Direct Searches at Colliders Status and Perspectives

 $pp \to \tilde{t}\tilde{t} \to t\chi\bar{t}\chi$

Scuola Normale Superiore Pisa

Gravity, Strings and Supersymmetry breaking 4 April 2025

MAX-PLANCK-INSTITUT FÜR PHYSIK

The Large Hadron Collider (LHC)

Unrivalled at Energy Frontier 13.6 TeV (COM energy)

Outstanding at Intensity Frontier Record Luminosity* $2.26 \times 10^{34} \ cm^2 s^{-1}$

*Close to SuperKEKB at $5.1 \times 10^{34} \ cm^2 s^{-1}$

So far the LHC has delivered:

- 15 Million Higgs bosons produced
- 600 Million top quarks produced
- 15 Billion Z bosons with 300 Million per lepton flavour
- 60 Billion W bosons (3 billion per lepton flavour)
- 300 Trillion b quarks

Still 10 times more statistics expected at HL-LHC!

In comparison Future ee up to ~1-4 M Higgs, much cleaner and « usable » events

Extraordinary performance of the LHC accelerator complex

- The Run 3 has now surpassed the Run 2 dataset ~180 fb^{-1} at 13.6 TeV
- Approximately x10 Luminosity to be delivered at HL-LHC (in terms of results x20) in the same amount of time... Major upgrades leading to the High Luminosity during the third long shutdown now on the horizon! (See backup for more details).

New Schedule (LS3 from Q3 2026 to Q2 2029)

2024 - High availability operation, **Full mastery of considerable** inherent operational risks

Even with the record luminosity in 2024 need more than 20 running years to achieve HL-LHC luminosity!

A Special Moment for LHC Physics Program

- The Run 1 dataset with only of ~30 fb^{-1} at 7-8 TeV led to Discovery (and first measurements) of the Higgs boson!
- dataset of ~140 fb^{-1} at 13 TeV
- The Run 3 aims at close to ~0.5 ab^{-1} at 13.6 TeV essential benchmark on the road to HL-LHC.

- -
- Run 3 data).
- 10% performance.
- Among search papers 40% on SUSY and 60% on other BSM searches.

Each of these results would deserve an entire talk! Focus on the results and the guidelines (typically simplified models) used to identify the most interesting event topologies to investigate.

- The Run 2 dataset surpassed the initial goal (in luminosity) of the LHC project and is a clean and well calibrated

ATLAS and CMS have published approximately 1350 papers (each) since the start of operations.

Almost exclusively all papers have been published with data of up to Run 2 (only handful published with

- Approximately 50% of the ATLAS results are direct searches for new physics, 40% are measurements and

A Special Moment for the LHC Physics Program

ATLAS Outline

- Forward to the collection
- Climbing to the Top
- Electroweak, QCD and flavour physics
- Characterising the Hihggs boson
- Model
- Additional scalars and exotic decays
- The quest o discover supersymmetry

A collection of 14 Physics Reports - an overview of the LHC Run 2 results

ATLAS Phys. Rep. Link

Exotic Jungle Beyond the Standard

CMS Outline

CMS Phys. Rep. Link

- The Stairway to heaven
- Stairway to discovery: cross section measurements
- Review of top quark mass measurements
- High density QCD
- Searches for Higgs decays of heavy resonances
- Dark sector searches
- Vector like quarks, leptons and heavy neutral leptons
- Searches through data scouting

Genesis of the LHC

First mention of the LHC in 1977 by sir John Adams (former CERN director) as an option of a superconducting hadron collider to be hosted in the LEP tunnel (requesting that the LEP be made large enough to host a proton collider of at least 3 TeV beam energy).

15 years preparation period of the concept and project

15 years of construction

- 1984: CERN and ECFA workshop in Lausanne.
- 1988: LEP tunnel completed (Europe's largest civil engineering project prior to the channel tunnel).
- 1992: ATLAS and CMS letters of intent. -
- **1994: Approval of the LHC** (1993 cancellation of 40 TeV SSC).
- 1995: LHC CDR published. -
- 1997-98: ATLAS, CMS, LHCb and ALICE experiments approved. -
- 2003-2005: Caverns completed installation started.
- 2007: LHC dipoles installed in LHC (after having been all individually checked at SM18).
- 2008: Experiments installed.
- 2008 September 10: Start of the LHC. -
- 2008 September 19: Incident occurs between dipole and quadrupole.
- **2009** November: Beams are back in the LHC!

Since 2009: 16 years of successful operations and landmark results!

Strategy (Decision) Process

European Strategy Process well underway!

The principal goal of this strategy is to decide on the next flagship CERN project.

Community and national inputs submitted on Monday available since yesterday evening!

Strategy Documents Link

Crucial moment for particle physics:

A strategic decision on the next flagship project by the end of the year!

Aim at an approval by Council in 2028

A Scientific Mission for the 21st Century

	LHC Run 2 2014-2018 13 TeV 100% to 2x Nom. Lumi, PU 40 Int. Lumi.190 fb-1		HL-LHC (Run 2029-2041 13.6 - Nominal Luminosity Int. Lumi. 3000 fb-1	15 4-6) 14 TeV and 2x 7, PU 140 - 200		
	Higgs couplings to Fermions of the third generation (top, bottom and taus)!	2	di-Higgs boson p and Higgs self co precision Higgs p	oroduction oupling and ohysics! CLIC 3	CLIC 380	
	201 Exp and upg	8-2022 periments Phase-I I accelerator grades		ILC 25	0 G	
2010		2020	2030		2	
	LS1 2012-204 Consolidation of LHC	LS 202 insta	3 6-2029 HL-LHC allation and major exp. rades			
	interconnections			CepC 90) - 2	
20 75 Int.	HC Run 1 09-2012 7-8 TeV 5% Nom. Lumi, PU 30-40 . Lumi. 30 fb-1	LHC Run 3 2022-2026 13.6 TeV 2x Nom. Lumi., PU 60 Int. Lumi. 450 fb-1				
Di: Bc Hig bc W	scovery of the Higgs oson, measurements of ggs Boson couplings to osons (gluons, photons, ' and Z)	Higgs couplings to Fermions of the second generation (muons) and more rare decays				
				LHC		

Future Collider Projects

Stairway to Discoveries

LHC Precision Measurements Highlights (I)

From precise Drell Yan (Z and W) measurements

CMS W Mass precision at 10 MeV (experimental puzzle - **CDF measurement** with outstanding 9 MeV precision but tension of 4σ with other experiments)

Significant evidence of measurement systematic bias!

$\sin^2 \theta_W$ measured at 0.13% almost on par with best LEP and SLC measurements!!

 $\alpha_{\rm S}$ from Sudakov Z peak at low transverse momentum, best measurement so far and precision at 0.9%

Precision on par with lattice QCD and world average!

LHC Measurements Highlights (II)

Di-Higgs production and Higgs (trilinear) self-coupling!

More channels and more performant analyses!

Both experiments have $\sim 1\sigma$ sensitivity to a signal (Obs. ATLAS) 0.4 σ and CMS ~1 σ) with Run 2!!

Naive comb. ATLAS-CMS sensitivity with Run 3 close 2.5 σ with improvements (and as much data as possible) aim at 3σ

Both experiments should reach $\sim 5\sigma$ sensitivity at HL-LHC

A combined measurements precision of κ_{λ} of $^{+29\%}_{-26\%}$

IA Improvements at the LHC

Flavour tagging progress with Deep Learning Techniques

AI in HEP reconstruction has a significant impact!

Array of ML opportunities beyond classification and regression, in simulation, unfolding, anomaly detection, etc.

New ideas also have to be concerned with robustness and interpretability

> Still more improvements expected in flavour tagging techniques!

LHC Measurements Highlights (III)

Yukawa Coupling to Charm at the LHC

Refined analysis of Run 2 data with now Graph NN charm tagging!

Improvement by a factor of 2 w.r.t. previous result

Use of state-of-the-art ML techniques Particle Net uses Dynamic Graph CNN

Constraints on charm Yukawa $1.1 < \kappa_c < 5.5$

Yields a precision on κ_c of ~40% per experiment at HL-LHC

New perspective at the LHC!

Improving Reconstruction Techniques

Jet substructure reconstruction improvements reconstructing a vector boson, a Higgs boson or a top quark.

Search for intermediate mass resonance as a single jet investigating its substructure (including b-tagging).

Searches for diboson in two boosted jets signatures

Di boson candidate event in a fully hadronic search, each jet has a mass compatible with a vector boson (W or Z).

Constraining Strong Natural SUSY

Stop searches (main channels)

unexcluded corridors.

Constraining Strong Natural SUSY

Squarks and gluinos searches (main channels)

Stop also a scalar requires light gluinos to be light enough: for gluinos > 2.4 TeV

~tuning of Factor of **30**

Constraining EW Natural SUSY

Weak production of charginos, neutralinos and sleptons

1 to 4 leptons (including taus) in the final state. Including decays to electroweak bosons.

Searches for Charginos and Neutralinos (Examples)

Weak production of charginos and neutralinos in compressed scenarios

Example of boosting to find small mass differences.

SUSY in highly compressed scenarios

Disappearing tracks topologies (Uses MET Trigger - requires ISR jet)

Scenario where the charginos and neutralinos are almost degenerate (chargino has significant lifetime and is seen in the first

Unconventional Signatures at Colliders

Another example of reconstruction improvements implemented for a Run 3 search! GMSB scenarios with low mass gravitino

Long lifetime due to the small coupling to the low mass gravitino!

Improving reconstruction techniques e.g. ATLAS Large Radius Tracking at Run 3 and reprocessed Run 2!

LRT performance tested with Ks reconstruction (Paper)

Pixel Layer-2

Pixel Layer-1

Pixel B-Layer Track ũũ: ũ → u G Lifetime [ns ATLAS Expected limit ($\pm 1 \sigma_{exp}$) 10^{4} √s=13 TeV, 140 fb⁻ Observed limit vs=13.6 TeV, 56.3 fb 10^{3} PRL 127 (2021) 051802 All limits at 95% CL 10' 10 10^{-1} 10^{-2} 100 200 300 400 500 600 700 800 900 1000 m(μ̃) [GeV]

Search done for smuons, selectron and staus.

