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Introduction

• Black holes have provided us with some of the deepest puzzles in theo-

retical physics in the last 50+ years.

♠ The puzzles are always connected with a clash between quantum me-

chanics and gravity.

♠ It is well known that T-inversion symmetry implies that an absorbing

object must also emit. For black holes the absorption is classical but the

emission is quantum.

♠ For a long time, the puzzle was between the thermal properties of black

holes and the possibility that the underlying state describing them is a pure

state.

♠ Recently, we have learned a few more important properties of black

holes, that also led to a few more conjectures.
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• Black holes have the highest entropy density from any physical system.
Bekenstein

• They are the fastest scramblers of all systems.
Susskind

• They are some of the most chaotic quantum systems in nature as they

saturate the quantum Lyapunov exponent bound.
Maldacena+Shenker+Stanford

• They are the most strongly entangled systems in nature.
Maldacena+Susskind

• They are potentially the most powerful quantum computers because of

storage capacity and degree of entanglement.
Lloyd, Dvali

• And for (near) extremal black holes, quantum gravitational effects cannot

be neglected.
Kitaev, Maldacena,....
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Black holes vs String Theory

• String theory has shed important light in black-hole puzzles in several

distinct ways:

♠ It has provided concrete calculable examples of explicit microscoping

counting of black hole microstates, in agreement with the Bekenstein en-

tropy.
Strominger+Vafa

• The microscopic counting was done at gs ≪ 1 when a bound state is

loosely coupled, and does not resemble a black hole.

• Supersymmetry transfered this result to gs ≫ 1 where the bound state

resembles a semiclassical black hole.

♠ Extensions of this counting to black holes with small T gave the hints

for the AdS/CFT correspondence.

• The holographic correspondence , provided a breakthrough on the way

with think about black holes since.
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♠ The black hole state was mapped to a canonical ensemble of a standard

(holographic) QFT.

♠ The information paradox was refined and transformed to subtler puzzles

associated to firewalls.

♠ The chaotic nature of black holes was understood, and it lead to the

quantum Lyapunov exponent bound that is independent of holography.

• String theory on the other hand, provides simpler complex systems,

namely High Energy String states (HES) that may serve as proxies for

complex systems like black holes.

• Indeed a HES at weak coupling is expected to become a black hole,

developing a macroscopic horizon, as one increases the string coupling.

• At the transition point, several quantities agree when computed from the

two pictures.

• This is known as the principle of string-black hole complementarity:
Susskind, Horowitz+Polchinski
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(black hole gravitational mass) MBH =
RBH
GN

; (Area law) SBH =
R2
BH

GN

(string states) MString =

√
N

ℓstring

(multiplicity) SString = ℓstring MString =
√
N

• The string/black-hole transition happens when

RBH = ℓstring , GN =
1

g2s ℓ
2
string

• At this point:

MBH =MString and g4s =
1

N
and

SBH = SString =
√
N

• It follows that a perturbative string approach to HES is valid iff

gs ≪
1

N
1
4
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The thermal nature of pure states

• In his PhD thesis of 1987, Seth Lloyd has studied aspects of the black-hole

information paradox.

• He has proven some powerful results that remained largely unknown until

recently.

• His central result assumes a finite-dimensional subspace of the Hilbert

space of a QFT of dimension n. As an example ,this subspace can be the

space of states with Ē ≤ E ≤ Ē + dĒ.

• Consider a typical pure state in this subspace, |ψ⟩.
√√√√(⟨ψ|O|ψ⟩ −

Tr[O]

n

)2
≤

√
Tr[O2]
n −

(
Tr[O]
n

)2
√
1+ n

≤
max(Oi)√
n+1
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• When n ≫ 1, this is the microcanonical ensemble and the traces are the

microcanonical thermal correlators.

• Similar bounds hold for standard deviations as well as higher correlators.

• The word typical is again important. For example if |ψ⟩ is an eigenvector

of O , or a superposition dominated by an eigenvector of O, then the bound

fails.

