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Introduction

e Black holes have provided us with some of the deepest puzzles in theo-
retical physics in the last 50+ years.

& The puzzles are always connected with a clash between quantum me-
chanics and gravity.

& It is well known that T-inversion symmetry implies that an absorbing
object must also emit. For black holes the absorption is classical but the
emission is quantum.

& For a long time, the puzzle was between the thermal properties of black
holes and the possibility that the underlying state describing them is a pure
state.

& Recently, we have learned a few more important properties of black
holes, that also led to a few more conjectures.



e Black holes have the highest entropy density from any physical system.
Bekenstein

e [hey are the fastest scramblers of all systems.
Susskind

e [hey are some of the most chaotic quantum systems in nature as they

saturate the quantum Lyapunov exponent bound.
Maldacena-+Shenker+Stanford

e [ hey are the most strongly entangled systems in nature.
Maldacena-+Susskind

e [ hey are potentially the most powerful quantum computers because of

storage capacity and degree of entanglement.
Lloyd, Dvali

e And for (near) extremal black holes, quantum gravitational effects cannot

be neglected.
Kitaev, Maldacena,....
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Black holes vs String T heory

e String theory has shed important light in black-hole puzzles in several
distinct ways:

& It has provided concrete calculable examples of explicit microscoping
counting of black hole microstates, in agreement with the Bekenstein en-

tropy.
Strominger—+\Vafa

e [ he microscopic counting was done at gs < 1 when a bound state is
loosely coupled, and does not resemble a black hole.

e Supersymmetry transfered this result to gs > 1 where the bound state
resembles a semiclassical black hole.

& Extensions of this counting to black holes with small 7" gave the hints
for the AdS/CFT correspondence.

e [ he holographic correspondence , provided a breakthrough on the way
with think about black holes since.



& The black hole state was mapped to a canonical ensemble of a standard
(holographic) QFT.

& The information paradox was refined and transformed to subtler puzzles
associated to firewalls.

& The chaotic nature of black holes was understood, and it lead to the
quantum Lyapunov exponent bound that is independent of holography.

e String theory on the other hand, provides simpler complex systems,
namely High Energy String states (HES) that may serve as proxies for
complex systems like black holes.

e Indeed a HES at weak coupling is expected to become a black hole,
developing a macroscopic horizon, as one increases the string coupling.

e At the transition point, several quantities agree when computed from the
two pictures.

e [ his is known as the principle of string-black hole complementarity:
Susskind, Horowitz-+Polchinski
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R R?
(black hole gravitational mass) Mgy = —22. (Area law) Spy = —B4
Gn Gn
v N
(string states) Mgtring =
Estm'ng
(multiplicity) SString — Estring MString = VN
e The string/black-hole transition happens when
1
Rpp = Estm’ng , GnN = 242
9s string
e At this point:
4 1
Mpg = MString and 9s — N

and
SBH = SString = VN
e It follows that a perturbative string approach to HES is valid iff

1
gs<<—1

N4
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[ he thermal nature of pure statesl

e In his PhD thesis of 1987, Seth Lloyd has studied aspects of the black-hole
information paradox.

e He has proven some powerful results that remained largely unknown until
recently.

e His central result assumes a finite-dimensional subspace of the Hilbert
space of a QFT of dimension n. As an example ,this subspace can be the
space of states with £ < E < FE +dFE.

e Consider a typical pure state in this subspace, |¢).

2 2
Tr[0]\? \/%—(TTT[O]) max(0;)
J(wom— ) Vo on ] s



e W When n > 1, this is the microcanonical ensemble and the traces are the
microcanonical thermal correlators.

e Similar bounds hold for standard deviations as well as higher correlators.

e The word typical is again important. For example if [¢) is an eigenvector
of O , or a superposition dominated by an eigenvector of O, then the bound
fails.

e The working definition is that [vy) is a linear superposition of all states in
the subspace with complex coefficients drawn at random by a flat distribu-
tion.

e [ he choice of operator is also important: it should not be "“too com-
plicated” so that its maximal eigenvalue does increase fast enough with

mn.



e [ here is an alternative hypothesis that serves to explain thermalization

and quantum chaos, known as the ETH.
Deutche, Srednicki

e It is formulated in terms of the matrix elements of operators in the energy
eigenstates’ basis, Omn = (Em|O|En).