When SUSY Comes Without MET

R-Parity violating SUSY

Stealth SUSY

R-Parity is preserved but "hidden" in the quasi degeneracy of Singlet and Singling with a nearly massless gravitino LSP.

Resulting in topologies without LSP in the final state and therefore no MET.

 $\frac{1}{2}\lambda_{ijk}L_iL_j\bar{E}_k+\lambda'_{ijk}L_iQ_j\bar{D}_k$ $+\frac{1}{2}\lambda_{ijk}^{\prime\prime}\bar{U}_i\bar{D}_j\bar{D}_k+\kappa_iL_iH_2$

RPV components of superpotential

Searches e.g. in di-photon event topologies.

Some signatures are common to RPV and Stealth scenarios!

Very Large Number of SUSY Searches (in large variety of topologies and models)

A	TLAS SUSY Sea	arches* - 95% CL Lov	ver Limits		ATLAS Preliminary	F	IL/HE-LHC	SUSY	Searche	HL-LHC, [£ & = 3ab ⁻¹ : 5r	discovery (95% CLexclusion)	Si	imulati
JI	uly 2024	Signatura (C.4 181-			$\sqrt{s} = 13 \text{ TeV}$	•				HE-LHC, $\int \mathcal{L} dt = 15 \text{ab}^{-1}$: 5 σ	discovery (95% CLexclusion)		
	Model				Reference		Mode	ε,μ,τ,γ	Jəts	Mass limit	· · · · · · · · · · · · · · · · · · ·		Section
Š	$\tilde{q}\tilde{q},\tilde{q}{ ightarrow}q\tilde{\chi}_{1}^{0}$	$\begin{array}{ccc} 0 \ e, \mu & ext{2-6 jets} & E_T^{ ext{miss}} & ext{140} \ ext{mono-jet} & ext{1-3 jets} & E_T^{ ext{miss}} & ext{140} \end{array}$	\tilde{q} [1x, 8x Degen.] 1.0 1.85 \tilde{q} [8x Degen.] 0.9 1.85	m($ ilde{\chi}_1^0)$ <400 GeV m($ ilde{q}$)-m($ ilde{\chi}_1^0$)=5 GeV	2010.14293 2102.10874		$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}\tilde{f}_{1}^{0}$	0	4 jets	8	2.9 (3.2) TeV	m(\tilde{Y}_{1}^{0})=0	2.1.1
rche	$\tilde{g}\tilde{g},\tilde{g}{\rightarrow}q\bar{q}\tilde{\chi}_{1}^{0}$	$0 e, \mu$ 2-6 jets E_T^{miss} 140	ĝ ĝ	2.3 $m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$	2010.14293	0	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0}$	0	4 jets	ž.	5.2 (5.7) TeV	m(x ₁ ⁰)=0	2.1.1
Sea	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_1^0$	1 <i>e</i> , <i>µ</i> 2-6 jets 140	ğ	2.2 $m(\tilde{\chi}_1^0) < 600 \text{ GeV}$	2101.01629	iuine	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow : \tilde{D}\tilde{\chi}_{1}^{t}$	0	Multiple	ŝ	2.3 (2.5) TeV	m(X ⁰ ₁)=0	2.1.3
sive	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qaWZ\tilde{\chi}_1^0$	$ee, \mu\mu$ 2 jets E_T^{miss} 140 0 e, μ 7-11 jets E_T^{miss} 140	ğ ğ 1.97	2.2 $m(\tilde{\chi}_1^0) < 700 \text{ GeV}$ $m(\tilde{\chi}_1^0) < 600 \text{ GeV}$	2204.13072 2008.06032	G	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow :\tilde{c}\tilde{\chi}_{1}^{0}$	0	Multiple	2	2.4 (2.6) TeV	m($\tilde{\chi}_{1}^{0}$)=500 GeV	2.1.3
nclu	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	SS e, μ 6 jets 140	ğ 1.15	$\mathbf{m}(\tilde{g}) \cdot \mathbf{m}(\tilde{X}_1^0) = 200 \text{ GeV}$	2307.01094		NJHM2, $\tilde{g} \rightarrow \tilde{x}$	0	Multiple/26	ž	5.5 (5.9) TeV		2.4.2
	$gg, g \rightarrow \pi \chi_1$	$SS e, \mu$ 6 jets 140	8 ĝ 1.25	2.45 $m(\tilde{x}_1) < 500 \text{ GeV}$ $m(\tilde{g}) - m(\tilde{x}_1^0) = 300 \text{ GeV}$	1909.08457		$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0	Multiple/2b	ñ.	1 4 (1 7) TeV	m(x ⁰)=0	212,21
	$ ilde{b}_1 ilde{b}_1$	$0 e, \mu$ $2 b E_T^{miss}$ 140	\tilde{b}_1 1.255	$m(\tilde{\chi}_1^0) < 400 \text{ GeV}$	2101.12527 2101.12527	5	$\tilde{I}_1\tilde{I}_1, \tilde{I}_1 \rightarrow t\tilde{\chi}_1^0$	0	Multiple/2b	i,	0.6 (0.85) TeV	$\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim m(t)$	2.1.2
sy	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	$0 e, \mu$ $6 b$ E_T^{miss} 140	b1 0.00 b1 Forbidden 0.23-1.35	$\Delta m(\tilde{\chi}_{2}^{0},\tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$	1908.03122	ŝ	$\bar{I}_1 \bar{I}_1, \bar{I}_1 \rightarrow b \bar{\chi}^* / \bar{\chi}_1^0, \bar{\chi}_2^*$	0	Multiple/2b	i	3.16 (3.65) TeV		2.4.2
squar ducti	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	$2\tau \qquad 2b \qquad E_T \qquad 140$ 0-1 $e, \mu \qquad \geq 1$ jet $E_T^{\text{miss}} \qquad 140$	\tilde{i}_1 0.13-0.85 \tilde{i}_1 1.25	$\Delta m(\chi_2, \chi_1) = 130 \text{ GeV}, m(\chi_1) = 0 \text{ GeV}$ $m(\tilde{\chi}_1^0) = 1 \text{ GeV}$	2004.14060, 2012.03799	_	0°0° 0° . 11000	2011	0-1 inte	P ⁴	0.66 (0.84) TeV	m(⁶⁰)-0	2.2.1
len. s st pro	$ \begin{aligned} \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \to W b \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \to \tilde{\tau}_1 b \nu, \tilde{\tau}_1 \to \tau \tilde{G} \end{aligned} $	1 e, μ 3 jets/1 b E_T^{miss} 140 1-2 τ 2 jets/1 b E_T^{miss} 140		$m(\tilde{\chi}_{1}^{0})=500 \text{ GeV}$ $m(\tilde{\tau}_{1})=800 \text{ GeV}$	2012.03799, 2401.13430 2108.07665	6.6	$A_1A_1, A_1 \rightarrow W A_1$ $\delta^+ \delta^0$ and $W A_1$	3 4 11	0-1 joto	5± 150	0.92 (1.15) TeV	$m(x_1)=0$	2.2.1
3 rd g direc	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	$\begin{array}{ccc} 0 \ e, \mu & 2 \ c & E_{Thiss}^{miss} & 36.1 \\ 0 \ e, \mu & mono-jet & E_{Thiss}^{miss} & 140 \end{array}$	č 0.85 Ži 0.55	$m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})=5 \text{ GeV}$	1805.01649 2102.10874	trali	C=CO WA WA AND	1.6.1	2.2 inte/Sh	a1122 ct.jp0	1.0P (1.2P) TeV	=1(41)=0	2.2.2
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h\tilde{\chi}_1^0$	$1-2 e, \mu$ $1-4 b E_T^{miss}$ 140	<i>ĩ</i> ₁ 0.067-1.18	$m(\tilde{\chi}_{2}^{0})=500 \text{ GeV}$	2006.05880	Chi	C+C0W_4C0 W_4C4	200	-	(x1)/X2 (x1)/X2	0.6 TeV	=1(1)-0	224
	$t_2 t_2, t_2 \rightarrow t_1 + Z$ $\tilde{v}^{\pm} \tilde{v}^0$ via WZ	$\frac{3 e, \mu}{Multiple \ell / \text{iets}} = \frac{1 b}{E_T^{\text{miss}}} \frac{140}{140}$	t_2 Forbidden 0.86 $\tilde{v}^{\pm}/\tilde{v}^0$ 0.96	$m(\chi_1^\circ)=360 \text{ GeV}, m(\tilde{t}_1)-m(\chi_1^\circ)=40 \text{ GeV}$	2006.05880		A 2A 4			A9 /A4	0.3 10	III (1-150, 250 Gev	
	$\chi_1 \chi_2$ via wZ	$ee, \mu\mu \geq 1$ jet E_T^{miss} 140	$\tilde{X}_{1}^{4} \tilde{X}_{2}^{5}$ 0.205	$m(\tilde{\chi}_1^{\pm})=0$, wino-bino $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=5$ GeV, wino-bino	1911.12606	2	$\hat{X}_1^* \hat{X}_2^0 + \hat{X}_2^0 \hat{X}_1^0, \hat{X}_2^0 \rightarrow 7 \hat{X}_1^0, \hat{X}_1^0 \rightarrow W \hat{X}_1^0$	2 e.µ	1 jet	$\frac{\hat{X}_{1}^{*}}{\hat{Y}_{2}^{*}}$	0.25 (0.36) TeV	$m(\tilde{\chi}_1)=15 \text{ GeV}$	2.2.5.1
	$\chi_1^+\chi_1^-$ via WW $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$ via Wh	$2 e, \mu$ E_T^{miss} 140 Multiple ℓ /jets E_T^{miss} 140	$\begin{array}{ccc} \chi_1^- & 0.42 \\ \tilde{\chi}_1^+ / \tilde{\chi}_2^0 & Forbidden \end{array}$ 1.06	$m(\chi_1^0)=0$, wino-bino $m(\tilde{\chi}_1^0)=70$ GeV, wino-bino	1908.08215 2004.10894, 2108.07586	63s	$\chi_1 \chi_2 + \chi_2 \chi_1, \chi_2 \to Z \chi_1 \chi_1 \to W \chi_1$	2 e.µ	i jet	χ_1/χ_2	0.42 (0.55) TeV	m(X1)=15 GeV	2.2.5.1