• The working definition is that |ψ⟩ is a linear superposition of all states in

the subspace with complex coefficients drawn at random by a flat distribu-

tion.

• The choice of operator is also important: it should not be “too com-

plicated” so that its maximal eigenvalue does increase fast enough with

n.
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• There is an alternative hypothesis that serves to explain thermalization
and quantum chaos, known as the ETH.

Deutche, Srednicki

• It is formulated in terms of the matrix elements of operators in the energy
eigenstates’ basis, Om,n ≡ ⟨Em|O|En⟩.

Omn = Ō δm,n+

√√√√O2

eS
Rm,n

• The numbers Rm,n are random variables with zero mean and unit variance.

• This is an ansatz, that can explain both thermal properties as well as
chaos.

• It is not however general and can fail in many theories.

• Lloyd’s theorems are weaker but more robust.
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HES as laboratories for complex systems

• It seems like a reasonable idea to use HES as laboratories for complex

systems and in particular black holes.

• Beyond the correspondence principle of Horowitz-Polchinski, several other

past efforts went in the same direction.

• The computation of string form factors.
Mitchell+Sundborg

• The decay rate of highly-excited fundamental string states.
Amati+Russo, Mañes, Chialva+Iengo+Russo

• However, the topic is technically very complex, as it is difficult to have

appropriate vertex operators for such complicated states.

• Previous works have taken shortcuts that looked reasonable at the time.
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• The main reason such calculations are doable today is via the use of two

formalisms:

♠ One is the old DDF formalism that constructs physical HES vertex op-

erators using a rather counter-intuitive (but efficient) construction.
Di Vecchia+Del Giudice+Fubini

♠ The second is more recent: the construction of the (non-trvial) BRST-

invariant coherent-state formalism for strings, motivated by the necessity

to study systematically cosmic string interactions.
Skliros+Hindmarsh, Skliros

• This gave rise to the first systematic computations of HES amplitudes

recently.
Bianchi+Firrotta
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Chaos in perturbative string theory

• An obvious question is whether there are signals of chaotic behavior in
HES states.

• Signals of chaos in quantum-mechanical scattering amplitudes have been
found in many cases in past.

• They would be attributed though to judiciously chosen scattering poten-
tials.

• However, recently, signals of chaos have been found in the scattering
form factors of HES.

Rosenhaus+Gross, Rosenhaus, Bianchi+Firrotta+Sonneschein+Weissman

• An analogue of the spectral form factor was defined using the angular
zeros of the logarithmic derivative of the amplitude.

• For a HES with mass2 = N
ℓ2s
, it was subsequently shown that such a form

factor has generically chaotic properties described by the β-ensemble of
random matrices with β ≃ 2.

Bianchi+Firrotta+Sonneschein+Weissman
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• The word generically is important because the chaoticity is not there for

every state in the subspace of states at level N .

• There are two special states at level N:

♠ The state
(
a
µ
−1

)N
|p⟩ belonging to the leading Regge trajectory.

♠ The state aµN |p⟩.

• These two states do not exhibit chaotic behavior.

• This is also true for states near them.

• However , a generic state at level N exhibits chaotic behavior.
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Covariant, coherent DDF vertex operators

• Degenerate open string excitations at level L0 = N can be seen as string

microstates. g1∏
i=1

a
µi
−1

 g2∏
i=1

a
µi
−2

 · · ·

 gN∏
i=1

a
µi
−N

 |p⟩ ⇒
∣∣∣gn〉

N
⇒ N =

N∑
n=1

ngn

• There are many states for a given mass when N ≫ 1 and their number

scales as eMℓs ∼ e
√
N .
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• The DDF formalism uses as basic operators

Aµ
−n(q) =

∮
dz

2πi
i∂Xµ(z) e−inq·X , [Aµ

m,Aν
n] = nηµνδm,−n

with constraints

q · A−n = 0 , q2 = 0

• The generic state is obtained by acting with DDF oscillators on the
tachyon state.

|T, gn, p⟩ = Tµ1µ2··· lim
z→0

∏
n

1
√
ngngn!

gn∏
r=1

: Aµrn
−n(q) : : eipt·X(z) : |0⟩

= lim
z→0

V(T, {n, gn}, p; z)|0⟩

which is an on-shell state with

p = pt −Nq , p2t =
1

ℓ2s
, 2pt · q =

1

ℓ2s
, M2 = −p2 = (pt −Nq)2

• The polarisation tensor T is contracted with matrices and is transverse.