— 0?2
Omn = O 5m,n + g Rm,n
e

e The numbers Ry, »n are random variables with zero mean and unit variance.

e [ his is an ansatz, that can explain both thermal properties as well as
chaos.

e It is not however general and can fail in many theories.

e Lloyd’'s theorems are weaker but more robust.
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HES as laboratories for complex systemsl

e It seems like a reasonable idea to use HES as laboratories for complex
systems and in particular black holes.

e Beyond the correspondence principle of Horowitz-Polchinski, several other
past efforts went in the same direction.

e [ he computation of string form factors.
Mitchell+Sundborg

e [ he decay rate of highly-excited fundamental string states.
Amati+Russo, Manes, Chialva-+Iengo-+Russo

e However, the topic is technically very complex, as it is difficult to have
appropriate vertex operators for such complicated states.

e Previous works have taken shortcuts that looked reasonable at the time.



e [ he main reason such calculations are doable today is via the use of two
formalisms:

& One is the old DDF formalism that constructs physical HES vertex op-

erators using a rather counter-intuitive (but efficient) construction.
Di Vecchia+Del Giudice4+Fubini

& The second is more recent: the construction of the (non-trvial) BRST-
invariant coherent-state formalism for strings, motivated by the necessity

to study systematically cosmic string interactions.
Skliros+Hindmarsh, Skliros

e [ his gave rise to the first systematic computations of HES amplitudes

recently.
Bianchi+Firrotta
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Chaos In perturbative string theory

e An obvious question is whether there are signals of chaotic behavior in
HES states.

e Signals of chaos in quantum-mechanical scattering amplitudes have been
found in many cases in past.

e [ hey would be attributed though to judiciously chosen scattering poten-
tials.

e However, recently, signals of chaos have been found in the scattering
form factors of HES.

Rosenhaus—+ Gross, Rosenhaus, Bianchi4+Firrotta4+Sonneschein+Weissman

e An analogue of the spectral form factor was defined using the angular
zeros of the logarithmic derivative of the amplitude.

e For a HES with mass? = % it was subsequently shown that such a form
factor has generically chaotic properties described by the B-ensemble of
random matrices with g ~ 2.

Bianchi+Firrotta4+Sonneschein+Weissman
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e [ he word generically is important because the chaoticity is not there for
every state in the subspace of states at level V.

e [ here are two special states at level N:

& The state (a‘_bl)N lp) belonging to the leading Regge trajectory.
& The state a/y|p).

e [ hese two states do not exhibit chaotic behavior.

e [his is also true for states near them.

e However , a generic state at level N exhibits chaotic behavior.

On High Energy Strings, Elias Kiritsis
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Covariant, coherent DDF vertex operatorsl

e Degenerate open string excitations at level Lo = N can be seen as string
microstates.

g1 ‘ g2 . gN ‘ N
( H afia) ( H a'liZ2> .. ( H a,lulN> |p> = ‘gn>N = N = Z nagn
1=1 1=1 )

NN RN EZP S

100 harm é

e [ here are many states for a given mass when N > 1 and their number
scales as ¢Mls ~ VN




e [ he DDF formalism uses as basic operators

d )
A (@) = 2 iox () TN Al A = e

7T
with constraints

¢g-A,=0 , ¢>=0

e [ he generic state is obtained by acting with DDF oscillators on the
tachyon state.

IR r -
T, gn, D) = Tir o limM AP () 1 et X (2) 1|0
T, gn, p) 12 Z_>01;[ Wer —n(Q) € (2) 1 [0)

= lim V(T', {n, gn},p; 2)|0)
z—0
which is an on-shell state with
p=pi—Nq , pf=—= , 2p-q=-—5 , M?*=—p°=(pt— Ng)°
e [ he polarisation tensor 1" is contracted with matrices and is transverse.