v sct	$ \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} \text{ via } \tilde{\ell}_L / \tilde{\nu} $ $ \tilde{\tau} \tilde{\tau} \tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0 $	$\begin{array}{ccc} 2 \ e, \mu & E_T^{\text{miss}} & 140 \\ 2 \ \tau & E_T^{\text{miss}} & 140 \end{array}$	$ \tilde{\chi}_1^{\pm} $ $ \tilde{\tau} [\tilde{\tau}_{\rm R} \tilde{\tau}_{\rm R}] $ $ 0.35 0.5 $ $ 1.0 $	$\mathbf{m}(\tilde{\ell},\tilde{\nu})=0.5(\mathbf{m}(\tilde{\chi}_{1}^{\pm})+\mathbf{m}(\tilde{\chi}_{1}^{0}))$ $\mathbf{m}(\tilde{\chi}_{1}^{0})=0$	1908.08215 2402.00603	Ĩ	$\tilde{\mathcal{X}}_{\mathcal{X}_{1}}^{t}$, $\tilde{\mathcal{X}}_{1}^{a}$, $\tilde{\mathcal{X}}_{1}^{a}$, $\tilde{\mathcal{X}}_{1}^{a}$, $\tilde{\mathcal{X}}_{1}^{a}$, $\tilde{\mathcal{X}}_{1}^{a}$	2 µ	1 jet	$\tilde{\lambda}_{2}^{a}$	0.21 (0.35) TeV	$\Delta m(\tilde{\lambda}_2^0, \tilde{\chi}_1^0)=5 \text{ GeV}$	2.2.5.2
dire	$\tilde{\ell}_{\mathbf{L},\mathbf{R}}\tilde{\ell}_{\mathbf{L},\mathbf{R}}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0}$	$2 e, \mu$ 0 jets E_{T}^{miss} 140 $ee, \mu\mu$ ≥ 1 jet E_{T}^{miss} 140	₹ 0.26 0.7	$m(\tilde{\chi}_1^0)=0$ $m(\tilde{\chi}_1^0)=10 \text{ GeV}$	1908.08215 1911.12606	cuiv	$\tilde{\chi}_1^* \tilde{\chi}_4^0$ via same-sign WW	2 e,µ	0	Wino	0.86 (1.08) TeV		2.4.2
	$\tilde{H}\tilde{H},\tilde{H}{ ightarrow}h\tilde{G}/Z\tilde{G}$	$\begin{array}{cccc} 0 \ e, \mu & \geq 3 \ b & E_{\text{miss}}^{\text{miss}} & 140 \\ 4 \ e \ \mu & 0 \ \text{iets} & E_{\text{miss}}^{\text{miss}} & 140 \end{array}$	<i>H</i> 0.55 0.94	$BR(\tilde{\chi}^0_1 \to h\tilde{G}) = 1$	2401.14922		$\tilde{\tau}_{IB}\tilde{\tau}_{IB}, \tilde{\tau} \rightarrow \tilde{u}_{1}^{0}$	2 7	-	4	0.53 (0.73) TeV	$m(\tilde{\chi}_{1}^{0})=0$	2.3.1
		$0 e, \mu \ge 2$ large jets E_T^{miss} 140 $2 e, \mu \ge 2$ iets E_T^{miss} 140	й 0.35 й 0.45-0.93	$BR(\tilde{\chi}_1^0 \to Z\tilde{G}) = 1$ $BR(\tilde{\chi}_1^0 \to Z\tilde{G}) = 1$	2108.07586	10	77	2T, T(e, µ)	-	1	0.47 (0.65) TeV	$m(\tilde{\chi}_{1}^{0})=0$ $m(\tilde{\tau}_{1})=m(\tilde{\tau}_{2})$	2.3.2
	~+~_ ~+	$2 e, \mu \ge 2 \text{ jets} = E_T$ 140		$BR(\mathcal{X}_1 \to \mathcal{Z}G) = BR(\mathcal{X}_1 \to \mathcal{N}G) = 0.5$	2204.13072	St	77	27, T(e, µ)	-	7	0.81 (1.15) TeV	$m(\tilde{x}_1^0)=0$ $m(\tilde{x}_2)=m(\tilde{x}_3)$	2.3.4
p; s	Direct $\chi_1^{-}\chi_1^{-}$ prod., long-lived χ_1^{-}	Disapp. trk 1 jet E_T^{miss} 140	$\begin{array}{ccc} \chi_{1}^{-} & 0.66 \\ \tilde{\chi}_{1}^{\pm} & 0.21 \end{array}$	Pure Wino Pure higgsino	2201.02472 2201.02472	_	C+CT C+CI tons have C+	Discourse 14	1 54	51	0.1.0 TA	Marc 1942 54	
g-live ticle	Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron $\tilde{g} \rightarrow aa \tilde{\chi}_{1}^{0}$	pixel dE/dx E_T^{miss} 140 pixel dE/dx E_T^{miss} 140	\tilde{g} 2.00 \tilde{g} [$\tau(\tilde{g})$ =10 ns]	$m(\tilde{\chi}_1^0) = 100 \text{ GeV}$	2205.06013 2205.06013		X_1X_1, X_1X_1 , long-lived X_1 $\hat{X}^{\pm}\hat{X}^{\pm}\hat{X}^{\pm}\hat{X}^{\pm}$ long-lived \hat{X}^{\pm}	Disapp. tik.	ijet	$\lambda_1 = [\tau(\lambda_1) = i \pi s]$ $\hat{\lambda}^{\pm} = (\hat{\lambda}^{\pm}) - i \pi s]$	0.6 (0.75) TeV	Wino-like <i>i</i>	4.1.1
Long	$\tilde{\ell}\tilde{\ell}, \tilde{\ell} \rightarrow \ell \tilde{G}$	Displ. lep E_T^{miss} 140	$\tilde{\tilde{e}}, \tilde{\mu}$ 0.74 $\tilde{\tau}$ 0.36	$\tau(\tilde{\ell}) = 0.1 \text{ ns}$ $\tau(\tilde{\ell}) = 0.1 \text{ ns}$	ATLAS-CONF-2024-011 ATLAS-CONF-2024-011		MCCM Fighterrade DM	Eisapp. tit.	1 jet	At that the top	0.00 (0.70) TeV	Mine Fire FM	4.1.1
		pixel dE/dx E_T^{miss} 140	τ 0.36	$ au(ilde{\ell}) = 10 \text{ ns}$	2205.06013		MSSM, Electroweak DM	Disapp. tik.	ije. 1.ist	DMmass	0.00 (0.9) TeV	Wino-like LM Wino like DM	4.1.3
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm} / \tilde{\chi}_1^{0}, \tilde{\chi}_1^{\pm} \rightarrow Z\ell \rightarrow \ell\ell\ell$	$3 e, \mu$ 140	$\tilde{\chi}_{1}^{\tau}/\tilde{\chi}_{1}^{0}$ [BR($Z\tau$)=1, BR(Ze)=1] 0.625 1.05	Pure Wino	2011.10543	Nod Ies	MSSM Electroweak DM	Disapp. tek	1 jet	DMmace	0.28 (0.3) TeV	Higgsing-like DM	413
	$\begin{array}{c} \chi_1^+ \chi_1^+ / \chi_2^0 \to WW / Z\ell\ell\ell\ell\nu\nu \\ \tilde{g}\tilde{g}, \tilde{g} \to qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \to qqq \end{array}$	$4 \ e, \mu$ 0 jets E_T^{mass} 140 $\geq 8 \text{ jets}$ 140	$\begin{array}{ccc} \chi_1^-/\chi_2^- & [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0] & \textbf{0.95} & \textbf{1.55} \\ \tilde{g} & [m(\tilde{\mathcal{K}}_1^0) = 50 \text{ GeV}, 1250 \text{ GeV}] & \textbf{1.6} \end{array}$	$m(\chi_1^{\circ})=200 \text{ GeV}$ 2.34 Large $\lambda_{112}^{\prime\prime}$	2103.11684 2401.16333	artic	MSSM, Electroweak DM	Elisapp. tik.	1 Jet	UNITION OF	0.55 (0.6) TeV	Higgsho-like EM	4.1.3
ΡV	$\begin{aligned} \tilde{t}\tilde{t}, \tilde{t} \to t\tilde{\chi}_1^0, \tilde{\chi}_1^0 \to tbs \\ \tilde{t}\tilde{t} \to b\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{\pm} \to bbs \end{aligned}$	Multiple 36.1 > $4b$ 140	\tilde{t} $[\lambda'_{323}]$ =2e-4, 1e-2] 0.55 1.05 \tilde{t} Forbidden 0.95	$m(\tilde{\chi}_1^0)$ =200 GeV, bino-like $m(\tilde{\chi}_1^{\pm})$ =500 GeV	ATLAS-CONF-2018-003 2010.01015	30	moom, Lieutoneak Din	Eloupp. Inc.			0.00 (0.0) 100		4.1.0
£	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$	2 jets + 2 b 36.7	$\tilde{i}_1 [qq, bs] $ 0.42 0.61	$DD(\tilde{a} \to h_{2}/h_{2}) > 00\%$	1710.07171		\tilde{g} H-hadron, $\tilde{g} \rightarrow qq\tilde{t}_1$	0	Multiple	g = [T(g) = 0.1 - 3 ns]	3.4 leV	m(?")=100 GeV	4.2.1
	$i_1i_1, i_1 \rightarrow qi$	$1 \mu \qquad DV \qquad 136$	\vec{t}_1 [1e-10< λ'_{23k} <1e-8, 3e-10< λ'_{23k} <3e-9] 1.0 1.6	$BR(t_1 \rightarrow \theta e/\theta \mu) > 20\%$ $BR(t_1 \rightarrow q\mu) = 100\%, \cos\theta_t = 1$	2003.11956		g H-hadron, g→gqti	0	Multiple	x (r(g)=0.1-10.15)	2.8 TeV		4.2.1
	$\chi_1^+/\tilde{\chi}_2^0/\tilde{\chi}_1^0, \tilde{\chi}_{1,2}^0 \rightarrow tbs, \tilde{\chi}_1^+ \rightarrow bbs$	1-2 $e, \mu \geq 6$ jets 140	<i>x</i> ^ν ₁ 0.2-0.32	Pure higgsino	2106.09609		GMSB $\bar{u} \rightarrow \mu G$	aispi. µ	-	P	0.2 TeV	cr =1000 mm	4.2.2
													arX
*Only pher	a selection of the available ma nomena is shown. Many of the	ass limits on new states or limits are based on	0 ⁻¹ 1	Mass scale [TeV]					1	0 ⁻¹ 1	Mass scale [TeV]		
simp	lified models, c.f. refs. for the a	assumptions made.											
											-		

