How well do we understand string spectra?

Chrysoula Markou

 $\begin{array}{c} \text{April 4, 2025} \\ \text{Gravity, Strings \& Supersymmetry Breaking Meeting} \end{array}$

Why (still) string theory?

• (closed) string spectrum:

 \exists (single) massless spin-2 state, whose lowest-energy interactions match those of the graviton of General Relativity!

 \Rightarrow gravity (after compactifications to D=4)

• string scattering amplitudes:

interaction vertices: "zones" (instead of points, like in field theory) \Rightarrow amplitudes do not diverge @ high energies!

⇒ string theory: shares properties with what we expect quantum gravity to be

but how well do we understand its spectrum?

Generalities of the spectrum

• let's look at (a channel of) the Veneziano amplitude:

$$A_4 \sim \frac{\Gamma(-\alpha(s))\Gamma(-\alpha(t))}{\Gamma(-\alpha(s)-\alpha(t))}, \quad \alpha(s) = 1 + \alpha' s$$

 \Rightarrow infinitely many simple poles e.g. @ $s = -\frac{1}{\alpha'}, 0, \frac{1}{\alpha'}, \frac{2}{\alpha'}, \dots$

• it is actually a string amplitude ⇒ theory with *infinitely many* (on–shell) *physical states*

$$M^2 = \text{integer} \times \frac{1}{\alpha'}$$

• they correspond to irreps of $\mathfrak{so}(D-1)$ or $\mathfrak{so}(D-2) \Rightarrow \mathrm{TT}$

1-particle states à la Bargmann and Wigner?

• among them $\exists \infty$ —many massive higher spins \Rightarrow crucial to several properties of sting theory, e.g. UV softness

What does the spectrum look like? Is there a bigger symmetry?

Let's start with the open bosonic string

(one box per spacetime index, symmetric rows, Young symmetry)

N	decomposition in physical states
0	•
1	$igcap_{so(D-2)}$
2	
3	
4	
5	
6	

see e.g. Weinberg 1985, Mañes, Vozmediano 1989

How is this table constructed?

Traditional constructions

- old covariant way: $|\text{phys}\rangle \sim F(\alpha_{-1}^{\mu}, \alpha_{-2}^{\nu}, \dots) |0; p\rangle$
 - $(L_0 1)|\text{phys}\rangle = 0 \Rightarrow M^2 = (N 1)/\alpha',$ where $N := \sum_{m=1}^{\infty} \alpha_{-m} \cdot \alpha_m \Rightarrow \text{choose "mass level" } N$
 - write Ansatz for F at chosen N and solve $L_1|\text{phys}\rangle = 0 = L_2|\text{phys}\rangle$ Del Giudice, P. Di Vecchia 1970, Sasaki, Yamanaka 1985,...
- 2 light—cone gauge (level—by—level, by construction non—covariant)
 Goddard, Thorn 1972, Goddard, Goldstone, Rebbi, Thorn 1973
- 3 DDF (level-by-level, either ∃ reference momentum or need to solve constraints)

Del Giudice, Di Vecchia, Fubini 1972, Brower 1972, . . . , Skliros, Hindmarsh '11 highly excited strings: Gross, Rosenhaus '21, Pesando, Biswas '24, Bianchi, Firrotta, Sonnenschein, Weissman '22-'now, Firrotta, Kiritsis, Niacrhos '24

4 obtain SO(D-1) irreps from partition function (level-by-level, yields states' characters)

Curtright, Thorn 1986, Forcella, Hanany, J. Troost '10

A bit on interactions

- open string spectrum:
 - ightharpoonup massless vector \Rightarrow Yang-Mills

Neveu, Scherk 1971, . . .

▶ lightest massive spin-2 \Rightarrow bimetric vertices

Lüst, CM, Mazloumi, Stieberger '21

leading Regge:

$$|\text{leading}\rangle = \varepsilon_{\mu_1...\mu_s} \alpha_{-1}^{\mu_1} \dots \alpha_{-1}^{\mu_s} |0;p\rangle \quad (\text{TT due to } L_1, L_2)$$

 \Rightarrow higher-spin couplings (at 3- and 4-points)

Sagnotti, Taronna '10 see also Angelantonj, Sagnotti '02

- closed string spectrum:
 - ▶ massless spin $-2 \Rightarrow \text{Einstein-Hilbert}$

Scherk, Schwarz 1974, Yoneya 1974, \dots

ightharpoonup certain lightest massive spin-2 \Rightarrow cubic bimetric vertices