2

o — SH T
R]/—(S]/ Eg

(p)'qw , RMY(p)"=0 , qR"v =aq

e Therefore SO(D-2) reps are described.



e [ he other ingredient is the coherent vertex operator

Veoherent({An}, 0y 2) =: 622‘0:1 An-A-n() : eith(Z)

= exp | Gn-Gm

n,m 2

with ¢ff = AV R,*.

e Nt X LN Pre M N ipy X | (2)

e Individual HES states can be obtained by taking \,- derivatives on the

coherent vertex operator.
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| he four-point amplitudel

e [ he four-point amplitude of four coherent vertex operators
A4(Vc0h7 Vcoha Vcoha Vcoh)

e Veneziano amplitude with AES

().
AgégES(Sa t) = AVen(S, t) elC ({Cn }'863’85’5)

P s, t
587675 ( ) /Bs,tzo

e Shapiro-Virasoro amplitude with AES

4HE
MGEES (s,t,u) = Mgy (s, t,u)-

k({2 yi05,95,)

(D).
K({¢n’}:98,,0 o
e ({ 59 575) P, 3,(s,1) e CDBS’Bt(S,t)

,83775,38,75:0
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[ he absorption cross section |

e \We are interested in computing the elastic absorption cross section, where
a general state Hé\lfl absorbs another ng to become a third state.
Hé\lfl + HgQ — anything in level N’

where "anything’ is any one-particle state, to leading order in perturbation
theory.

e \We do not average over ANY initial state: they are prepared to be fixed
microstates in their respective levels.

e [ he respective absorption cross section can be computed using the op-
tical theorem = the appropriate imaginary part of the forward four-point
amplitude.

10



- R,(1) Z
as=N+1 N'states
e ggesd—4z p ‘2
O'a,bs — (Nl) (NQ) (N') =
FI?]_HQ e/ +H —)H

ggesd—4 ,

Fg o m (N1>_|_H(N2) (N]_)_|_H(N2)(S N/ ) cut

14142

2y d—4
g5t N N

qus S s= 112, t= O(H( v Hg(Q 2)) Ri(t =0) 5(s — Mzy)
FH1H2 N

a,Ff(‘blez =2Mp,lp2| , Rnp(t=0)=1+ N’



e Elastic Absorption Universality : only the levels matter.

(N1) (N2)y N1+ No
fs—M]%,,t O(H€1 ’HEQ )=1- N’ +1

e [ here is no dependence on /41, /> .
e [ his is because of the sum over final states.
e Further averaging over the initial states makes no difference.

e Open string elastic absorption

/ 1+N'—N;—N.
Uéﬁ12+<N2 )N (Ecm)‘ wfg 2 g( + 1—N>)
opP €s|pcm|€3Ecm

e Closed string elastic absorption

(N1)+(N2)—N' — 002 > (1+N'=N1—Np)?

C

CoM ° €3|pcm|£3Ecm

T abs,cl (Eem)
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Speclal cases |

e Photon absoption by any heavy open string state (no averaging over
initial states)

open d—2
C(LbS ) E gO ’

e If interpret this as the ‘size” of the HES as seen by the photon, then
the size is independent of mass.

e [ he corresponding absorption cross-section for massless states in closed
string theory is

closed
é,bs ) = T 27‘-6890 )

e Closed HES have a non-trivial grey-body factor at tree-level.

e Both results are exact to leading order in string perturbation theory.

On High Energy Strings, Elias Kiritsis
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-lnvariance and emission rates

e In a T-invariant theory we always have

k
Ny | ;N> N3 — N3 Ny | N>
Hel -I—IT-IK2 —>H£3 H£3 —>H£1 —|—I{£2

e This is distinct from ‘“detailed balance” (that assumes equilibrium).
e \We shall use this to compute the emission rate.

e As we have previously averaged over HN3, the emission rate will be
averaged over initial states.

e \We must also average over Hé\f (if we assume this is the “heavy” final

state, Hé\lfl being a graviton or photon.)

12



e [ he microscopic rate is

N3 N1 d—3
—H, ~+H 2
o 9 Py 3M§, M) |A Ny Ny, N
SEq ngOHQd 8(27r)d 2 Ey, 3 E% H£33_>H£11+He2

x6(E3 — E1 — E»)

e \We now sum over all external states

2

PRIV oo
@ T




e For photon emission (open strings)

arv =N p2 (a2 p (N = 1= 26wV N = 1)
dw dQZE  (Cm)dThl — e p(N' — 1)

e For a heavy initial state, N’ >> 1 and a low-energy photon, ¢sw < N':

SN =y +N g2 - _w 1 6
o = god_l <€5w)d 2 Mpr e TH ,  T'g =

e This is in agreement with w > T,k limit of the black-hole rate.



