(2)
4 , we need all the

second-order perturbations of the metric. Therefore, for Petrov-type N spacetimes, it is more
convenient to consider Ψ0 instead. In order to determine the equation for Ψ0, we will need the
following two Bianchi identities for Ricci-flat spacetimes

− (𝛿 + 𝜋 − 4𝛼)Ψ0 + (𝐷 − 4𝜌 − 2𝜖)Ψ1 + 3𝜅Ψ2 = 0, (24)
− (Δ + 𝜇 − 4𝛾)Ψ0 + (𝛿 − 4𝜏 − 2𝛽)Ψ1 + 3𝜎Ψ2 = 0, (25)

where

𝐷 = ℓ𝜇∇𝜇, Δ = 𝑛𝜇∇𝜇, 𝛿 = 𝑚𝜇∇𝜇, 𝛿 = 𝑚̄𝜇∇𝜇 . (26)



Let us now act on Eq. (24) with 𝛿 (0) and on Eq. (25) with 𝐷 (0) and substract them. =⇒

−
[
𝛿 (0) (𝛿 + 𝜋 − 4𝛼) − 𝐷 (0) (Δ + 𝜇 − 4𝛾)

]
Ψ0 +

[
𝛿 (0) (𝐷 − 4𝜌 − 2𝜖) − 𝐷 (0) (𝛿 − 4𝜏 − 2𝛽)

]
Ψ1

+3
(
𝛿 (0) 𝜅 − 𝐷 (0)𝜎

)
Ψ2 = 0 =⇒ up to second order (27)

−
[
𝛿 (0) (𝛿 + 𝜋 − 4𝛼) (0) − 𝐷 (0) (Δ + 𝜇 − 4𝛾) (0)

]
Ψ

(1)
0

−
[
𝛿 (0) (𝛿 + 𝜋 − 4𝛼) (1) − 𝐷 (0) (Δ + 𝜇 − 4𝛾) (1)

]
Ψ

(1)
0

−
[
𝛿 (0) (𝛿 + 𝜋 − 4𝛼) (0) − 𝐷 (0) (Δ + 𝜇 − 4𝛾) (0)

]
Ψ

(2)
0

+
[
𝛿 (0) (𝐷 − 4𝜌 − 2𝜖) (0) − 𝐷 (0) (𝛿 − 4𝜏 − 2𝛽) (0)

]
Ψ

(1)
1

+
[
𝛿 (0) (𝐷 − 4𝜌 − 2𝜖) (1) − 𝐷 (0) (𝛿 − 4𝜏 − 2𝛽) (1)

]
Ψ

(1)
1

−3𝐷 (0)
(
𝜎 (1)Ψ (1)

2

)
= 0. (28)



Note that [
𝛿 (0) (𝐷 − 4𝜌 − 2𝜖) (0) − 𝐷 (0) (𝛿 − 4𝜏 − 2𝛽) (0)

]
Ψ

(2)
1

=

(
𝛿 (0)𝐷 (0) − 𝐷 (0)𝛿 (0)

)
Ψ

(2)
1 = 0, (29)

due to the commutation relation

[𝛿, 𝐷] = (𝛼̄ + 𝛽 − 𝜋̄)𝐷 + 𝜅Δ − ( 𝜌̄ + 𝜖 − 𝜖)𝛿 − 𝜎𝛿, (30)

so that [
𝛿 (0) , 𝐷 (0) ] = 0. (31)

Eq. (28) can explicitly be written by using Eqs. (21), (22) and (23) and the following explicit form
of the differential operators 𝛿, 𝐷 and Δ

𝛿 (0) = − 𝜕𝑧 , 𝛿 (1) = −1
2
Φ𝑢𝑢𝜕𝑧̄ , 𝐷 (0) = 𝑎𝜕𝑣 , Δ(0) =

1
𝑎

(
𝜕𝑢 −

1
2
𝐻𝜕𝑣

)
,

Δ(1) = − 1
2𝑎

(Φ𝑧̄ 𝑧̄ + Φ̄𝑧𝑧)𝜕𝑣 +
1
𝑎
(Φ𝑣𝑧̄𝜕𝑧̄ + Φ̄𝑣𝑧𝜕𝑧). (32)