Example from ATLAS (similar for CMS)

2 TeV

HL-LHC YR 1812.07831

3 TeV

(iv:1812.07831

Very Large Number of SUSY Searches (in large variety of topologies and models)

A Ju	TLAS SUSY Sea	rches*	- 95%	6 CI	_ Lov	er Limits	ATLAS Prelimi $\sqrt{s} = 1$
	Model	S	ignatur	e ∫	` <i>L d t</i> [fb⁻	Mass limit	Reference
Inclusive Searches	$\begin{split} \tilde{q}\tilde{q}, \ \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \ \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \ \tilde{g} \rightarrow q \bar{q} W \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \ \tilde{g} \rightarrow q \bar{q} W \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \ \tilde{g} \rightarrow q \bar{q} W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \ \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \end{split}$	$\begin{array}{c} 0 \ e, \mu \\ mono-jet \\ 0 \ e, \mu \\ 1 \ e, \mu \\ ee, \mu\mu \\ 0 \ e, \mu \\ SS \ e, \mu \\ 0-1 \ e, \mu \\ 0-2 \ e, \mu \end{array}$	2-6 jets 1-3 jets 2-6 jets 2 jets 7-11 jets 6 jets 3 b	$E_T^{\text{miss}} \\ E_T^{\text{miss}} \\ E_T^{\text{miss}$	140 140 140 140 140 140 140 140	<i>q</i> [1×, 8× Degen.] 1.0 <i>q</i> [8× Degen.] 0.9 <i>g Forbidden</i> 1.1 <i>g I I g I I g I I g I I g I I g I I</i>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
3 rd gen. squarks direct production	$\begin{split} \tilde{b}_1 \tilde{b}_1 \\ \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1, \ \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1, \ \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1, \ \tilde{t}_1 \rightarrow \tilde{t}_1 b \nu, \ \tilde{\tau}_1 \rightarrow \tau \tilde{G} \\ \tilde{t}_1 \tilde{t}_1, \ \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / c \tilde{c}, \ \tilde{c} \rightarrow c \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1, \ \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \ \tilde{\chi}_2^0 \rightarrow Z / h \tilde{\chi}_1^0 \\ \tilde{t}_2 \tilde{t}_2, \ \tilde{t}_2 \rightarrow \tilde{t}_1 + Z \end{split}$	0 e,μ 2 τ 0-1 e,μ 1-2 τ 0 e,μ 0 e,μ 1-2 e,μ 3 e,μ	$2 b$ $6 b$ $2 b$ $\geq 1 \text{ jet}$ $3 \text{ jets/1 } b$ $2 c$ mono-jet $1-4 b$ $1 b$	$E_T^{\rm miss}$	140 140 140 140 140 140 140 36.1 140 140 140	Dis	Still Room
EW direct	$\begin{split} \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} & \text{via } WZ \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{\mp} & \text{via } WW \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} & \text{via } Wh \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{T} & \text{via } \tilde{\ell}_{L}/\tilde{\nu} \\ \tilde{\tau}_{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_{1}^{0} \\ \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\ell}_{H,R}, \tilde{H} \rightarrow h \tilde{G}/Z \tilde{G} \end{split}$	Multiple ℓ /jet $ee, \mu\mu$ $2 e, \mu$ Multiple ℓ /jet $2 e, \mu$ 2τ $2 e, \mu$ $ee, \mu\mu$ $0 e, \mu$ $0 e, \mu$ $2 e, \mu$	s $\geq 1 \text{ jet}$ s 0 jets $\geq 1 \text{ jet}$ $\geq 3 b$ 0 jets $\geq 2 \text{ large jet}$ $\geq 2 \text{ jets}$		140 140 140 140 140 140 140 140 140 140	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	scovery potential
Long-lived particles	Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$ $\tilde{\ell}\tilde{\ell}, \ \tilde{\ell} \rightarrow \ell \tilde{G}$	Disapp. trk pixel dE/dx pixel dE/dx Displ. lep pixel dE/dx	1 jet	E_T^{miss} E_T^{miss} E_T^{miss} E_T^{miss} E_T^{miss}	140 140 140 140 140		$\tau(\tilde{\ell}) = 0.1 \text{ ns}$ ATLAS-CONF-2024-011 $\tau(\tilde{\ell}) = 0.1 \text{ ns}$ ATLAS-CONF-2024-011 $\tau(\tilde{\ell}) = 10 \text{ ns}$ 2205.06013
RPV	$\begin{split} \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\mp} / \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{\pm} \rightarrow \mathcal{Z}\ell \rightarrow \ell\ell\ell \ell \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\mp} / \tilde{\chi}_{2}^{0} \rightarrow WW/Z\ell\ell\ell\ell\ell\nu\nu \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq \\ \tilde{t}\tilde{t}, \tilde{t} \rightarrow \tilde{t}\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs \\ \tilde{t}\tilde{t}, \tilde{t} \rightarrow b\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm} \rightarrow bbs \\ \tilde{t}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow bs \\ \tilde{t}\tilde{t}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow q\ell \\ \tilde{\chi}_{1}^{\pm} / \tilde{\chi}_{2}^{0} / \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1,2}^{0} \rightarrow tbs, \tilde{\chi}_{1}^{+} \rightarrow bbs \end{split}$	3 e,μ 4 e,μ 2 e,μ 1 μ 1-2 e,μ	0 jets \geq 8 jets Multiple \geq 4b 2 jets + 2 b DV \geq 6 jets	E_T^{miss}	140 140 36.1 140 36.7 140 136 140	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
*Only phen simp	a selection of the available ma omena is shown. Many of the lified models, c.f. refs. for the	ass limits on limits are ba assumptions	new state sed on made.	s or	1	-1 1	Mass scale [TeV]

Example from ATLAS (similar for CMS)

2 TeV

Prjections at a Future Hadron Collider

А (R-	II Collid parity conse	ler:	s: 1 , sus	op squark projections Y, prompt searches)	uropean Strategy
	Model ∫£	dt[ab ⁻¹]	√s [TeV]	Mass limit (95% CL exclusion)	Conditions
U	$l_1 l_1, \tilde{l}_1 {\rightarrow} i \tilde{\chi}_1^0$	3	14	1.7 Te	V $m(\bar{\chi}_1^0)=0$
Ť	${\it I_1}{\it I_1}, {\it I_1}{ ightarrow} {\it i}{\it i}^0/{ m 3}$ body	3	14	0.85 Te	V $\Delta m(\tilde{t}_1, \tilde{\chi}_1^n) \sim m(t)$
Ξ	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} c \tilde{\chi}_1^0 / 4 \text{ body}$	з	14	0.95 Te	V $\operatorname{Am}(\tilde{t}_1, \tilde{\mathcal{X}}_1^0) \sim 5 \text{ GeV, monojet (*)}$
0	$\tilde{I}_1 \tilde{I}_1, \tilde{I}_1 {\rightarrow} b \tilde{X}^- / b \tilde{X}_1^0, \tilde{X}_2^0$	15	27	3.65 Te	$V = m(\tilde{\xi}_1^0) = 0$
LHK	$\tilde{l}_1 \tilde{l}_1, \tilde{l}_1 {\rightarrow} \tilde{\mathcal{K}}_1^0 / 3\text{-body}$	15	27	1.8 Te	V $\Delta m(\tilde{I}_1, \tilde{\chi}_1^0) \sim m(t)$ (*)
Ξ	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} c \tilde{\chi}_1^0 / 4\text{-body}$	15	27	2.0 Te	V $\Delta m(\tilde{t}_1, \tilde{X}_1^0) \sim 5$ GeV, monojet (*)
	$\tilde{I}_1 \tilde{I}_1, \tilde{I}_1 \rightarrow \tilde{K}_1^0$	15	37.5	4.6 Te	V m(\tilde{t}_{1}^{0})=0 (**)
FCC	$\tilde{I}_1 \tilde{I}_1, \tilde{I}_1 { ightarrow} \tilde{\mathcal{K}}_1^0/3\text{-body}$	15	37.5	4.1 Te	V m(\widetilde{x}_1^0) up to 3.5 TeV (**)
μ	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{t}_1^0 / 4$ -body	15	37.5	2.2 Te	V $\Delta m(\tilde{t}_1, \tilde{X}_1^0) \sim 5$ GeV, monojet (**)
8	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{X}^e / b \tilde{X}_1^0$	2.5	1.5	0.75 Te	V m(ξ_1^0)=0
S S	$\tilde{t}_1\tilde{t}_1,\tilde{t}_1{\rightarrow}b\tilde{\chi}^{=}/t\tilde{\chi}_1^0$	2.5	1.5	0.75 Te	V $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim m(t)$
ö	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} b \tilde{X}^- / b \tilde{X}_1^0$	2.5	1.5	(0.75 - ε) Τε	V $\Delta m(\tilde{t}_1, \tilde{X}_1^0) \sim 50 \; \mathrm{GeV}$
8	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} b \tilde{\chi}^{\pm} / t \tilde{\chi}_1^0$	5	3.0	1.5 Te	V m(ℓ̃_1)~350 GeV
ĽC	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1{\rightarrow}b\tilde{\chi}^{\pm}/t\tilde{\chi}_1^0$	5	3.0	1.5 Te	V $\operatorname{Am}(\tilde{i}_1, \tilde{X}_1^0) - \operatorname{m}(\mathfrak{t})$
0	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1{\rightarrow}b\tilde{X}^-/b\tilde{X}_1^0$	5	3.0	(1.5 - e) Te	V $\Delta m(\tilde{t}_1, \tilde{X}_1^0) \sim 50 \; \mathrm{GeV}$
Ę	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} t \tilde{t}_1^0$	30	100	10.8 Te	V m(\tilde{k}_{1}^{0})=0
20	$I_1I_1, I_1 { ightarrow} \tilde{\chi}_1^0/3$ -body	30	100	10.0 Te	V $m(\tilde{x}_1^0)$ up to 4 TeV
ш	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / 4$ -body	30	100	5.0 Te	$\underline{V} \Delta m(\bar{t_1}, \bar{\chi}_1^0) \sim 5 \text{ GeV, monojet (*)}$
	(h) in diastas musicalis		1	D ⁻¹ 1 Mass scale [TeV	נ
	 (**) indicates projection (**) extrapolated from <i>e</i> indicates a possible 	n of exi n FCC-hi e non-ev	sting exp h prospec valuated l	ts ILC 500: discovery in all scena	rios up to kinematic limit $\sqrt{s}/3$
				1	0 TeV
				CLIC - LHC	