e For the emission of gravitons from a closed string HES

_ N'—1 Vs
arVoTtN  rg2 (i) ()it 2 (N - VN = T)
2 — d—1 7 N’
dw dS2¢4iq (2m) 1- Ncil p? (T)

e For a heavy initial state, N/ >> 1 and a low-energy graviton, flsw < N':

drN'—g+N g2 W
= OsMh)2(Ls)? L e Th
d—2 d—2( SN S
dw dQe 2 (2m)

e T his is again in agreement with w > T,k limit of the black hole rate.
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Conclusions |

e \We have computed general four-point amplitude of four coherent string
vertex operators.

e We have computed the absorption cross sections for various open and
closed string states from HES closed and open string states.

e [ he cross section do not depend on the details on the initial states.

e Using T-invariance, we have also computed the emission cross sections
for various open and closed string states.

e When the degeneracies are large, our results are in agreement withlLloyd's
theorems, as well as with black-hole emission rates (at w > Ty)

e For wls < 1 our results differ from previous (indirect) calculations.

On High Energy Strings, Elias Kiritsis
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Open Endsl

e [ here are several other computations that are interesting to do:
& Emission and absorption of open strings from closed HES.

& Emission and absorption of closed strings from open HES.

e Improving the eikonal high-energy scattering of HES states.

e Computing the long range fields of HES.

e Study the entanglement properties of final states.

e Compare extremal black holes with leading Regge trajectory states.

On High Energy Strings, Elias Kiritsis
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[he § and b polynomials In the coherent vertex

operator

o P, Sg,m are suitable polynomials of the world-sheet operators 90X of the
form

| & 0k X (2) (n) (n) _ . q05X
CnPn(z) == kgl (k—1)! Zp—klas™”) , as’ = Zn_(s—l)!
Snm 1= Z TZn+r(agn))Zm—r(agm))
r=1

and Z,, is the cycle index polynomial

L 1 (iZU E:C§L ZaySs
Znl@) = 27m'j{w”+1e e

On High Energy Strings, Elias Kiritsis
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Anatomy of the four-point amplitudel

e Anatomy of the result: open string case

e typical Veneziano factor

ST (—€25—1) (—£2t—1)
M(—025—02t—2)
e Dressing of external arbitrarily excited states = polynomials V', W, I.

K (05:05) = ) (Z OO 05,050+ Y. O¢OWD, <aﬁs,aﬁt>)+

AVe'rL(S t) = do

/=1 \n=1 n,m=1

4+ Z Z C(U) (f>l(v’f)(855,35t)

v<f=1nm=1
e The pole-free (s,t)-symmetric d-function

2S 2 y
(DB,Bt(St)_ZZBSBt(E 1)(£t1)

=yt ol (—02s—45t—2), 4,

where (), =[x + n]/IM[z] (Polchammer).
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e [ he anatomy of the contractions

Vcoherent =: €XP Z Cn'CmSn me_i(n—i_m)q'X‘F ZCn'Pne_mq'X—l—ipt-X (2) :
n

)
n,m 2

e S from any given V, contracts only with the tachyon vertex of other
operators giving qule.

e P from any given V, contracts with the tachyon vertex of other operators

giving V(9.

e 7 from any given 1}, can contract with the 7 from another Vy giving
l,f)
I$a.

o V. I, W are combinations of Jacobi Polynomials P;@b(aﬁs,a@t).

e For the special case that 2 and 3 are massless states and 1,4 are HES
we have:



RIS CREENID)

Vn(l)u(z) = QO/ngn 1 (1 22) + 2\ 2« p'an 1 (1 22)
. ORI R (@M +1,8{)
VAR CY = 2d/ptP, ) (2a—1) + (1—2)V 2P, (22-1)
1) ({™ rﬂ(") 1) ({™) 4r,6™) 1)
Wpm(z) = Z r P,y (1-22) P, . (1—-22)
e (a§ —r g™ 1) (@§™ 4r,8{™ 1)

m(z) = Z r P, (2z—-1) P,,_, (2z—1)
(n1) . o(n1)
ni,ma (a3 "V rst1;8," - 1)
1.4 1
élw%( )__( )nMﬂfl E: ZT+S+1f%1 a1 (1_22).

r,s=0

(B rts+1;0{H 1)
(1-22)

e The map z +» s, 8y comes from the combination
Bsz + Be(1 — 2) — 9, = —0p,

-P

mg—r—s—1



e [ he parameters a1,a4, 31,84 are related to the momenta as follows

ag") = —n—2a'ng1-pa, By’ =-n—2a'ngipa,

aﬁ”) = —n—2d'ngap1, B; =-n—2angps3.