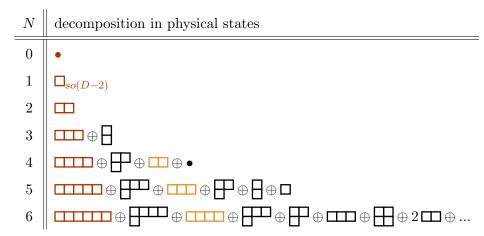
Lüst, CM, Mazloumi, Stieberger '23

(bimetric theory \sim interacting graviton and massive spin–2 in Minkowski)

de Rham, Gabadadze, Tolley '10, '11, Hassan, Rosen '11

All methods come with their own restrictions

Spectrum visualisation: Regge trajectories



beyond the leading Regge, the spectrum seems repetitive

Main challenge: what do excited states look like?

Is there a certain *pattern*?

Is the spectrum concealing a bigger organizing symmetry?

11 / 20

What do states look like?

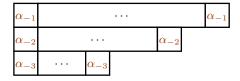
• any state has a polarization depicted by a Young diagram

- ► convention: symmetric rows + additional relations
- e.g. hook: $\bigoplus \Leftrightarrow \varepsilon^{\mu_1\mu_2,\lambda} \text{ with } \varepsilon^{\mu_1\mu_2,\lambda} + \varepsilon^{\mu_2\lambda,\mu_1} + \varepsilon^{\lambda\mu_1,\mu_2} = 0$
- general string state:
 - Young symmetry: $\varepsilon_{\dots,\mu_k(k),\dots,\mu_k\mu_\ell(\ell-1),\dots} = 0 \Rightarrow GL \text{ irreps}$
 - 2 tracelessness: $\eta^{\rho\sigma}\varepsilon_{\dots,\mu_k(k-1)\rho,\dots,\mu_\ell(\ell-1)\sigma,\dots} = 0 \Rightarrow SO \text{ irreps}$
- \bullet render a given diagram physical: \exists $\infty-many$ physical polynomials

Where do states appear?

 \bullet How can we minimize the level? contract $i\!-\!$ th row with α^μ_{-i} $_{\rm see~e.g.~Weinberg~1985}$

e.g. 3-row diagrams:



e.g. hook:
$$F_{\text{simpl}}^{\square} = \varepsilon_{\mu_1 \mu_2, \nu} \, \alpha_{-1}^{\mu_1} \alpha_{-2}^{\mu_2} \, (\text{TT}) \quad \Rightarrow \quad N_{\text{min}} = 4$$

- \Rightarrow any diagram appears at the respective N_{\min} for the "first" time
- a given diagram also appears at higher levels $N = N_{\min} + w$ \Rightarrow let's call w "depth"
- ullet let's call a trajectory the set of diagrams with a fixed number of rows at fixed w

Re-organizing the spectrum

the spectrum consists of w=0 trajectories and their ∞ -many clones!

N	decomposition in physical states $w = 0, 1, 2, 3, 4, \dots$
0	•
1	$\square_{so(D-2)}$
2	
3	
4	
5	
6	

 \Rightarrow polynomial *complexity*: measured by w (and number of rows)

All trajectories at once

• idea: let's consider the most general polynomial $F = F(\alpha_{-1}^{\mu}, \alpha_{-2}^{\nu}, \dots)$ and impose the Virasoro constraints:

$$\Rightarrow 2L_{n>0}^{\perp}F = \left[\sum_{m=1}^{n-1} \alpha_{n-m} \cdot \alpha_m + 2\sum_{m=1}^{\infty} \alpha_{-m} \cdot \alpha_{n+m}\right]F = 0$$

• let's define the operators $(k, \ell = 1, 2, ..., N)$

$$T^{k}_{\ell} := \frac{1}{k} \alpha_{-k} \cdot \alpha_{\ell}, \quad T_{k\ell} := \alpha_{k} \cdot \alpha_{\ell}, \quad T^{k\ell} = \frac{1}{k\ell} \alpha_{-k} \cdot \alpha_{-\ell}$$

$$\text{operator} \qquad T^{k}_{\ell} \qquad T_{k\ell} \qquad T^{k\ell}$$

$$\text{energy units} \qquad k - \ell \qquad -k - \ell \qquad k + \ell$$

• can now rewrite the Virasoro constraints on a general F as:

$$L_{n>0}^{\perp}F = \left[\sum_{m=1}^{n-1} T_{m,n-m}^{\perp} + 2\sum_{m=1}^{\infty} mT_{n+m}^{m}\right]F = 0$$