To go above the 10 TeV scale SUSY will require a future hadron collider (100 TeV) or a 10 TeV Parton COM energy machine.

The MSSM Higgs sector at tree level is governed by only two parameters (mA and tan β).

tan β

hMSSM: trade the value Mh = 125 GeV against the radiative corrections where the Higgs mass is used as proxy for the leading stop sector corrections. [Maiani, Polosa, Djouadi et al. link]

SUSY could modify the couplings of the Higgs

From the combination of all Higgs coupling measurements channels presented, mostly from constraints on up versus down Yukawa and coupling to vector bosons.

Direct searches for additional Higgs bosons (neutral and charged) have been performed:

- Neutral heavy Higgs to tau tau
- Charged Higgs to tau neutrino
- Heavy neutral Higgs to ZZ
- Charged Higgs to tb
- Heavy neutral Higgs to ZH
- Heavy Higgs boson to HH

Search for a Top Quark Pair "Resonance"

Search in three main channels di-lepton and single lepton channels!

Intricate search:

- look at peak-dip structure in the top pair mass spectrum
- Angular variable to distinguish spin-0 as well as scalar pseudo-scalar nature.

Interesting feature appears at threshold (challenging for reconstruction)

The behaviour of the feature w.r.t. angular distributions is strikingly in agreement with the production of a toponium state (also in rate).

A similar, less detailed (in angular distributions) analysis in ATLAS does not show this feature.

Top Entanglement Measured

In top pair production at the LHC, top quarks are not produced polarised, however a **spin correlation** exists.

At threshold the $gg \rightarrow t\bar{t}$ production is dominated by the "singlet" spin configuration, which is a pure, superposed and maximally entangled **Bell state**:

$$\frac{1}{\sqrt{2}}\left(|\uparrow\downarrow\rangle-|\downarrow\uparrow\rangle\right)$$

From the measurement of the spin density matrice we can probe whether this correlation is of quantum nature or not!

Initially measured near threshold where it is easier! CMS went beyond with:

- events
- like events)

- At production threshold in $t\bar{t} \rightarrow b\ell\nu b\ell\nu$

- At high m_{tt} with $t\bar{t} \rightarrow b\ell \nu bq\bar{q}$ events, (phase space dominated 90% by space-

Interesting new observables in order to be sensitive to new physics scenarios, and further understand top production.

Jet with pT of 1707 GeV. The ETmiss of 1735 GeV is shown as the white dashed line. No additional jets with pT above 30 GeV is found.

At the LHC an EFT approach is limited to very heavy mediator masses, above O(few TeV)

Simplified model approach: Overall assumption Dark matter part. is a Dirac fermion and s-channel production of DM particles.

Model parameters:

- Couplings gdm gq
- Masses of DM and the mediator
- Nature of mediator

Generic Searches for Dark Matter

DM EFT valid in the **Heavy Mediator limit:**

$$q^2 < M_{Med} \sim \frac{g_{DM}g_q}{M_*^2}$$

DM Forum benchmarks (LHC Exp. & TH) link

A wealth searches for DM at the LHC:

- Mono-jet, mono-V (leptonic and hadronic),
 Mono-Higgs (various modes), Mono-photon,
 Mono-top
- VBF-like signatures
- Associated production-like signatures
- Invisible Higgs searches

In all these channels, the background control as well as the resolution on the measurement of the MET are key!

A wealth searches for DM at the LHC:

- Mono-jet, mono-V (leptonic and hadronic),
 Mono-Higgs (various modes), Mono-photon,
 Mono-top
- VBF-like signatures
- Associated production-like signatures
- Invisible Higgs searches

In all these channels, the background control as well as the resolution on the measurement of the MET are key!

Example interpretation in Axial Vector Mediator

$$-Z'_{\mu}(g_{\rm DM}\,\bar{\chi}\,\gamma^{\mu}\gamma_5\chi+g_f\Sigma_f\bar{f}\,\gamma^{\mu}\gamma_5f)$$

Interesting scenario limits impact of collider searches as the interaction in the non-relativistic limit is purely spin-dependent.

A wealth searches for DM at the LHC:

- Mono-jet, mono-V (leptonic and hadronic), Mono-Higgs (various modes), Mono-photon, Mono-top
- VBF-like signatures
- Associated production-like signatures
- **Invisible Higgs searches**

In all these channels, the background control as well as the resolution on the measurement of the MET are key!

Example interpretation in Axial Vector Mediator

$$-Z'_{\mu}(g_{\rm DM}\,\bar{\chi}\,\gamma^{\mu}\gamma_5\chi+g_f\Sigma_f\bar{f}\,\gamma^{\mu}\gamma_5f)$$

Interesting scenario limits impact of collider searches as the interaction in the non-relativistic limit is purely spin-dependent.

iet. 18.3 fb⁻¹ (13 TeV)

A wealth searches for DM at the LHC:

- Mono-jet, mono-V (leptonic and hadronic), Mono-Higgs (various modes), Mono-photon, Mono-top
- VBF-like signatures
- Associated production-like signatures
- **Invisible Higgs searches**

In all these channels, the background control as well as the resolution on the measurement of the MET are key!

Example interpretation in Axial Vector Mediator

 $-Z'_{\mu}(g_{\rm DM}\,\bar{\chi}\,\gamma^{\mu}\gamma_5\chi+g_f\sum_f\bar{f}\,\gamma^{\mu}\gamma_5f)$

Interesting scenario limits impact of collider searches as the interaction in the non-relativistic limit is purely spin-dependent.

LZ Phys. Rev. Lett. 131 (2023) 041002

Scalar $\phi(g_{\rm DM}\bar{\chi}\chi - g_f \sum_f y_f \bar{f}f/\sqrt{2})$

Nice Collider, DD and ID complementarity. Essential to understand nature of DM if discovered!

Scalar and Pseudo-Scalar scenarios more favourable and complementary to direct and indirect searches for DM!

Pseudo-scalar

For a pseudo-scalar mediator, the DD rate is suppressed it is not worth to compare w/ LHC results. Instead, can be compared against the limits from ID experiments in terms of annihilation XS.

The Higgs portal and Invisible Higgs Decays

Searches for invisible decays of the Higgs boson in several channels!

To be precise: upper limit on the H \rightarrow invisible branching of **0.107** (0.077) at the 95% CL

In the SM the $H \rightarrow invisible$ branching of **0.1%**

The Higgs portal and Invisible Higgs Decays

5wiMP-nucleon [cm²]

Searches for invisible decays of the Higgs boson in several channels!

To be precise: upper limit on the $H \rightarrow$ invisible branching of **0.107** (0.077) at the 95% CL

In the SM the $H \rightarrow invisible$ branching of **0.1%**

Current LHC limit 10% (90% CL)

Should reach 2% level at HL-LHC!

The Higgs portal and Invisible Higgs Decays

(χ-nucleon) [cm²]

σ_{SI}

Searches for invisible decays of the Higgs boson in several channels!

To be precise: upper limit on the $H \rightarrow$ invisible branching of 0.107 (0.077) at the 95% CL

In the SM the $H \rightarrow invisible$ branching of **0.1%**

Should reach 0.3% level at FCC-ee and 0.02% with FCC-hh!

Searches Bellow the EW Scale Into Dark Sectors

Portals are new dark-sector states (vector, scalar, pseudo-scalar and fermion) with the lowest dimension operators that mix with gauge-invariant combinations of SM fields.

Scouting, Parking and Trigger Improvements

Reconstruction of dijets with thresholds down to $p_T > 500 \,{\rm GeV}$ instead of 1.1 TeV

CMS-EXO-23-007

Scouting triggers: Selected L1 Triggers feed into stream with higher HLT rate and reduced content events for specific signatures (two streams: jets and muons).

The Dark Photon Portal

Searches for new **light vector particles** (Dark Photons) which mixes with the hypercharge field.

With scouting triggers CMS competitive with LHCb in the low mass range.