Rµν = δµν −
2

ℓ2s
(pt)

µqν , Rµν(pt)
ν = 0 , qµR

µ
ν = qν

• Therefore SO(D-2) reps are described.
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• The other ingredient is the coherent vertex operator

Vcoherent({λn}, p; z) =: e
∑∞
n=1 λn·A−n(q) : eiptX(z)

=: exp

∑
n,m

ζn·ζm
2

Sn,me−i(n+m)q·X+
∑
n
ζn·Pne−inq·X+ipt·X

(z) :

with ζ
µ
n = λνn Rν

µ.

• Individual HES states can be obtained by taking λn- derivatives on the

coherent vertex operator.
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The four-point amplitude

• The four-point amplitude of four coherent vertex operators
A4(Vcoh,Vcoh,Vcoh,Vcoh)

• Veneziano amplitude with AES

A4,HES
gen (s, t) = AV en(s, t) e

K
(
{ζ(ℓ)n };∂βs,∂βt

)
Φβs,βt (s, t)

∣∣∣∣
βs,t=0

• Shapiro-Virasoro amplitude with AES

M4HES
gen (s, t, u) = MSV (s, t, u)·

e
K
(
{ζ(ℓ)n };∂βs,∂βt

)
Φβs,βt(s, t) e

K
(
{ζ(ℓ)n };∂

βs
,∂
βt

)
Φβs,βt

(s, t)
∣∣∣∣
βs,t,βs,t=0
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The absorption cross section

• We are interested in computing the elastic absorption cross section, where

a general state HN1
ℓ1

absorbs another HN2
ℓ2

to become a third state.

H
N1
ℓ1

+H
N2
ℓ2

→ anything in level N′

where ”anything” is any one-particle state, to leading order in perturbation

theory.

• We do not average over ANY initial state: they are prepared to be fixed

microstates in their respective levels.

• The respective absorption cross section can be computed using the op-

tical theorem = the appropriate imaginary part of the forward four-point

amplitude.
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σ
H

(N1)
ℓ1

+H
(N2)
ℓ2

→N ′

abs =
g2s ℓs

d−4

F
ϕ
H1H2

∑
ℓ′

∣∣∣∣A
H

(N1)
ℓ1

+H
(N2)
ℓ2

→H
(N ′)
ℓ′

∣∣∣∣2 =

=
g2s ℓs

d−4

F
ϕ
H1H2

ImA
H

(N1)
ℓ1

+H
(N2)
ℓ2

→H
(N1)
ℓ1

+H
(N2)
ℓ2

(s =M2
N ′, t = 0)

∣∣∣∣
cut

=
g2s ℓs

d−4

F
ϕ
H1H2

Fs=M2
N ′,t=0(H

(N1)
ℓ1

, H
(N2)
ℓ2

) RN ′(t = 0) δ(s−M2
N ′)

α′FϕH1H2
= 2MH1

|p⃗2| , RN ′(t = 0) = 1+N ′
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• Elastic Absorption Universality : only the levels matter.

Fs=M2
N ′,t=0(H

(N1)
ℓ1

, H
(N2)
ℓ2

) = 1−
N1 +N2

N ′ +1

• There is no dependence on ℓ1, ℓ2 .

• This is because of the sum over final states.

• Further averaging over the initial states makes no difference.

