The Extreme D3-brane

Paul K. Townsend

University of Cambridge

Work in progress with Jorge Russo Origins in earlier work with Jorge Russo and Luca Mezincescu (2211.10689, 2311.04278)

April 4, 2025

1/11

イロト イヨト イヨト -

Motivations

Born-Infeld is unique theory of nonlinear electrodynamics (NLED) with a weak-field limit for which shock waves propagate *without birefringence*. The only causal no-birefringence NLED theories are

- Born-Infeld (BI) [Boillat, Plebanski, c. 1970]
- Bialynicki-Birula (BB) [Bialynicki-Birula, 1983, 1992]
- Extreme BI (EBI) [Russo, PKT '22. Mezincescu, Russo, PKT '23]

These are BI and its limits

BI describes the electromagnetic interactions on the worldvolume of a static planar D3-brane of IIB superstring theory [Fradkin & Tseytlin 1985, Bergshoeff, Pope, Sezgin, PKT, 1987, Leigh 1989, Tseytlin 1999, ...].

 \rightarrow Is there an extreme limit of the D3-brane?

D3-brane in a IIB Minkowski vacuum

10D Metric is Minkowski: $g = \eta$. Vacuum value of dilaton-field determines IIB string coupling constant g_s . For simplicity choose zero axion field. Let T_1 be IIB F(undamental)-string tension.

Bosonic truncation of effective field theory for D3-brane is the 4D Dirac-Born-Infeld (DBI) theory with

$$\mathcal{L}_{DBI} = -T_3 \sqrt{-\det\left(G + F/T_1\right)}, \qquad T_3 = \frac{T_1^2}{g_s}$$

G is induced 4D worldvolume metric and F = dA a 2-form field-strength for independent worldvolume 1-form potential *A*.

➤ Recall that D-string tension is

$$ilde{T}_1 = T_1/g_s \qquad \left(\Leftrightarrow \quad T_1 = ilde{T}_1/ ilde{g}_s, \quad ilde{g}_s = 1/g_s
ight)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ◇◇◇

Alternative formulations

In terms of the (pseudo)scalar densities

$$S = -rac{1}{4}\sqrt{-\det G}\,G^{\mu
ho}\,G^{
u\sigma}F_{\mu
u}F_{
ho\sigma}\,,\qquad P = -rac{1}{8}arepsilon^{\mu
u
ho\sigma}F_{\mu
u}F_{
ho\sigma}$$

we have

$$\mathcal{L}_{DBI} = -\frac{1}{g_s} \sqrt{\mathcal{T}^2 - 2\mathcal{T}S - P^2}, \qquad \mathcal{T} := \mathcal{T}_1^2 \sqrt{-\det G}.$$

► Equivalently [following Roček-Tseytlin for BI] we can linearise in (S, P) by introducing auxiliary scalar fields (u, v):

$$\mathcal{L}_{DBI}^{(RT)} = -\frac{\mathcal{T}}{2} \left\{ v + \frac{(1+g_s^2 u^2)}{g_s^2 v} \right\} + vS + uP.$$

イロト 不得 トイラト イラト 二日

Diff-invariant phase-space formulation

This is a manifestly 10D Lorentz invariant formulation with Hamiltonian constraints generating 4D worldvolume diffeomorphisms.

For Minkowski coordinates $\{X^m; m = 0, 1, ..., 9\}$ and worldvolume coordinates $x^{\mu} = (t, \sigma^i)$,

$$\mathcal{L} = \dot{X}^m P_m + D^i E_i - \mathbf{s}^i \left\{ \partial_i X^m P_m - \varepsilon_{ijk} D^j B^k \right\} - \frac{1}{2} \ell \left\{ \eta^{mn} P_m P_n + T_1^2 D^i D^j h_{ij} + \tilde{T}_1^2 B^i B^j h_{ij} + (T_1 \tilde{T}_1)^2 \det h \right\}$$

Elimination of conjugate momentum variables (P_m, D^i) yields Lagrangian with (s^i, ℓ) as auxiliary fields; eliminating them yields \mathcal{L}_{DBI} .

▶ Note manifest U(1) duality invariance, which acts by phase shift of complex 3-vector field $\mathbf{D} + (i/g_s)\mathbf{B}$.