Scalar and HNL Portals

covers lower masses.

Run: 366994 Event: 453765663 2018-11-26 18:32:03 CEST

A Spectacular Heavy Ion Event

Axion Like Particles

Searches for a light pseudo-scalar particle (Axion or Axion **like particle)** through Dimension-5 operators

 $\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu}, \frac{a}{f_a}G_{i,\mu\nu}\tilde{G}_i^{\mu\nu}, \frac{\sigma_\mu a}{f_a}\overline{\psi}\gamma^\mu\gamma^5\psi$

A Sleuth of Searches in Unconventional Signatures

(neutral and charged) and can decay after several cm or even meters.

Image from H. Russel

Many extensions of the Standard Model predict new particles that are long lived heavy

Difficult signatures requiring specific complex reconstruction and trigger!

"Conventional" Searches at the Energy Frontier

Panorama of Searches for Conventional Signatures

Searches for Vector Like Fermions

Simple additional chiral fermions are essentially ruled out by Higgs data.

Fermions that are not Chiral

- The L and R components transform the same way under SM symmetries.
- Interact with SM through mixing with SM quarks. —
- Present in models where the Higgs is a pseudo Goldstone _ boson (e.g. in Composite Higgs and little Higgs models).
- Present in Warped Extra dimension models. -

Large variety of possible states and complex channels

- Heavy quark partners with charges -1/3, 2/3, 4/3 and 5/3. -
- Complex channels looking for T(2/3), B(1/3): Ht+X, Wt+X, Wb+X, Zb+X, Zt+X (Performed at Run 2) so far and T(5/3) 4tops final state.

And still many more !!

Searches for W'and Z'

High mass states motivated in many theories e.g. Grand Unified and additional gauge symmetries.

- electrons, muons, taus, jets, b-jets and tops.
- di-bosons including vector bosons and Higgs bosons

Searches for high mass states of spin 0 and 2

Motivated in Randall Sundrum models (Graviton and radion)

Searches in various channels dijet, diphoton and di-leptons

Any many more

- Quark compositness
- **Leptoquarks:** predicted in grand unified theories and interest raised by lepton flavor universality anomalies
- Heavy neutrinos: produced in theories for neutrino masses (e.g. Seesaw)
- High mass and high activity events: strong gravity (from extra dimension theories), mini black holes, quantum black holes...
- Searches for low mass states.

Searches for High Mass Resonances

High mass Dijet search

Limits on excited quarks at 6.7 TeV

Also searches for ADD and RS gravitons and QBH

Highest mass (central) dijet event ~8 TeV

Transverse mass (in lepton-MET search)

Drell Yan (and other processes) predictions and lepton calibration in the TeV energy range.

Electron pT = 1.1 TeVMET = 1.16 TeV

LHC Measurements Highlights (IV)

ATLAS and CMS observe simultaneous production of four top quarks

Link to CERN News

Final state with four W bosons and four b jets!

Numerous channels investigated!

Events / 0.05 10⁴ SR 10^{3} 10² 10 10-/ Pred. 2.1 Data 0.7 ŏ.1 0.2

5.5 (4.9) σ observed (expected)

6.1 (4.3) σ observed (expected)

Very Large Number of Searches (in large variety of topologies and models)

Example from CMS (similar for ATLAS) - latest plot in the backup!

6.4.6

6.4.6

6.2.4

6.4.6

Very Large Number of Searches (in large variety of topologies and models)

Example from CMS (similar for ATLAS) - latest plot in the backup!

Very Large Number of Searches (in large variety of topologies and models)

Example from CMS (similar for ATLAS) - latest plot in the backup!

Outlook and Conclusions

Still Room for Discoveries?

At HL-LHC still a factor of 10 (effectively 20) in luminosity

- Still nearly up to 2 TeV of Exploration (exclusion)!!
- Still room for discoveries? Depends on analysis purity (s/b)

Up to ~500 GeV improvement

Up to ~1 TeV improvement

Performance can be improved!

- New ideas and developments (e.g. ML techniques).
- Improving precision and ancillary measurement!

This was just a limited overview focussing on searches, the LHC physics program is extremely rich and

The LHC has surpassed its initial design luminosity and in all areas of its program has delivered way more than the original expectations!

Now is a pivotal moment for the future of High Energy Collider Physics, all invited to come to Venice in June at the open symposium to decide on the next flagship project at CERN!

Conclusions

High energy phenomena with taus and b's

Probing (g-2) and flavour Anomalies at High energy

Eur. Phys. J. C 80 (2020) 123

Muon (g-2) anomaly motivates searches for **smuons**

Using the s-transverse mass (estimated varying hypotheses of individual MET components)

 $m_{T2}(\mathbf{p}_{T,1}, \mathbf{p}_{T,2}, \mathbf{p}_{T}^{\text{miss}}) = \min_{\mathbf{q}_{T,1} + \mathbf{q}_{T,2} = \mathbf{p}_{T}^{\text{miss}}} \left\{ \max[m_{T}(\mathbf{p}_{T,1}, \mathbf{q}_{T,1}), m_{T}(\mathbf{p}_{T,2}, \mathbf{q}_{T,2})] \right\}$ GeV GeV ATLAS ATLAS Data ₩ SM ww 📃 **₩**₩ Data ₩ SM s=13 TeV. 139 fb '**W**Z ZZ 🗖 tī √s=13 TeV, 139 fb⁻¹ WZ ZZ tť ର୍ଷ 10 ର୍ 10⁴ SR-SF-0J Single Top E FNP leptons Others SR-SF-1J Single Top 🔲 FNP leptons 📒 Others Events / : ^{*} χ̃⁰)=(400,200) GeV)=(400,200) GeV 10 10 č)=(300.50) GeV m(ỹ[±], J⁺, ỹ[°])=(600,300,1) GeV $\tilde{\chi}^{0}$)=(600,300,1) GeV 10 10 10 10 SS ອັ 1.5 Data a <u>ස</u> 0.5 280 220 200 240 260 100 160 180 100 120 160 200 240 140 180 220 260 140 m_{Γ_2} [GeV] m_{T_2} [GeV] m_{T2} distribution in SR-SF-0J m_{T2} distribution in SR-SF-1J

Search in scenarios with two leptons and MET

Searching with Precision and High energy Phenomena

Measurement of SM processes in the high energy domain

Effective field theory and measurements of non resonant processes at higher energy

Higgs couplings at low energies

Measurement of Higgs production cross sections in high transverse momentum regime

(e.g. VV scattering)

Measurement of di-boson in the high mass regime

LHC Machine Towards Major LS3 Upgrades

NEW TECHNOLOGIES FOR THE HIGH-LUMINOSITY LHC

Electrical transmission lines based on a hightemperature superconductor to carry the very high DC currents to the magnets from the powering systems installed in the new service tunnels near ATLAS and CMS. 15 to 20 additional collimators and replacement of 60 collimators with improved performance to reinforce machine protection.

CERN <u>site</u>

Front page of the CERN Courier says it all!

LS3 installation fully on track!

Nb₃Sn series magnets manufactured at Fermilab arrived at CERN! See CERN <u>News</u>.

CRYSTAL COLLIMATORS New crystal collimators in the IR7 cleaning insertion to improve cleaning efficiency during operation with ion beams.

ATLAS Towards Major LS3 Upgrades

ATLAS Towards Major LS3 Upgrades

ACCELERATORS | FEATURE

CMS prepares for Phase II

CERN Courier article link

9 January 2023

e+e- Collider Projects - Linear

Project	ILC	CLIC	FCC-ee	СерС
Location	Kitakami - JP	CERN	CERN	China TBD
Length	20.5 km	11-50 km	90-100 km	100 km
COM energy	250 GeV	0.38, 1.5, 3 TeV	90-365 GeV	90 -250 GeV
Lumi (10 ³⁴ cm ⁻² s ⁻¹)	1.35	1-2	7	4
Int. Lumi	2 ab ⁻¹	0.5, 1.5, 3 ab ⁻¹	2x 5 ab ⁻¹	2x 3 ab-1

C³ Cool Copper Collider

eter Collider Projects - Circular

Project	ILC	CLIC	FCC-ee	СерС
Location	Kitakami - JP	CERN	CERN	China TBD
Length	20.5 km	11-50 km	90-100 km	100 km
COM energy	250 GeV	0.38, 1.5, 3 TeV	90-365 GeV	90 -250 GeV
Lumi (10 ³⁴ cm ⁻² s ⁻¹)	1.35	1-2	7	4
Int. Lumi	2 ab ⁻¹	0.5, 1.5, 3 ab ⁻¹	2x 5 ab ⁻¹	2x 3 ab-1

FCC-ee

Modern two-ring design (to reach amper currents): benchmark at **KEK-B** and Super **KEK-B** with double-ring e+e- collider with multi-ampere stored currents with over than 1000 bunches, small β_* of down to 0.8mm, top-up injection as well as a 22 mrad crossing angle at the IP with crab crossing!

CepC similar design (in China)

eter Collider Projects - Circular

Project	ILC	CLIC	FCC-ee	CepC
Location	Kitakami - JP	CERN	CERN	China TBD
Length	20.5 km	11-50 km	90-100 km	100 km
COM energy	250 GeV	0.38, 1.5, 3 TeV	90-365 GeV	90 -250 GeV
Lumi (10 ³⁴ cm ⁻² s ⁻¹)	1.35	1-2	7	4
Int. Lumi	2 ab ⁻¹	0.5, 1.5, 3 ab ⁻¹	2x 5 ab-1	2x 3 ab-1

Large amount of extremely useful data in a very clean environment!