• Open string elastic absorption

σ
⟨N1⟩+⟨N2⟩→N ′

abs,op (Ecm)
∣∣∣∣
CoM

= πℓd−2
s g2o

(1+N ′−N1−N2)

ℓs|p⃗cm|ℓsEcm
• Closed string elastic absorption

σ
⟨N1⟩+⟨N2⟩→N ′

abs,cl (Ecm)
∣∣∣∣
CoM

= πℓd−2
s g2c

(1+N ′−N1−N2)
2

ℓs|p⃗cm|ℓsEcm
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Special cases

• Photon absoption by any heavy open string state (no averaging over

initial states)

σ
(open)
abs = πℓd−2

s g2o ,

• If interpret this as the “size” of the HES as seen by the photon, then

the size is independent of mass.

• The corresponding absorption cross-section for massless states in closed

string theory is

σ
(closed)
abs = 2πℓdsg

2
cMω ,

• Closed HES have a non-trivial grey-body factor at tree-level.

• Both results are exact to leading order in string perturbation theory.

On High Energy Strings, Elias Kiritsis

11



T-invariance and emission rates

• In a T-invariant theory we always have

A
H
N1
ℓ1

+H
N2
ℓ2

→H
N3
ℓ3

= A∗
H
N3
ℓ3

→H
N1
ℓ1

+H
N2
ℓ2

• This is distinct from “detailed balance” (that assumes equilibrium).

• We shall use this to compute the emission rate.

• As we have previously averaged over HN3, the emission rate will be

averaged over initial states.

• We must also average over HN2
ℓ2

(if we assume this is the “heavy” final

state, HN1
ℓ1

being a graviton or photon.)
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• The microscopic rate is

δΓ
H
N3
ℓ3

→H
N1
ℓ1

+H
N2
ℓ2

δE1 dΩ
d−2
solid

=
g2s

8(2π)d−2

Ed−3
1

EN2

M2
N3

1−
M2
N1

E2
1

d−3
2 ∣∣∣∣AH

N3
ℓ3

→H
N1
ℓ1

+H
N2
ℓ2

∣∣∣∣2×
×δ(E3 − E1 − E2)

• We now sum over all external states

1

ρ(d,N ′)

∑
ℓ′

∑
ℓ1

∑
ℓ2

∣∣∣∣A
H

(N ′)
ℓ′ →H

(N1)
ℓ1

+H
(N2)
ℓ2

∣∣∣∣2 ⇒

12-



• For photon emission (open strings)

dΓN
′→γ+N

dω dΩd−2
solid

=
πg2o

(2π)d−1

(ℓsω)d−2

1− ℓsω√
N−1

·
ρ
(
N ′ − 1− 2ℓsω

√
N ′ − 1

)
ρ(N ′ − 1)

• For a heavy initial state, N ′ ≫ 1 and a low-energy photon, ℓsω ≪ N ′:

δΓN
′→γ+N

δω dΩd−2
solid

≃
πg2o

(2π)d−1
(ℓsω)

d−2 MN ′ e
− ω
TH , TH =

1

2πℓs

√
6

d− 2

• This is in agreement with ω ≫ THawk limit of the black-hole rate.
12-



• For the emission of gravitons from a closed string HES

dΓN
′→g+N

dω dΩd−2
solid

=
πg2c

(2π)d−1

(ℓsM ′
N)(ℓsω)d−1

1− ℓsω√
N−1

·
ρ2
(
N ′−1

4 − ℓsω
2

√
N ′ − 1

)
ρ2
(
N ′
4

)

• For a heavy initial state, N ′ ≫ 1 and a low-energy graviton, ℓsω ≪ N ′:

dΓN
′→g+N

dω dΩd−2
solid

=
g2c

(2π)d−2
(ℓsM

′
N)2(ℓsω)

d−1 e
− ω
TH

• This is again in agreement with ω ≫ THawk limit of the black hole rate.
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Conclusions

• We have computed general four-point amplitude of four coherent string

vertex operators.

• We have computed the absorption cross sections for various open and

closed string states from HES closed and open string states.

