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Motivations

Born-Infeld is unique theory of nonlinear electrodynamics (NLED) with a
weak-field limit for which shock waves propagate without birefringence.
The only causal no-birefringence NLED theories are

Born-Infeld (BI) [Boillat, Plebanski, c. 1970]

Bialynicki-Birula (BB) [Bialynicki-Birula, 1983, 1992]

Extreme BI (EBI) [Russo, PKT ’22. Mezincescu, Russo, PKT ’23]

These are BI and its limits

BI describes the electromagnetic interactions on the worldvolume of a
static planar D3-brane of IIB superstring theory [Fradkin &Tseytlin 1985,
Bergshoeff, Pope, Sezgin, PKT, 1987, Leigh 1989, Tseytlin 1999, ... ].

➸ Is there an extreme limit of the D3-brane?
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D3-brane in a IIB Minkowski vacuum

10D Metric is Minkowski: g = η. Vacuum value of dilaton-field determines
IIB string coupling constant gs . For simplicity choose zero axion field .
Let T1 be IIB F(undamental)-string tension.

Bosonic truncation of effective field theory for D3-brane is the 4D
Dirac-Born-Infeld (DBI) theory with

LDBI = −T3

√
− det (G + F/T1) , T3 =

T 2
1

gs

G is induced 4D worldvolume metric and F = dA a 2-form field-strength
for independent worldvolume 1-form potential A.

➸ Recall that D-string tension is

T̃1 = T1/gs
(
⇔ T1 = T̃1/g̃s , g̃s = 1/gs

)
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Alternative formulations

In terms of the (pseudo)scalar densities

S = −1

4

√
− detGGµρG νσFµνFρσ , P = −1

8
εµνρσFµνFρσ

we have

LDBI = − 1

gs

√
T 2 − 2T S − P2 , T := T 2

1

√
− detG .

➸ Equivalently [following Roček-Tseytlin for BI] we can linearise in (S ,P)
by introducing auxiliary scalar fields (u, v):

L(RT )
DBI = −T

2

{
v +

(1 + g2
s u

2)

g2
s v

}
+ vS + uP .
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Diff-invariant phase-space formulation

This is a manifestly 10D Lorentz invariant formulation with Hamiltonian
constraints generating 4D worldvolume diffeomorphisms.

For Minkowski coordinates {Xm;m = 0, 1, . . . , 9} and worldvolume
coordinates xµ = (t, σi ),

L = ẊmPm + D iEi − s i
{
∂iX

mPm − εijkD
jBk

}
−1

2ℓ
{
ηmnPmPn + T 2

1D
iD jhij + T̃ 2

1B
iB jhij + (T1T̃1)

2 det h
}

Elimination of conjugate momentum variables (Pm,D
i ) yields Lagrangian

with (s i , ℓ) as auxiliary fields; eliminating them yields LDBI .

➸ Note manifest U(1) duality invariance, which acts by phase shift of
complex 3-vector field D+ (i/gs)B.
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Monge Gauge

Fix worldvolume diffeos by Monge gauge choice

Xm =
{
t,σ, X⃗ (t,σ)

}
, Pm =

{
−H,P, Π⃗(t,σ)

}
.

Now we can solve constraints for (H,P). For example, for a planar static
3-brane (∇X⃗ = 0⃗ and Π⃗ = 0⃗) we have P = D× B and

H =
√

T 2
3 + 2sT3 + p2 ,

where

2s = gs |D|2 + 1

gs
|B|2 , p = |D× B|

This is the Born-Infeld Hamiltonian density (generalised to arbitrary gs).
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Electric EDBI

Electric Extreme limit is a strong-coupling limit:

gs → ∞ for fixed T1 (T̃1 → 0 & T3 → 0)

but 2sT3 → T 2
1 |D|2, and therefore (again for planar static D3-brane)

H → HeBI =
√

T 2
1 |D|2 + |D× B|2 .

This defines ‘electric’ EBI. Get Lagrangian either by Legendre transform

or from extreme limit of L(RT )
BI . After elimination of u we have

LeEBI = λ
(
T 2 − 2TS − P2

)
(2λ = −v/T )

➸ This constraint implies that |E| takes its “critical” value.
(cf. Seiberg, Susskind Toumbas, 2000)
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Magnetic DEBI

Magnetic Extreme limit: g̃s → ∞ for fixed T̃1

This just reverses roles of D and B. We now get (planar static D3-brane)

H =

√
T̃ 2
1 |B|2 + |D× B|2 .

This defines ‘magnetic’ EBI. To get Lagrangian, either take Legendre

transform or take ‘magnetic’ extreme limit of L(RT )
BI . Either way, one gets

LmEBI = −T1

√
−2S + uP (|B|2 > |E|2)

Now the constraint is P = 0. N.B. ∂iD
i = ∂jB

j = 0 .

➸ Looks different from ‘electric’ case, but the physics must be equivalent!
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Susy preservation

IIB Minkowski vacuum has 32 Killing spinors: {ϵ}. Number of susys
preserved by D3-brane is number of solutions to equation of form

Γ(t,σ)ϵ = ϵ , Γ2 ≡ I32

Focus on static magnetic DBI with |E| = 0 (⇔ |D× B| = 0) and choose

Xm = {t,X a; a = 1, . . . , 9}. Then, since T1 = 0 , gs = 0 we get

H = T̃1

√
hijB iB j , hij = ∂iX

a · ∂jX bδab .

Susy condition is (τ1 ⊗ γ0Γa)
(
B i∂iX

a
)
ϵ =

√
hijB iB j ϵ

➸ B = (B, 0, 0) and X a = (σ1,X), with ∂1B = ∂1X = 0 → 16 susys.
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Where are the strings?

The 16-susy magnetic EDBI-brane is a string with tension

dH
dσ1

= T̃1

∫
dσ2dσ3B(σ2, σ3) = T̃1⟨B⟩A

where ⟨B⟩ is average B. Cf. Landau problem: plane orthogonal to B is
non-commutative, and minimum area is 1/B. For A = 1/⟨B⟩ we get a
string of tension T̃1. This is the D-string dissolved into an EDBI brane.

➸ Where are the tensionless (and non-interacting) F-strings?

These are now tensionless flux tubes of D = (D, 0, 0) (with ∂1D = 0)
dissolved in the tensionless 3-brane. End points are + and − electric
charges. They move inertially in the direction of B.
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Outlook

Many questions remain.

What is connection to NCOS?

Are there any 1/4 BPS solutions

Questions I did not think of yet but which you may be going to ask
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