SCIENTIFIC DATA ANALYSIS SCHOOL EXPLORATION OF 3D SPECTROSCOPY DATA

Stefano Carniani Scuola Normale Superiore

ASTRONOMICAL DATA

ASTRONOMICAL DATA

IMAGING

SPECTROSCOPY DATA

FITS

DS9

- "FLEXIBLE IMAGE TRANSPORT SYSTEM" (FITS) IS THE DATA FORMAT MOST WIDELY USED WITHIN ASTRONOMY FOR ARCHIVING AND ANALYSING SCIENTIFIC DATA FILES.
- FITS IS MUCH MORE THAN JUST ANOTHER IMAGE FORMAT (SUCH AS JPG OR GIF) AND IS PRIMARILY DESIGNED TO STORE SCIENTIFIC DATA SETS CONSISTING OF MULTIDIMENSIONAL ARRAYS (IMAGES OR DATA CUBES).
- A FITS FILE IS COMPRISED OF SEGMENTS CALLED `HEADER/DATA UNITS' (HDU), WHERE THE FIRST HDU IS CALLED THE "PRIMARY HDU"
- EVERY HDU CONSISTS OF AN ASCII FORMATTED "HEADER UNIT" FOLLOWED BY AN OPTIONAL "DATA UNIT"

• DS9 IS AN ASTRONOMICAL IMAGING AND DATA VISUALIZATION APPLICATION.

- DS9 SUPPORTS FITS IMAGESOMPRISED OF SEGMENTS CALLED `HEADER/DATA UNITS' (HDU), WHERE THE FIRST HDU IS CALLED THE "PRIMARY HDU"
- HTTP://DS9.SI.EDU/SITE/HOME.HTML

FITS

DS9

• "FLEXIBLE IMAGE TRANSPORT SYSTEM" (FITS) IS THE DATA FORMAT MOST WIDELY USED WITHIN ASTRONOMY FOR ARCHIVING AND ANALYSING	
SCIENTIFIC DATA FILES.	TERMINAL
• FITS IS MUCH MORE THAN JUST ANOTHER IMAGE FORMAT (SUCH AS JPG OR GIF) AND IS PRIMARILY DESIGNED TO STORE SCIENTIFIC DATA SETS CONSISTING OF MULTIDIMENSIONAL ARRAYS	> module load ds9
 (IMAGES OR DATA CUBES). A FITS FILE IS COMPRISED OF SEGMENTS CALLED `HEADER/DATA UNITS' (HDU), WHERE THE FIRST HDU IS CALLED THE "PRIMARY HDU" 	> ds9 &
• EVERY HDU CONSISTS OF AN ASCII FORMATTED "HEADER UNIT" FOLLOWED BY AN OPTIONAL "DATA UNIT"	

FITS

DS9

- "FLEXIBLE IMAGE TRANSPORT SYSTEM" (FITS) IS THE DATA FORMAT MOST WIDELY USED WITHIN ASTRONOMY FOR ARCHIVING AND ANALYSING SCIENTIFIC DATA FILES.
- FITS IS MUCH MORE THAN JUST ANOTHER IMAGE FORMAT (SUCH AS JPG OR GIF) AND IS PRIMARILY DESIGNED TO STORE SCIENTIFIC DATA SETS CONSISTING OF MULTIDIMENSIONAL ARRAYS (IMAGES OR DATA CUBES).
- A FITS FILE IS COMPRISED OF SEGMENTS CALLED `HEADER/DATA UNITS' (HDU), WHERE THE FIRST HDU IS CALLED THE "PRIMARY HDU"
- EVERY HDU CONSISTS OF AN ASCII FORMATTED "HEADER UNIT" FOLLOWED BY AN OPTIONAL "DATA UNIT"