- · 100 000 Z / second
- · 10 000 W / hour

6. 10¹²

2. 10⁸

1.5 10⁶

- · 1 500 Higgs bosons / day
- · 1 500 top quarks / day

 $e^+e^- \rightarrow Z$

 $e^+e^- \rightarrow WW$

 $e^+e^- \rightarrow ZH$

 $e^+e^- \to H$

 $e^+e^- \rightarrow t\bar{t}$

Event statistics (4**I**P)

Z peak	$E_{cm} = 91 \text{ GeV}$
WW threshold	E _{cm} ≥ 157-161
ZH maximum	E _{cm} = 240 GeV
s-channel H	$E_{cm} = m_{H}$
Top production	E _{cm} = 340-365 GeV

m _H	(3yrs?)	O(5000)
340-365 GeV	5yrs	2. 10 ⁶

4yrs

2yrs

3yrs

*From A. Blondel

Precision on m_H of ~3 MeV

CepC similar design (in China)

e+e- Collider Projects

Outstanding issues

- Timescales:
 - Projects outside CERN: ILC (2038) and CepC (2035)
 - Projects at CERN: FCC-ee and CLIC (2048)
- Sustainability, Energy and Power consumption are key parameters

Challenging ideas to the FCC-ee

- An upgrade of e+e- collisions to higher energies, ~600 GeV or beyond, has been proposed through converting the FCC-ee into a few-pass ERL (<u>Physics</u> <u>Letters B 804 (2020) 135394</u>).
- Monochromatisation could give access to the schannel Higgs production and thus the electron Yukawa! Understudy.

Large uncertainties see Snowmass white paper

Feasibility Studies

- Choice of baseline layout (90.7 km) discussions with local authorities, environmental investigations and civil engineering designs well under way.
- In particular studies of possible injection schemes article

ACCELERATORS | NEWS

FCC-ee designers turn up the heat

7 November 2022

Innovative The magnetic flux density of a nested main sextupole-quadrupole system for FCC-ee, looking along the direction of the electron beam. Credit: M Koratzinos/RAT GUI

Power consumption

- 240 GeV the instantaneous power is 291 MW
- (compared to 140 MW for ILC and 110 MW for CLIC for less luminosity)
- Replace 5800 quadrupole and 4672 sextuple normal conducting magnets by HTS CCT magnets! <u>article</u>

Machine Parameters

Running mode Number of IPs Beam energy (GeV) Bunches/beam Beam current [mA] Luminosity/IP $[10^{34} \text{ cm}^{-2} \text{ s}^{-1}]$ Energy loss / turn [GeV] Synchr. Rad. Power [MW] RF Voltage 400/800 MHz [GV] Rms bunch length (SR) [mm] Rms bunch length (+BS) [mm] Rms hor. emittance $\varepsilon_{x,y}$ [nm] Rms vert. emittance $\varepsilon_{x,y}$ [pm] Longit. damping time [turns] Horizontal IP beta β_x^* [mm] Vertical IP beta β_y^* [mm] Beam lifetime (q+BS+lattice) [min.] Beam lifetime (lum.) [min.]

2	Z	W	ZH	tī
2	4	4	4	4
45	5.6	80	120	182.5
12000	15880	688	260	40
1270	1270	134	26.7	4.94
180	140	21.4	6.9	1.2
0.039	0.039	0.37	1.89	10.1
5		100		
0.08/0	0.08/0	1.0/0	2.1/0	2.1/9.4
5.60	5.60	3.55	2.50	1.67
13.1	12.7	7.02	4.45	2.54
0.71	0.71	2.16	0.67	1.55
1.42	1.42	4.32	1.34	3.10
1158	1158	215	64	18
110	110	200	300	1000
0.7	0.7	1.0	1.0	1.6
50	250		<28	<70
35	22	16	10	13
Λ		0	0	F
4 y	vears	2 yrs	ত yrs	ວ yrs

Higgs Physics at e+e- Colliders

- Measure $\sigma(e^+e^- \rightarrow HZ) \times Br(H \rightarrow bb, cc, gg, WW, \tau\tau, \gamma\gamma, \mu\mu,$ $Z\gamma$, ...) from each individual final state.
- Can also measure invisible decays from the reconstructed Z boson.

1.5M per IP very clean ZH events produced at threshold

Approximately 1/3 of the number of ZH events at HL-LHC but in a much cleaner environment!

All final states can be very cleanly reconstructed.

Additional 200k events at 350-365 GeV with approximately 30% from WW fusion which is interesting for the width measurement

Fundamental difference with the LHC (and

other hadron colliders): the width can be measured from the total HZ cross section! **Coupling measurements are less model** dependent!

Higgs Physics at e+e- Collider

Threshold production of HZ provides a unique opportunity to measure the total HZ cross section through the recoil method

 $m_{\rm recoil}^2 = (\sqrt{s} - E_{\ell\ell})^2 - |p_{\ell\ell}|^2$

From conservation of energy and momentum, the energy and momentum of the Higgs is known from the Z without measuring the Higgs boson!

 $\sigma(e^+e^- \to HZ) \propto \kappa_Z^2$

Measurement of the cross section at 240 GeV at 0.5% precision (0.9% at 365 GeV).

Then using the measurement of HZ with the Higgs to ZZ*:

The total width of the Higgs can be measured at ~2.5% level with FCC-ee (240) alone.

Higgs Physics at e+e- Collider

Further measurements of the width can be obtained using the WW fusion process as follows:

 $|\sigma(ZH)|$

 \mathbf{X}

Then from the ratio of the following three measurements:

Use different energy scale assumptions!

Substantial gain in sensitivity to the total width, using higher COM energies and adding FCC-ee (365)!

The WW fusion can be disentangled from the HZ process from the missing mass (which will not be peaked at the Z, but in this case at sqrt(s)-mH.

$$\frac{\partial \times B(H \to WW)] \times [\sigma(ZH) \times B(H \to bb)]}{\sigma(\nu\nu H) \times B(H \to bb)}$$
$$\frac{\kappa_Z^2 \kappa_W^2}{\Gamma_H} \times \frac{\kappa_Z^2 \kappa_b^2}{\Gamma_H} \times \frac{\Gamma_H}{\kappa_W^2 \kappa_b^2} = \frac{\kappa_Z^4}{\Gamma_H}$$

Precision on Γ_H of 1.1%

Precision Higgs Couplings Measurements

AT	LAS - CMS Run 1 combination	Current precision	HL-LHC	
Kγ	13%	6%	1.8%	
κ_W	11%	6%	1.7%	
κ _Z	11%	6%	1.5%	
Kg	14%	7%	2.5%	
κ_t	30%			
к _b	26%	11%	3.7%	
K _C	_	_	40%	
$\kappa_{ au}$	15%	8%	1.9%	
κ_{μ}	_	20%	4.3%	
κζγ	_	30%	9.8%	
B_{inv}	J	11%	2.5%	

s-Channel Higgs production and e-Yukawa

Extremely challenging for several reasons:

1.- The production cross section is $\sigma(ee \rightarrow H) = 1.6 \text{ fb}$ will require extremely large luminosities

2.- Given the Higgs width of 4.2 MeV, and extremely small energy spread is necessary - require monochromatization.

- Default beam spread has delta ~ 100 MeV (no visible resonance)
- Requires beam monochromatisation
- Requires a prior knowledge of the Higgs boson mass of ~couple of MeV at most!
- Would require huge luminosity and therefore 4IPs.

Monochromatization already considered but never used

Monochromatization uses opposite correlation between spatial position and energy.

year and per detector (spread of ~6 MeV)

Model Dependent Measurements through Loops

Top pair cross section at threshold and above

Top Yukawa coupling precision from top pair cross section measurements <10%

Higgs cross section at 240, 350, at 365 GeV

Higgs self coupling precision ~30% - reduced to ~20% with kappaZ = 1 from SM

Similar precisions are obtained with double Higgs production at CLIC ($\sqrt{s} = 1.4$ and 3 TeV)

Precision Higgs Couplings Measurements

AT	LAS - CMS Run 1 combination	Current precision	HL-LHC	
Kγ	13%	6%	1.8%	
κ_W	11%	6%	1.7%	
κ_{Z}	11%	6%	1.5%	
Kg	14%	7%	2.5%	
κ _t	30%			
ĸb	26%	11%	3.7%	
K _C	_	_	40%	
$\kappa_{ au}$	15%	8%	1.9%	
κ_{μ}	_	20%	4.3%	
$\kappa_{Z\gamma}$	—	30%	9.8%	
B _{in}	- V	11%	2.5%	
κλ	-	-	50%	

e⁺e⁻ Ultimate Precision Machine!!