• The cross section do not depend on the details on the initial states.

• Using T-invariance, we have also computed the emission cross sections

for various open and closed string states.

• When the degeneracies are large, our results are in agreement withLloyd’s

theorems, as well as with black-hole emission rates (at ω ≫ TH)

• For ωℓs ≪ 1 our results differ from previous (indirect) calculations.

On High Energy Strings, Elias Kiritsis
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Open Ends

• There are several other computations that are interesting to do:

♠ Emission and absorption of open strings from closed HES.

♠ Emission and absorption of closed strings from open HES.

• Improving the eikonal high-energy scattering of HES states.

• Computing the long range fields of HES.

• Study the entanglement properties of final states.

• Compare extremal black holes with leading Regge trajectory states.

On High Energy Strings, Elias Kiritsis
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THANK YOU!
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The S and B polynomials in the coherent vertex

operator

• Pm, Sℓ,m are suitable polynomials of the world-sheet operators ∂szX of the

form

ζn·Pn(z) :=
n∑

k=1

ζn·i∂kzX(z)

(k−1)!
Zn−k(a

(n)
s ) , a

(n)
s ≡ −in

q·∂szX
(s−1)!

Sn,m :=
m∑
r=1

rZn+r(a
(n)
s )Zm−r(a

(m)
s )

and Zn is the cycle index polynomial

Zn(x) =
1

2πi

∮
dw

wn+1
e
∑∞
s=1

x
sw

s

On High Energy Strings, Elias Kiritsis
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Anatomy of the four-point amplitude

• Anatomy of the result: open string case

• typical Veneziano factor

AV en(s, t) = g2o
Γ(−ℓ2ss−1)Γ(−ℓ2s t−1)

Γ(−ℓ2ss−ℓ2s t−2)

• Dressing of external arbitrarily excited states = polynomials V , W , I.

K
(
∂βs, ∂βt

)
=

4∑
ℓ=1

 ∞∑
n=1

ζ
(ℓ)
n ·V (ℓ)

n (∂βs, ∂βt)+
∞∑

n,m=1

ζ
(ℓ)
n ·ζ(ℓ)m W

(ℓ)
n,m(∂βs, ∂βt)

+

+
4∑

v<f=1

∞∑
n,m=1

ζ
(v)
n ·ζ(f)m I

(v,f)
n,m (∂βs, ∂βt)

• The pole-free (s,t)-symmetric Φ-function

Φβs,βt(s, t) =
∞∑
r=0

∞∑
v=0

βrs
r!

βvt
v!

(−ℓ2ss−1)r(−ℓ2s t−1)v
(−ℓ2ss−ℓ2s t−2)r+v

where (x)n ≡ Γ[x+ n]/Γ[x] (Polchammer).

17



• The anatomy of the contractions

Vcoherent =: exp

∑
n,m

ζn·ζm
2

Sn,me−i(n+m)q·X+
∑
n
ζn·Pne−inq·X+ipt·X

(z) :

• S from any given Vℓ contracts only with the tachyon vertex of other

operators giving W
(ℓ)
m,n.

• P from any given Vℓ contracts with the tachyon vertex of other operators

giving V
(ℓ)
m .

• P from any given Vℓ can contract with the P from another Vf giving

I
(ℓ,f)
m,n .

• V, I,W are combinations of Jacobi Polynomials P a,bN (∂βs, ∂βt).