_	-0.05	0.31	0.610	1	1.4	1.0	21	2.5	2.9

FITS

DS9

PHOTZP -

- "FLEXIBLE IMAGE TRANSPORT SYSTEM" (FITS) IS THE DATA FORMAT MOST WIDELY USED WITHIN ASTRONOMY FOR ARCHIVING AND ANALYSING SCIENTIFIC DATA FILES.
- FITS IS MUCH MORE THAN JUST ANOTHER IMAGE FORMAT (SUCH AS JPG OR GIF) AND IS PRIMARILY DESIGNED TO STORE SCIENTIFIC DATA SETS CONSISTING OF MULTIDIMENSIONAL ARRAYS (IMAGES OR DATA CUBES).
- A FITS FILE IS COMPRISED OF SEGMENTS CALLED `HEADER/DATA UNITS' (HDU), WHERE THE FIRST HDU IS CALLED THE "PRIMARY HDU"
- EVERY HDU CONSISTS OF AN ASCII FORMATTED "HEADER UNIT" FOLLOWED BY AN OPTION/ "DATA UNIT"

The Edit Font	
SIMPLE -	T / Fits standard 👘
ATTPEX3	>
NAKES =	2
MAXES1 - 43	1
HARTS2 - (3	1
EXTEND =	1 / File may contain extensions
OBTSIN - 'NOAD TRAF FITS Two	ge Kernel July 2003' / FITS file originator
DATT = '2819-09-19T07: 27:1	3' / Date FITS file was generaled
1RAF ILM= 12819 09 19107:27:1	31 / Time of test modification
ORDECT - 102 1	/ Same of the object observed
FQUENCK - 0.00000000000000	3 / Near equinca
CINPEL = 'RA IAM'	/ WCS projection type for this axis
CINETI 'deg '	/ Asis unit
CRWAL1 = 1.501151920L+6	2 / World coordinate on this axis
CRPLR1 = 401.0003000001	1 / Reference pixel on this axis
CD1_1 -5.165610225F+6	5 / Linear projection matrix
CLUMPTS - UDTC++ IVAL	/ WCS projection type for this axis
CONLIZ = 'dog '	/ Axis unit
CRVN. 2 2.269116885E+6	8 / World coordinate on this axis
CB .FY5 = -180° 88888888888888888888888888888888888	1 / Reference pixet on this axis
CD2_2 = 5.165610225E.6	5 / Linear projection matrix
SOFTLANE SWarp	/ The software that processed those data
501 IVL05= 12, 15, 4	/ Version of the software
SOFTDATE- '2808 10 67'	/ Release date of the software
SOFTXUTI- "Ennanuel DERTN 45	ertingtap.fr⊳' / Maintainer of the software
SOFTLAST= TERPIX team at 14	P http://terapix.iap.fr/ //terapix.iap.fr/ //ter
AUTHOR - gwyn	/ Who man the software
COMBENET- WEDEAN	/ CONSINE_TYPE config parameter for Swarp
BL5AM111= (LANC2053)	/ RLSAMPLING MPL config parameter
CENTERT1 ALL	/ CENTER_TYPE config parameter
PSCALCTI- MODIAN	/ PEXELSCALE_TYPE config parabeter
RESAMP 12= "LANC2053"	/ RESAMPLING TYPE config parameter
CENTERT2 ALL	/ CENTER_THEE config parameter
PSCALCT2- MEDIAN	/ PIDELSCALE TYPE config parameter
SATURO IE= 5.000030000E+6	4 / Saturation Level (A00)
FTLITER - '1.ME3701.'	/ Filter
EXPTINE - 257410	/ Total exposure line(seconds)
-104.10 = 6.83	/ Image Quality of stack
MAG IN _ 26 8	/ initing specitude of stock

30.666 / photometric zeropai

DATA ANALYSIS WE NEED TO HANDLE WIDE DATA

- There are several public astronomical softwares for data analysis...
- some of current astronomical softwares have been developed for specific scientific goals
- some others astronomical softwares are "black boxes" for users