e [ he Jacobi Polynomials:

—o \N —r T 2 2

PJ(\TQ’B)(UU) - é\]: (N_I_O‘) (N-Fﬁ) (x— 1)7“ (x_|_1)N—r

e [ he following are the properties of the amplitude

e Cyclicity and Crossing symmetry enforced by Cb&ﬁt(s,t)



e Correct factorization properties

Ry (t)
AGHES (5,1) = AZESHTN (py po, Py)—5- s ASHESTN (3 g, — Py)
P2~N-1 P5—Mz
| 2’ (&, )P | T,, {ny, 8} P2)

| Ty, {ny, 8.}, P1) | Ty, {ny, 8.}, P1)



Tt AHES (o 1y AAHES (4 )3

gen gen

gen
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ne Amati-Russo calculation

e Amati and Russo in particular, computed the average of the inclusive

emission rate of massless strings from highly excited string states in light-
cone gauge.

L(w)
a1 Hy /| :
dw N NHN’ y:’ ; .\.

Hy

number of states at level N’

e They found for open strings (in d dimensions)

dr d=2
() = (constant) -

dw eTn —1

18



and for closed strings

1 1 1

dl (w) wi=1 ¢ . n
_ 1) T T, Tg

———— = (constant) ——
dw (eTL — 1) <e

recovering the familiar expressions of emission rates from black holes!!

‘E ﬂla

~
=y

e Absorption cross-sections from the detailed balance condition (that as-
sumes thermodynamic equlibrium)

d—2  d-2
ar _ 5 Qsoluijd “
dw el — 1

with o being the absorption cross section.

e We note that the calculation of emission rates in Amati4+Russo was based
on the average of the inclusive rate of emission of massless states using a
direct diagonal sum of squared 3-point amplitudes in the light-cone gauge

e The resulting expression is claimed to be equivalent to a trace (and, there-
fore, basis-independent), but this statement does not seem to be correct,
since the Fock space basis in the light-cone gauge is not orthonormal.

On High Energy Strings, Elias Kiritsis
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A toy summation over statesl

e A simple quantum mechanical example of calculation of probabilities: a
a simple reminder of the issues that appear when we use non-orthogonal
bases.

e We consider an initial state [¢g) in the Hilbert space, that we assume
normalized, (Yg|ig) = 1.

e We also consider a final state that belongs to a finite dimensional subspace
Vy that is spanned by an orthonormal basis ; with (i;|¢;) = ;5.

e A generic (normalized) vector in V,, can be written as

n

mn
Y@) =Y alv) D lalf=1
e Therefore, the manifold of normalized states of V,, is isometric to §27— 1,

e The amplitude for |¢g) — |¢¥(a)) is

A(@) = (Wolv (@) = > a;jAoi , Aoi = (Yolv)
i=1

19



e The probability of finding any state of V}, in |¢g) is given by the sum of
probabilities P(d@) = |A(@)|? of ending in any vector of Vj,.

e [ he sum is performed by the natural metric on V,, that of g2n—1

. 12
Poovi = o fuon 1 1220 11A@) =
1 n
= Af-A / A5, _1 afa; =

mn n

g 5

= ) ApiAgjeY = ) |Aoil
ij=1 i=1

e above, d2», 1 is the measure on the unit S2*~ 1 and
Q0,1 = [g2n-1dS20, 1 iS the volume of the unit $27 1,

e [ he end result is the standard sum of squared amplitudes formulae that
IS valid as we see in an orthonormal basis.

e \We now translate the same calculation in a non-orthogonal basis of final
states.



e [0 do this we start from the orthonormal basis above and we rotate it
to generic basis by an GL(C,n) rotation M;;,

n
i) = > My |[¥;) , detM #=0
J=1
e Now the inner products of the new basis have a nontrivial metric

zg = ¢z|¢j Z %W] — Z Mz?kijk = (M - MT)]’L
k=1

kl=1
e \We also obtain

Aoi = (Yolthi) = M;jAg; =  Aogi = Miglz%j
e [ he probability can be written as

n n
> 1 1
Po_y, = Z | Ag; Z AbiAoi = D > (M) A5 M, - Ao =
=1 i=1 k=1

n n
_1 — —
> (M- MY FAAgr = Y, GMAG Ay
kal:]- k,l:]_

where G% is the inverse metric of G,;.