• For the special case that 2 and 3 are massless states and 1,4 are HES

we have:

17-



V
(1)µ
n (z) =

√
2α′pµ2P

(α
(n)
1 ,β

(n)
1 )

n−1 (1−2z) + z

√
2α′pµ3P

(α
(n)
1 +1,β

(n)
1 )

n−1 (1−2z)

V
(4)µ
n (z) =

√
2α′pµ1P

(α
(n)
4 ,β

(n)
4 )

n−1 (2z−1) + (1−z)
√
2α′pµ2P

(α
(n)
4 +1,β

(n)
4 )

n−1 (2z−1)

W
(1)
n,m(z) =

m∑
r=1

r P
(α

(n)
1 −r,β(n)1 −1)

n+r (1−2z) P
(α

(m)
1 +r,β

(m)
1 −1)

m−r (1−2z)

W
(4)
n,m(z) =

m∑
r=1

r P
(α

(n)
4 −r,β(n)4 −1)

n+r (2z−1) P
(α

(m)
4 +r,β

(m)
4 −1)

m−r (2z−1)

I
(1,4)
n1,m4(z) = (−)m4+1

n1,m4∑
r,s=0

zr+s+1P
(α

(n1)
1 +r+s+1;β

(n1)
1 −1)

n1−r−s−1 (1−2z)·

·P
(β

(m4)
4 +r+s+1;α

(m4)
4 −1)

m4−r−s−1 (1−2z)

• The map z ↔ βs, βt comes from the combination

βsz+ βt(1− z) → ∂βs = −∂βt
17-



• The parameters α1, α4, β1, β4 are related to the momenta as follows

α
(n)
1 = −n− 2α′nq1·p2 , β

(n)
1 = −n− 2α′nq1·p4 ,

α
(n)
4 = −n− 2α′nq4·p1 , β

(n)
4 = −n− 2α′nq4·p3 .

• The Jacobi Polynomials:

P
(α,β)
N (x) =

N∑
r=0

N + α

N − r

N + β

r

(x− 1

2

)r (x+1

2

)N−r

• The following are the properties of the amplitude

• Cyclicity and Crossing symmetry enforced by Φβs,βt(s, t)

17-



• Correct factorization properties

A4HES
gen (s, t)

∣∣∣∣
P2
N∼N−1

= A2HES+N
gen (p1, p2, PN)

RN(t)

P2
N−M2

N

A2HES+N
gen (p3, p4,−PN)

17-



• Generalized KLT

M4HES
gen (s, t, u) = sin

πℓ2s t

4
A4HES
gen (s, t)A4HES

gen (t, u)

On High Energy Strings, Elias Kiritsis
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The Amati-Russo calculation

• Amati and Russo in particular, computed the average of the inclusive

emission rate of massless strings from highly excited string states in light-

cone gauge.

• They found for open strings (in d dimensions)

dΓ(ω)

dω
= (constant)

ωd−2

e
ω
TH − 1

18



and for closed strings

dΓ(ω)

dω
= (constant)

ωd−1 e−
ω
T(

e
ω
TL − 1

)(
e
ω
TR − 1

) ,
1

T
=

1

TL
+

1

TR

recovering the familiar expressions of emission rates from black holes!!

• Absorption cross-sections from the detailed balance condition (that as-
sumes thermodynamic equlibrium)

dΓ

dω
= σ

Ωd−2
solid ω

d−2

e
ω
T − 1

with σ being the absorption cross section.

• We note that the calculation of emission rates in Amati+Russo was based
on the average of the inclusive rate of emission of massless states using a
direct diagonal sum of squared 3-point amplitudes in the light-cone gauge

• The resulting expression is claimed to be equivalent to a trace (and, there-
fore, basis-independent), but this statement does not seem to be correct,
since the Fock space basis in the light-cone gauge is not orthonormal.
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A toy summation over states

• A simple quantum mechanical example of calculation of probabilities: a
a simple reminder of the issues that appear when we use non-orthogonal
bases.

• We consider an initial state |ψ0⟩ in the Hilbert space, that we assume
normalized, ⟨ψ0|ψ0⟩ = 1.

• We also consider a final state that belongs to a finite dimensional subspace
Vn that is spanned by an orthonormal basis ψi with ⟨ψi|ψj⟩ = δij.

• A generic (normalized) vector in Vn can be written as

|ψ(a⃗)⟩ ≡
n∑
i=1

ai|ψi⟩ ,
n∑
i=1

|ai|2 = 1

• Therefore, the manifold of normalized states of Vn is isometric to S2n−1.