A bigger organizing symmetry

- use $[\alpha_m^{\mu}, \alpha_n^{\nu}] = m\delta_{m+n}\eta^{\mu\nu} \Rightarrow \{T^k_{\ell}, T_{k\ell}, T^{k\ell}\}$ generate $\mathfrak{sp}(2N)$!
- can choose lowering & raising operators
 - lowering: $T_{k\ell}$, $T^{k<\ell}_{\ell}$
 - raising: $T^{k\ell}$, $T^{k>\ell}_{\ell}$
 - \Rightarrow lowest weight states: $T^k_{\ k} F = s_k F$, $T_{k\ell} F = 0$, $T^{k<\ell}_{\ \ell} F = 0$
- the \mathfrak{sp} lowering operators check Young symmetry & tracelessness on w=0 diagrams!
 - e.g. hook \prod at w = 0: $F_{\text{simpl}} = \varepsilon_{\mu_1 \mu_2, \nu} \, \alpha_{-1}^{\mu_1} \alpha_{-2}^{\mu_2} \alpha_{-2}^{\nu}$
 - $T^{1}{}_{2} F_{\text{simpl}} = 0 \quad \Leftrightarrow \quad \varepsilon_{\mu_{1}\mu_{2},\nu} + \text{cyclic} = 0$
 - $T_{12}F_{\text{simpl}} = 0 \Leftrightarrow \eta^{\rho\sigma}\varepsilon_{\mu\rho,\sigma} = 0 \text{ etc}$
 - \Rightarrow the lowest weight states of $\mathfrak{sp}(2N)$ are the w=0 trajectories!

Building the spectrum: a new technology

• $\mathfrak{sp}(2N)$ commutes with $\mathfrak{so}(D-1,1) \Rightarrow$ employ Howe duality!

CM, Skvortsov '23

irreps of
$$\mathfrak{sp}(2N) \stackrel{\text{``}1-1\text{''}}{\longleftrightarrow}$$
 irreps of $\mathfrak{so}(D-1,1)$

• implementation: use raising operators of $\mathfrak{sp}(2N)$ to reach w>0

$$F_{w>0}^f = f_{w>0}(T_{\perp}^{mn}, T^{k>\ell}_{\ell}) F_{w=0}$$
 and solve L_1, L_2

 \Rightarrow can reach the ∞ -many appearances of a given Young diagram from its first!

• e.g. construct the first clone of the leading Regge

$$F_{w=2}^{f} = \left[\beta_{1}T_{\perp}^{11} + \beta_{2}T_{1}^{3} + \beta_{3}(T_{1}^{2})^{2}\right]F_{w=0}$$

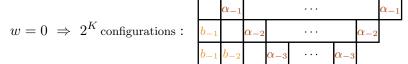
$$\Rightarrow \beta_{2} = -\beta_{1}\frac{D+2s-1}{s}, \quad \beta_{3} = \beta_{1}\frac{D+2s-1}{s(s-1)}$$

spin is not fixed \Rightarrow full trajectory is known!

The superstring, super quickly

- add fermionic modes b_r^{μ} , with $\{b_m^{\mu}, b_n^{\nu}\} = \delta_{m+n} \eta^{\mu\nu}$ \Rightarrow favour columns, but how do we glue rows to columns?
- Neveu–Schwarz sector: $\mathfrak{osp}(2M|2N)$

② Ramond sector: $\mathfrak{osp}(2M+1|2N)$ (K: diagonal length)



ambiguity due to $Q^n_n := \frac{1}{n} \alpha_{-n} \cdot b_n \Rightarrow \text{non-trivial multiplicity!}$

• construct w > 0: dress with raising operators of the \mathfrak{osp} , apply super-Virasoro constraints

Basile, CM '24

Conclusions & further directions

- we have developed a **new technology** that excavates **entire** string trajectories **deeper** in the (super)string spectrum
 - ▶ it is **covariant** and **efficient**
 - ► amplitudes for entire trajectories available, we have several examples

 CM, Skvortsov '23, Basile, CM, '24
- further developments:
 - ▶ technology for the *closed* string spectrum?

Basile, CM to appear

- technology around curved bkg? for D = 4?
- can we probe deeper into black-holes?
- \triangleright can we decode chaos in the string S-matrix?

Is the *complete* spectrum within reach?

How well do we understand the underlying principles of string theory?

The key to decoding the deep mysteries surrounding its geometry may lie in its **massive spectrum**