Observable	present	FCC-ee	FCC-ee	Comment and	Observable	present	FCC-ee	FCC-ee	Comm
	value \pm error	Stat.	Syst.	leading exp. error		value \pm error	Stat.	Syst.	leading ex
$m_{\rm Z} ({\rm keV})$	91186700 ± 2200	4	100	From Z line shape scan	$A_{FB}^{pol,\tau}$ (×10 ⁴)	1498 ± 49	0.15	<2	au polarization asy
				Beam energy calibration					au decay
$\Gamma_{\rm Z} ~({\rm keV})$	2495200 ± 2300	4	25	From Z line shape scan	τ lifetime (fs)	290.3 ± 0.5	0.001	0.04	radial al
				Beam energy calibration	τ mass (MeV)	1776.86 ± 0.12	0.004	0.04	momente
$\sin^2 \theta_{\rm W}^{\rm eff}(imes 10^6)$	231480 ± 160	2	2.4	from $A_{FB}^{\mu\mu}$ at Z peak	τ leptonic $(\mu\nu_{\mu}\nu_{\tau})$ B.R. (%)	17.38 ± 0.04	0.0001	0.003	e/μ /hadron se
				Beam energy calibration	m _W (MeV)	80350 ± 15	0.25	0.3	From WW thresh
$1/\alpha_{\rm QED}({ m m}_{ m Z}^2)(imes 10^3)$	128952 ± 14	3	small	from $A_{FB}^{\mu\mu}$ off peak					Beam energy cal
				QED&EW errors dominate	$\Gamma_{\rm W} ({\rm MeV})$	2085 ± 42	1.2	0.3	From WW thresh
R_{ℓ}^{Z} (×10 ³)	20767 ± 25	0.06	0.2-1	ratio of hadrons to leptons					Beam energy cal
				acceptance for leptons	$lpha_{ m s}({ m m}_{ m W}^2)(imes 10^4)$	1170 ± 420	3	small	f
$\alpha_{\rm s}({\rm m}_{\rm Z}^2)~(imes 10^4)$	1196 ± 30	0.1	0.4-1.6	from R_{ℓ}^{Z} above	$N_{\nu}(\times 10^3)$	2920 ± 50	0.8	small	ratio of invis. to
$\sigma_{\rm had}^0 \ (\times 10^3) \ ({\rm nb})$	41541 ± 37	0.1	4	peak hadronic cross section					in radiative Z
				luminosity measurement	$m_{top} (MeV/c^2)$	172740 ± 500	17	small	From $t\bar{t}$ thresh
$N_{\nu}(\times 10^3)$	2996 ± 7	0.005	1	Z peak cross sections					QCD errors d
				Luminosity measurement	$\Gamma_{\rm top}~({\rm MeV/c}^2)$	1410 ± 190	45	small	From $t\bar{t}$ thresh
$R_{\rm b} ~(\times 10^6)$	216290 ± 660	0.3	< 60	ratio of bb to hadrons					QCD errors d
				stat. extrapol. from SLD	$\lambda_{ m top}/\lambda_{ m top}^{ m SM}$	1.2 ± 0.3	0.10	small	From tt thresh
$A_{FB}^{b}, 0 (\times 10^{4})$	992 ± 16	0.02	1-3	b-quark asymmetry at Z pole					QCD errors d
				from jet charge	ttZ couplings	$\pm 30\%$	0.5 - 1.5 %	small	From $\sqrt{s} = 365$ G
	-								

EW Precision

Key measurements: - $m_Z \sim 10^{-6}, m_W \sim 10^{-5},$ $m_{
m top} \sim 10^{-4}$ - $sin_{\theta_W}^2 \sim 3.10^{-6}$, $\alpha_{QED}(m_Z^2) \sim 10^{-5}$, $\alpha_{\rm S} \sim 10^{-4}$

FCC-ee is much, much more than a Higgs factory!

uncertainties are dominated by systematic uncertainties!

- Superb precision achieved and
- x10-50 Improvement on all EW observables
- Up to x10 improvement on Higgs observables
- Indirect discovery **potential up to 70 TeV**

nent and xp. erroi ymmetry physics ignment um scale paration old scan libration old scan libration from $\mathbf{R}^{\mathbf{W}}_{\ell}$ leptonic returns old scan lominate old scan lominate old scan lominate GeV run

e+e- Ultimate Precision Machine!!

Ultimate precision machine requires ultimate precision detectors!

Analysis work is now strongly oriented towards detector requirements to achieve the design precision

Several detector concepts: **CLD**, **IDEA** and **ALLEGRO** (Nobel Liquid concept)

Key aspects are very small amount of material in the inner detector region for precision track measurements and precise and highly granular calorimeter (numerous concepts)

See talk by Magnus Mager on MAPS!

The FCC-ee interaction region and final focus!

- Critical to reach highest possible luminosities
- Quadrupole magnets and final focus almost entirely inside the detector (at 8.4 m) - very strong requirements to reach **nano beams!**

Hadron Collider Projects - Exploring the Multi-TeV scale

FCC-hh the second phase of the FCC program

Project	HL-LHC	FCC-hh	
Location	CERN	CERN	C
Circ.	27 km	90 km	55
COM energy	14 (15?) TeV	100 TeV	70
Lum. (ab ⁻¹)	3	20-30	
PU	200	1000	
Field	8T	18T	

Key technological challenges

- High field magnets, need 16T to reach 50 TeV/beam Nb3Sn (FCC-hh) or Nb3Sn with HTS inserts (SppC) - exploration of HTS magnets
- Machine protection 30 W/m synchrotron radiation and 8GJ per beam (equivalent to **Boing 747 at cruising speed)**

SppC similar design

Hadron Collider Projects - Exploring the Multi-TeV scale

FCC-hh program

- FCC-hh is a very intricate environment (up to 1000 PU events), - Primary goal is to explore the Multi-TeV scale with direct event reconstruction at its limits and large TH uncertainites searches for new phenomena.
- Guaranteed deliverables: completion of the missing key pieces in Higgs precision κ_H and κ_t

Ingredients

- FCC-ee measurement of the ttZ coupling $(e^+e^- \rightarrow t\bar{t} \text{ yields } g_{ttZ})$
- Measure the ratio ttH to ttZ at percent level!
- Then measure ratio HH to ttH

Essential complementarity with FCC-ee

- Precision foreseen to be reached through ratios of cross sections.
- Key precision deliverables: top Yukawa coupling and Higgs trilinear coupling! FCC-ee and FCC-hh together are 2-3 times better than FCC-hh alone.

Hadron Collider Projects - Exploring the Multi-TeV scale

Dimensions commensurate (slightly larger) with current LHC experiments

Baseline

FCC-hh key detector design challenges

- High luminosity Extremely large PU, high occupancy and

Muon Collider Project - Exploring the Multi-TeV scale

Best of all worlds?

High energies, high luminosities with excellent lumi per MW ratio, (relatively) clean lepton collision events!

Mostly aimed at new physics searches in the Multi-TeV scale reach!

... incredibly challenging!

MAP (Muon Accelerator Program) Proton driven scheme

Reduction of the longitudinal and transverse emittance with a sequence of absorbers and RF cavities in a high magnetic field.

Initial targets for the integrated luminosities have been defined,

Muon Collider Project - Exploring the Multi-TeV scale

Muon collider as a Higgs Factory?

In principle could do everything as an e^+e^- collider with a much smaller ring! However the luminosity is estimated to be 2 orders of magnitude smaller at 240 GeV.

However at 125 GeV the s-channel production is 40,000 times larger (and a beam spread ~width).

Collider	μColl_{125}	$FCC-ee_{240\rightarrow 365}$
Lumi (ab^{-1})	0.005	5 + 0.2 + 1.5
Years	6 to 10	3+1+4
$g_{ m HZZ}~(\%)$	\mathbf{SM}	0.17
$g_{ m HWW}$ (%)	3.9	0.43
$g_{ m Hbb}~(\%)$	3.8	0.61
$g_{ m Hcc}~(\%)$	\mathbf{SM}	1.21
$g_{\mathrm{Hgg}} \ (\%)$	\mathbf{SM}	1.01
$g_{\mathrm{H} au au}$ (%)	6.2	0.74
$g_{\mathrm{H}\mu\mu}$ (%)	3.6	9.0
$g_{{ m H}\gamma\gamma}$ (%)	\mathbf{SM}	3.9
$\Gamma_{\rm H}$ (%)	6.1	1.3
$m_{ m H}~({ m MeV})$	0.1	10.
BR_{inv} (%)	\mathbf{SM}	0.19
BR_{EXO} (%)	\mathbf{SM}	1.0

Muon Collider at 3 TeV

Notable result reach on trilinear coupling from di-Higgs production $\lambda_3 \sim 20\%$

Muon Collider at 14 TeV

Quartic couplings studies show (see paper)

Assuming $\lambda_3 = 1$ and 33 ab^{-1} could reach **50%** precision of the Higgs boson quartic coupling.

Muon Collider Project - Exploring the Multi-TeV scale

Muon collider as a Higgs Factory?

In principle could do everything as an e^+e^- collider with a much smaller ring! However the luminosity is estimated to be 2 orders of magnitude smaller at 240 GeV.

However at 125 GeV the s-channel production is 40,000 times larger (and a beam spread ~width).

Collider	μColl_{125}	$FCC-ee_{240\rightarrow 365}$
Lumi (ab^{-1})	0.005	5 + 0.2 + 1.5
Years	6 to 10	3+1+4
$g_{ m HZZ}~(\%)$	\mathbf{SM}	0.17
$g_{ m HWW}$ (%)	3.9	0.43
$g_{ m Hbb}~(\%)$	3.8	0.61
$g_{ m Hcc}~(\%)$	\mathbf{SM}	1.21
g_{Hgg} (%)	\mathbf{SM}	1.01
$g_{\mathrm{H} au au}$ (%)	6.2	0.74
$g_{\mathrm{H}\mu\mu}$ (%)	3.6	9.0
$g_{{ m H}\gamma\gamma}$ (%)	\mathbf{SM}	3.9
$\Gamma_{\rm H}$ (%)	6.1	1.3
$m_{ m H}~({ m MeV})$	0.1	10.
BR_{inv} (%)	\mathbf{SM}	0.19
BR_{EXO} (%)	\mathbf{SM}	1.0

Muon Collider at 3 TeV

Notable result reach on trilinear coupling from di-Higgs production $\lambda_3 \sim 20\%$

Conceptual and design challenges

- High neutrino flux (requires mitigation above 3 TeV)
- Beam backgrounds challenge to detector design.
- Production, cooling and preservation of the muons! Constant muon decays bring beam backgrounds, and radiation levels similar to LHC!

High Energy electron-proton Projects

The eh candidate machines

Project	LHeC	FCC-eh
Location	CERN	CERN
e energy	60 GeV	60 GeV
p energy	7 TeV	50 TeV
Lumi.	0.8 10 ³⁴ cm ⁻² s ⁻¹	1.5 10 ³⁴ cm ⁻² s ⁻¹

Primary program to measure proton PDFs, but also nice additional potential in Higgs physics

Main production process through vector boson fusion

$$e \xrightarrow{e, \nu} e, \nu$$

$$Z, W \xrightarrow{H} \rightarrow b\overline{b}, c\overline{c}, \tau\tau, \text{etc} \dots$$

$$u \xrightarrow{Z, W} u, d$$

Much cleaner environment than pure hadron! Good reach in the WW channel.

60 GeV Electron ERL added to LHC

Clean enough to make charm Yukawa at good precision and improvement in the b Yukawa as well w.r.t. HL-LHC.