• The amplitude for |ψ0⟩ → |ψ(a⃗)⟩ is

A(a⃗) = ⟨ψ0|ψ(a⃗)⟩ =
n∑
i=1

aiA0i , A0i ≡ ⟨ψ0|ψi⟩
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• The probability of finding any state of Vn in |ψ0⟩ is given by the sum of

probabilities P (a⃗) = |A(a⃗)|2 of ending in any vector of Vn.

• The sum is performed by the natural metric on Vn that of S2n−1.

P0→Vn =
1

Ω2n−1

∫
S2n−1

dΩ2n−1|A(a⃗)|2 =

=
1

Ω2n−1

n∑
i,j=1

A∗
0iA0j

∫
S2n−1

dΩ2n−1 a
∗
iaj =

=
n∑

i,j=1

A∗
0iA0jδ

ij =
n∑
i=1

|A0i|2

• above, dΩ2n−1 is the measure on the unit S2n−1, and

Ω2n−1 =
∫
S2n−1 dΩ2n−1 is the volume of the unit S2n−1.

• The end result is the standard sum of squared amplitudes formulae that

is valid as we see in an orthonormal basis.

• We now translate the same calculation in a non-orthogonal basis of final

states.
19-



• To do this we start from the orthonormal basis above and we rotate it
to generic basis by an GL(C,n) rotation Mij,

|ψi⟩ =
n∑

j=1

Mij |ψ̄j⟩ , detM ̸= 0

• Now the inner products of the new basis have a nontrivial metric

Gij ≡ ⟨ψ̄i|ψ̄j⟩ =
n∑

k,l=1

M∗
ikMjl⟨ψi|ψj⟩ =

n∑
k=1

M∗
ikMjk = (M ·M†)ji

• We also obtain

Ā0i ≡ ⟨ψ0|ψ̄i⟩ =MijA0j ⇒ A0i =M−1
ij Ā0j

• The probability can be written as

P0→Vn =
n∑
i=1

|A0i|2 =
n∑
i=1

A∗
0iA0i =

n∑
i=1

n∑
k,l=1

(M∗)−1
il A

∗
0lM

−1
ik Ā0k =

=
n∑

k,l=1

(M ·M†)−1
lk A

∗
0lĀ0k =

n∑
k,l=1

GklA∗
0lĀ0k

where Gij is the inverse metric of Gij.
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T-invariance versus detailed balance.

• Detailed balance contains, beyond the assumption of T-invariance also
the asumption of equlibrium.

• IN the emission/absorption case, it implies that the black body is equi-
librium with the emitted radiation.

• In that case there is an extra contribution to the emission rate coming
from stimulated emission.

• Assuming this we obtain in the HES case:

• Open string emission:

dΓemN
′→γ+N

dω dΩ(d−2)
solid

=
1

2

g2o
(2π)d−2

(ℓsMN ′) (ℓsω)
d−2 1

e
ω
TH−1

• Closed string emission

dΓN
′→g+N

em

dω dΩ(d−2)
solid

=
g2c

(2π)d−2
(ℓ2sMN ′)2 (ℓsω)

d−1 1

e
ω
TH−1

.
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The H2TH2T amplitude

AH1
2+T→H1

2+T(s, t) =
AV en(s, t)

(α′s+α′t−1)(α′s+α′t)(1+α′s+α′t)(2+α′s+α′t)(
− 2ζ(1)2 ·ζ(4)2 (1+α′s)(α′s+α′t−1)

(
(3+4α′q4·p1 +4α′q1·p4(1 + 2α′q4·p1))(α′s)2

+4α′q1·p2q4·p3α′t(1+α′t)+α′s
(
− 2−4α′q4·p1+4α′q4·p3+α′t+4α′q4·p3α′t

+4α′q1·p2(1+2α′q4·p1)(1+α′t)− 4α′q1·p4(1 + 2α′q4·p1 − 2α′q4·p3(1+α′t))
))