Then it turns out from Eq.(28) that the second-order Ψ (2)
0 satisfies the equation

T2Ψ
(2)
0 = 𝑆

(2)
2 (33)

where

T2 = −𝛿 (0) (𝛿 + 𝜋 − 4𝛼) (0) + 𝐷 (0) (Δ + 𝜇 − 4𝛾) (0) , (34)

and the source 𝑆
(2)
Ψ0

is

𝑆
(2)
Ψ0

=

[
𝛿 (0) (𝛿 + 𝜋 − 4𝛼) (1) − 𝐷 (0) (Δ + 𝜇 − 4𝛾) (1)

]
Ψ

(1)
0

−
[
𝛿 (0) (𝐷 − 4𝜌 − 2𝜖) (1) − 𝐷 (0) (𝛿 − 4𝜏 − 2𝛽) (1)

]
Ψ

(1)
1

+3𝐷 (0)
(
𝜎 (1)Ψ (1)

2

)
(35)

We can now use Eqs. (21), (22) and (23) in (34) from where we find that

T2Ψ
(2)
0 =

1
2
□Ψ (2)

0 . (36)



The source is:

𝑆
(2)
Ψ0

=𝑎2
[
− 3

2
Φ2

𝑣𝑣𝑣𝑧̄ +Φ𝑣𝑣𝑣Φ𝑣𝑣𝑣𝑧̄𝑧̄ +
3
2
Φ𝑣𝑣𝑧̄𝑧̄Φ𝑣𝑣𝑣𝑣

−2Φ𝑣𝑣𝑧̄Φ𝑣𝑣𝑣𝑣𝑧̄ +
1
4
Φ𝑣𝑣Φ𝑣𝑣𝑣𝑣𝑧̄𝑧̄ +

1
4
Φ̄𝑣𝑣Φ𝑣𝑣𝑣𝑣𝑧𝑧

+Φ𝑣𝑧̄𝑧̄Φ𝑣𝑣𝑣𝑣𝑣 −
1
2
Φ𝑣𝑧̄Φ𝑣𝑣𝑣𝑣𝑣𝑣𝑧̄ −

1
2
Φ̄𝑣𝑧Φ𝑣𝑣𝑣𝑣𝑣𝑧

+1
4
Φ𝑧̄ 𝑧̄Φ𝑣𝑣𝑣𝑣𝑣𝑣 +

1
4
Φ̄𝑧𝑧Φ𝑣𝑣𝑣𝑣𝑣𝑣

]
. (37)

When substituting the solution of the linear problem for Φ, the source in Eq. (37) becomes

𝑆
(2)
Ψ0

= − 6(1 + 𝑖)𝑎2ℓ7𝜔8Φ2 − 3
4
𝑎2ℓ7𝜔8

[
1 + 3ℓ𝜔2(𝑧 − 𝑧)2

]
ΦΦ̄. (38)



Then, it is straightforward to verify that the solution to the equation
1
2
□Ψ (2)

0 = 𝑆
(2)
Ψ0

, (39)

is the sum of two functions, one oscillating and decaying, the other only decaying. The oscillating
part satisfies

1
2
□Ψ (2)

0 osc = −6(1 + 𝑖)𝑎2ℓ7𝜔8Φ2, (40)

and its solution is

Ψ
(2)
0 osc = 2𝑖𝑎2𝑃6

𝑣Φ
2. (41)

Similarly, the the non-oscillating (decaying) part satisfies
1
2
□Ψ (2)