On High Energy Strings, Elias Kiritsis
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=

Cal

10

Dd

dance.

-lnvariance versus g

e Detailed balance contains, beyond the assumption of T-invariance also

the asumption of equlibrium.

e IN the emission/absorption case, it implies that the black body is equi-

librium with the emitted radiation.

e In that case there is an extra contribution to the emission rate coming

from stimulated emission.

e Assuming this we obtain in the HES case:

e Open string emission:

dremN/_w—i_N 1 gg a—2 1
(d—=2) 5(27‘-)d—2 (ESMN’) (63(4)) TL
dw dQsolid e H—1
e Closed string emission
N'—=g+N
drem_m _ gc2 (EQM )2 (Z w)d—l 1
(d-2) ™ (or)d-22"s N T
dw dQsolid el —1

On High Energy Strings,
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[ he H>5T H>T amplitudel

AV@TL(SJ t)
(o/s4a't—1)(a/s+a't) (14+a’'s+a't) (24a’s+a't)

(= 26989 (1+a's) (a'st0't=1) ((3+4a'aapy + 40’1 pa(L + 20'ap1)) (o5)?

+ 4a’q1-p2q4-p3a’t(1+a’t)+a’s( — 2—44d/qa-p1+4d'qa-p3tat+4a'qa-paa't

+ 40/q1pa(1+20/qap1) (140't) — 40'q1-pa(1 + 20/ga:p1 — 20/ga-pa(1+a't) ) )

+ V20 pa(140's) (V20§ -pa(140't) ((1+40aaps) (o s+40/q1 pac’s

+ 4d/q1-p2(—14a't))a't + 4d/qa-pra’s(—1 + 4 q1-pa(—14a's) + o's + 4q: ~pzo/t)>

+ \/270/§§4)-p1(04’s—|—o/t—1) (4o/q1-p2(1—|—o/t) (o's+4ad/qa-pra’s+a't+4a'qs-p3a’t)

+ (1+4a'q1-pa)d's (40/q4 p1(a/s—1)+a's+a't+4a'qap3(1 -I-o/t)) ) )

+ V20§D pa(a's+a't—1) (V20§ -pa(140t) ((1+40/aa-pa)a’t(os + 4ar-pa(1+a's)
+ 4d/q1-p2(a’t—1) + O/t> + 40d/qa-p1(1+d's) (&/s+4a'q1 'P40/8-|-0/t+4O/Q1'p20/t))

+ Vv 2a’<§4)-p1(o/s—|—o/t) <4o/ql-p2(1—|—o/t)(1—|—o/s—|—4o/q4-p1(1—|—o/s)-|—o/t—|—4o/q4-p3a’t)
+ 4d'q1-pa(14a's) (14 s4+40'qs-p1a’s+a't+4a ' qa-p3(1+a't) )+ (14-a's+a't)
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Amigr—myr(s,t) =
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l'he Hy'T HynT amplitudel

A yromir = Aven(s,t)
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(1)

where

(2)

(—a/s—a't—=2)c ¢,
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and

a; = —N —2d/Nqi-p2, B1=—-N—2dNqipa, (3)
og = —N —2a'Nqgap1, Ba=—N—2a'Nqgsps . (4)
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Detailed plan of the presentation |

e |litle pagel O minutes

e [Bibliography O minutes

e [ntroductionl 2 minutes

e Black holes vs String T heory] 6 minutes

e | [ he thermal nature of pure states 9 minutes

e HES as laboratories for complex systems| 11 minutes

e (Chaos In Perturbative String 1T heory| 13 minutes

e (Covariant, Conherent, DDF Vertex operators| 17 minutes

e [ he four-point amplitudel 19 minutes

e | [ he absorption cross section| 23 minutes

e Special cases 24 minutes

e [ [ -Invariance and emission rates 29 minutes

e (Conlusions 30 minutes

e Open ends 31 minutes
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e [The § and b polynomials in the coherent vertex operator] 34 minutes

e Anatomy of the four-point-amplitudel 35 minutes

e [ he Amati-Russo calculation| 36 minutes

e A toy summation over states| 37 minutes

e [[ -Invariance versus detailed balancel 38 minutes

o (| he H>YT'H>T amplitudel 39 minutes

e |l he HyT HyT amplitude] 40 minutes
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