+
√

2α′ζ(1)2 ·p3(1+α′s)
(√

2α′ζ(4)2 ·p2(1+α′t)
(
(1+4α′q4·p3)(α′s+4α′q1·p4α′s

+4α′q1·p2(−1+α′t))α′t+4α′q4·p1α′s(−1+ 4α′q1·p4(−1+α′s) + α′s+4q1·p2α′t)
)

+
√

2α′ζ(4)2 ·p1(α′s+α′t−1)
(
4α′q1·p2(1+α′t)(α′s+4α′q4·p1α′s+α′t+4α′q4·p3α′t)

+ (1+4α′q1·p4)α′s
(
4α′q4·p1(α′s−1)+α′s+α′t+4α′q4·p3(1+α′t)

)))
+
√

2α′ζ(1)2 ·p2(α′s+α′t−1)
(√

2α′ζ(4)2 ·p2(1+α′t)
(
(1+4α′q4·p3)α′t

(
α′s+4q1·p4(1+α′s)

+ 4α′q1·p2(α′t−1) + α′t
)
+4α′q4·p1(1+α′s)(α′s+4α′q1·p4α′s+α′t+4α′q1·p2α′t)

)
+
√

2α′ζ(4)2 ·p1(α′s+α′t)
(
4α′q1·p2(1+α′t)(1+α′s+4α′q4·p1(1+α′s)+α′t+4α′q4·p3α′t)

+ 4α′q1·p4(1+α′s)(1+α′s+4α′q4·p1α′s+α′t+4α′q4·p3(1+α′t))+(1+α′s+α′t)

(2+α′s+4α′q4·p1(1+α′s)+α′t+4α′q4·p3(1+α′t))
)))

.
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The HNTHNT amplitude

AH1
N+T→H1

N+T
= AV en(s, t)(

2α′ζ(1)N ·p2ζ(4)N ·p1
N−1∑
r1,r4=0

(
N−1+α1

N−1−r1

)(
N−1+α4

N−1−r4

)(
N−1+β1

r1

)(
N−1+β4

r4

)
Q[s;N−1+r1−r4]

[t;N−1+r4−r1]

+2α′ζ(1)N ·p2ζ(4)N ·p2
N−1∑
r1,r4=0

(
N−1+α1

N−1−r1

)(
N+α4

N−1−r4

)(
N−1+β1

r1

)(
N−1+β4

r4

)
Q[s;N−1+r1−r4]

[t;N+r4−r1]

+2α′ζ(1)N ·p3ζ(4)N ·p1
N−1∑
r1,r4=0

(
N+α1

N−1−r1

)(
N−1+α4

N−1−r4

)(
N−1+β1

r1

)(
N−1+β4

r4

)
Q[s;N+r1−r4]

[t;N−1+r4−r1]

+2α′ζ(1)N ·p3ζ(4)N ·p2
N−1∑
r1,r4=0

(
N+α1

N−1−r1

)(
N+α4

N−1−r4

)(
N−1+β1

r1

)(
N−1+β4

r4

)
Q[s;N+r1−r4]

[t;N+r4−r1]

+ ζ(1)N ·ζ(4)N (−)N−1
N−1∑
v1,v4=0

N−1∑
r1,r4=0

(
N+α1

N−v1−v4−1−r1

)(
N−v1−v4−2+β1

r1

)
(

N+β4
N−v1−v4−1−r4

)(
N−v1−v4−2+α4

r4

)
Q[s;N+r1+r4]

[t;2(N−1−v1−v4)+r1+r4]

)
(1)

where

Q[s;cs]
[t;ct]

:=
(−α′s−1)cs(−α′t−1)ct
(−α′s−α′t−2)cs+ct

(2)
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and

α1 = −N − 2α′Nq1·p2 , β1 = −N − 2α′Nq1·p4 , (3)

α4 = −N − 2α′Nq4·p1 , β4 = −N − 2α′Nq4·p3 . (4)
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Detailed plan of the presentation
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