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Monge Gauge

Fix worldvolume diffeos by Monge gauge choice

$$X^m = \left\{t, \boldsymbol{\sigma}, \vec{X}(t, \boldsymbol{\sigma})\right\}, \qquad P_m = \left\{-\mathcal{H}, \mathbf{P}, \vec{\Pi}(t, \boldsymbol{\sigma})\right\}.$$

Now we can solve constraints for $(\mathcal{H}, \mathbf{P})$. For example, for a planar static 3-brane $(\nabla \vec{X} = \vec{0} \text{ and } \vec{\Pi} = \vec{0})$ we have $\mathbf{P} = \mathbf{D} \times \mathbf{B}$ and

$$\mathcal{H}=\sqrt{T_3^2+2sT_3+p^2}\,,$$

where

$$2s = g_s |\mathbf{D}|^2 + \frac{1}{g_s} |\mathbf{B}|^2, \qquad p = |\mathbf{D} \times \mathbf{B}|$$

This is the Born-Infeld Hamiltonian density (generalised to arbitrary g_s).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ◇◇◇

Electric EDBI

Electric Extreme limit is a strong-coupling limit:

$$g_s \to \infty$$
 for fixed T_1 $(\tilde{T}_1 \to 0 \& T_3 \to 0)$

but $2sT_3 \rightarrow T_1^2 |\mathbf{D}|^2$, and therefore (again for planar static D3-brane)

$$\mathcal{H}
ightarrow \mathcal{H}_{eBI} = \sqrt{T_1^2 |\mathbf{D}|^2 + |\mathbf{D} imes \mathbf{B}|^2} \,.$$

This defines 'electric' EBI. Get Lagrangian either by Legendre transform or from extreme limit of $\mathcal{L}_{BI}^{(RT)}$. After elimination of u we have

$$\mathcal{L}_{eEBI} = \lambda \left(T^2 - 2TS - P^2 \right) \qquad (2\lambda = -v/T)$$

This constraint implies that |E| takes its "critical" value. (cf. Seiberg, Susskind Toumbas, 2000)

イロト イボト イヨト イヨト 二日

Magnetic DEBI

Magnetic Extreme limit: $\tilde{g}_s \to \infty$ for fixed \tilde{T}_1

This just reverses roles of **D** and **B**. We now get (planar static D3-brane)

$$\mathcal{H} = \sqrt{ ilde{\mathcal{T}}_1^2 |\mathbf{B}|^2 + |\mathbf{D} imes \mathbf{B}|^2} \, .$$

This defines 'magnetic' EBI. To get Lagrangian, either take Legendre transform or take 'magnetic' extreme limit of $\mathcal{L}_{RI}^{(RT)}$. Either way, one gets

$$\mathcal{L}_{mEBI} = -T_1 \sqrt{-2S} + uP \qquad (|\mathbf{B}|^2 > |\mathbf{E}|^2)$$

Now the constraint is P = 0. **N.B.** $\partial_i D^i = \partial_i B^j = 0$.

Looks different from 'electric' case, but the physics must be equivalent!

イロト イボト イヨト 一日

Susy preservation

IIB Minkowski vacuum has 32 Killing spinors: $\{\epsilon\}$. Number of susys preserved by D3-brane is number of solutions to equation of form

$$\Gamma(t,\sigma)\epsilon = \epsilon, \qquad \Gamma^2 \equiv \mathbb{I}_{32}$$

Focus on static magnetic DBI with $|\mathbf{E}| = 0$ ($\Leftrightarrow |\mathbf{D} \times \mathbf{B}| = 0$) and choose $X^m = \{t, X^a; a = 1, \dots, 9\}$. Then, since $\boxed{T_1 = 0, g_s = 0}$ we get

$$\mathcal{H} = \tilde{T}_1 \sqrt{h_{ij} B^i B^j} , \qquad h_{ij} = \partial_i X^a \cdot \partial_j X^b \delta_{ab} .$$

Susy condition is $(\tau_1 \otimes \gamma_0 \Gamma_a) (B^i \partial_i X^a) \epsilon = \sqrt{h_{ij}} B^i B^j \epsilon$

▶ $\mathbf{B} = (B, 0, 0)$ and $X^a = (\sigma^1, \mathbb{X})$, with $\partial_1 B = \partial_1 \mathbb{X} = 0 \rightarrow 16$ susys.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ◇◇◇

The 16-susy magnetic EDBI-brane is a string with tension

$$rac{d\mathcal{H}}{d\sigma^1} = ilde{T}_1 \int d\sigma^2 d\sigma^3 B(\sigma^2,\sigma^3) = ilde{T}_1 \langle B
angle \mathcal{A}$$

where $\langle B \rangle$ is average B. Cf. Landau problem: plane orthogonal to B is non-commutative, and minimum area is 1/B. For $\mathcal{A} = 1/\langle B \rangle$ we get a string of tension \tilde{T}_1 . This is the D-string dissolved into an EDBI brane.

➤ Where are the tensionless (and non-interacting) F-strings?

These are now tensionless flux tubes of $\mathbf{D} = (D, 0, 0)$ (with $\partial_1 D = 0$) dissolved in the tensionless 3-brane. End points are + and - electric charges. They move inertially in the direction of **B**.

Paul K. Townsend (Univ. of Cambridge)

Many questions remain.

- What is connection to NCOS?
- Are there any 1/4 BPS solutions
- Questions I did not think of yet but which you may be going to ask

= nar

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A