0 dec = −3
4
𝑎2ℓ7𝜔8

[
1 + 3ℓ𝜔2(𝑧 − 𝑧)2

]
, (42)

and it is given by

Ψ
(2)
0 dec = −1

4
𝑎2ℓ6𝜔6ΦΦ̄. (43)



4.Quadratic QNMs for the channel (ℓ × ℓ) → 2ℓ
We are now in the position to calculate the non-linear QNMs of the gravitational waves on the
photon ring. This is not yet the full answer as we will need to propagate it away from the photon
ring at large distances. Using Eqs. (17) and (19) we find

Ψ0 =
1
2
ℎ𝑣𝑣 = −1

2
𝑃2
𝑣ℎ, (44)

so that

ℎ =
2Ψ0

𝑃2
𝑣

, (45)

From Eqs. (41) and (22) we obtain

ℎ (2) =
2Ψ (2)

0 osc
(2𝑃𝑣)2 = 𝑃4

𝑣Φ
2, (46)

ℎ (1) =
2Ψ (1)

0

𝑃2
𝑣

= 𝑃2
𝑣Φ. (47)



We finally obtain

ℎ (2)(
ℎ (1)

)2 = 1. (48)

Notice that we have calculated this ratio in the radiation gauge augmented with the traceless and
transverse-free condition, which is the same gauge where the non-linearities are extracted
numerically (Loutrel et al, Ripley et al). In this way, the issues about the non gauge-invariance of
the Weyl scalars at second-order are avoided.

Summarizing: The Penrose limit of large multipoles the non-linear QNM ratio does not depend on
the multipole itself for the process (ℓ × ℓ) → 2ℓ. There is also symmetry argument to explain why
ℎ (2)/(ℎ (1)

)2 is independent from multipoles.



The last step to calculate the quadratic-to-linear amplitude ratio Rℓ×ℓ is to connect the result in the
Penrose limit to the asymptotic solutions. This can be done by matching the Hertz potential Φ at
the photon ring to large distances using the WKB approximation. The result is:

Rℓ×ℓ =
1
2

1
√
𝛾ℓ

·
𝑐2
ℓ

𝑐2ℓ

ℎ
(2)
2ℓ(

ℎ
(1)
ℓ

)2 =
1
2

1
√
𝛾ℓ

·
𝑐2
ℓ

𝑐2ℓ
, (49)

where

𝑐ℓ = −2𝑌ℓℓ

(𝜋
2
, 0
)
=

(−1)ℓ
2ℓ

√︄
2ℓ + 1

4𝜋
(2ℓ)!

(ℓ + 2)!(ℓ − 2)! (50)

and

𝛾ℓ = 𝑒−𝑖 𝜋/4 (2𝑄′′
0
)1/4

, (51)

with

𝑄′′
0 = −

(
1 − 𝑟𝑠

𝑟0

)
ℓ2

𝑟4
0

(
6 − 20

𝑟𝑠

𝑟
+ 15

𝑟2
𝑠

𝑟2

)
, 𝑟0 = 3𝑟𝑠/2. (52)



For large ℓ we have

𝑐ℓ ≈
𝑒−2/ℓℓ1/4
√

2𝜋3/4
, 𝛾ℓ ≈

√
2ℓ1/2

3
√

3
𝑒−𝑖 𝜋/4, (53)

and therefore, |Rℓ×ℓ | asymptotes to

|Rℓ×ℓ | ≈
1
4

(
3
𝜋

)3/4
≈ 0.24. (54)

This value should be compared to the value

|Rnum
ℓ×ℓ | ≈ 0.2 (55)

seems to indivate the numerical results for ℓ = 10.



Conclusions

• The Pensore limit is an interesting approximation to understand Schwarzschild BH
perturbations.

• It allows to zoom-in onto the photon ring where the QNMs are generated.
• It can capture both QNM’s frequencies and amplitudes.
• It can be extended similarly to the Kerr BH.
• For Kerr BHs a question to be answered is the scaling of the non-linearities with the BH spin.
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