DATA ANALYSIS WE NEED TO HANDLE WIDE DATA

- There are several public astronomical softwares for data analysis...
- some of current astronomical softwares have been developed for specific scientific goals
- some others astronomical softwares are "black boxes" for users

a good data analysis requests an appropriate software/code

let's see how to analyse astronomical data with

https://www.astropy.org

HUNTING GALAXIES IN AN ASTRONOMICAL IMAGE

- The neutral hydrogen clouds in the intergalactic medium along the line of sight to a distant galaxy absorb light in their rest-frame series (i.e. Lyα, Lyβ, ..., Lyman limit 912Å)
- we observe a sky field in three different filters
 - blue ~800nm (800um.fits)
 - green ~1250nm (1250um.fits)
 - red ~1600nm (1600um.fits)
- galaxies at z>6 are visible only in the 'green' and 'red' images

EXPLORATION OF 3D DATA

HUNTING GALAXIES IN AN ASTRONOMICAL IMAGE

TERMINAL > module load python/3.7.2 > df -h > cd /media/TOSHIBA EXT... > cd astrophysics >cd carniani_exploration_of_3D_spectro scopy_data

> jupyter-notebook

ASTROPY & FITS FILE

HUNTING GALAXIES IN AN ASTRONOMICAL IMAGE

- Determine the noise level in a astronomical image
- Noise usually follows a Gaussian distribution

image = np.copy(hst_blue.data)
#play with the other data
#image = np.copy(hst_green.data)
#image = np.copy(hst_red.data)

print('min value = {)'.format(np.min(image)))
print('max value = {)'.format(np.max(image)))

time.sleep(0.1)

min_value = float(input('min value of the histogram? '))
max_value = float(input('max value of the histogram? '))
n_bins = int(input('number of bins? '))

bins = np.linspace(min_value, max_value, n_bins)
bins_edge = np.histogram(inage,bins = bins, range = [min_value,max_value])
bins_centers = np.array([0.5 * (bins[i] + bins[i+1]) for i in range(len(bins)-1)])

std = np.std(image)
print('standard deviation = {}'.format(std))

fg_init.fixed('mean'] = True fit_g = fitting.LevNarLSQritter() g = fit_g(g_init,bins_centers ,hist)

HUNTING GALAXIES IN AN ASTRONOMICAL IMAGE

- Determine the noise level in a astronomical image
- Noise usually follows a Gaussian distribution
- In astronomical observations, we have not any pure noise images

image = np.copy(hst_blue.data)
#play with the other data
#image = np.copy(hst_green.data)
#image = np.copy(hst_red.data)

print('min value = {)'.format(np.min(image)))
print('max value = {)'.format(np.max(image)))

time.sleep(0.1)

min_value = float(input('min value of the histogram? '))
max_value = float(input('max value of the histogram? '))
n_bins = int(input('number of bins? '))

bins = np.linspace(min_value, max_value, n_bins)
bins_edge = np.histogram(image,bins = bins, range = [min_value,max_value])
bins_centers = np.array([0.5 * (bins[i] + bins[i+1]) for i in range(len(bins)-1)])

std = np.std(image)
print('standard deviation = {}'.format(std))

fg_init.fixed('mean') = True
fit_g = fitting.LevNarLSQritter()
g = fit_g(g_init,bins_centers ,hist)

HUNTING GALAXIES IN AN ASTRONOMICAL IMAGE

- Determine the noise level in a astronomical image
- Noise usually follows a Gaussian distribution
- In astronomical observations, we have not any pure noise images
- galaxies have only positive values in astronomical images

HUNTING GALAXIES IN AN ASTRONOMICAL IMAGE

 generate signal-to-noise ratio (SNR) map

#overplot noise level contours on image
#contours are in steps of 40, starting at 10.

```
plt.figure(figsize = (16,8))
plt.subplot(131)
```

plt.imshow(hst_blue.data,origin = 'lower', vmax = np.percentile(hst_blue.data,99))

∦zoom−in

```
cutout = Cutout2D(hst_blue.data, (332,270), (40,40))
cutout.plot_on_original(color='white')
ax2 = plt.subplot(132)
plt.imshow(cutout.data,origin = 'lower', vmax = np.percentile(hst_blue.data,99))
plt.contour(cutout.data,levels = hst_blue_noise_level*np.arange(1,100,4), colors = 'white')
plt.show()
```

HUNTING GALAXIES IN AN ASTRONOMICAL IMAGE

- generate signal-to-noise ratio (SNR) map
- define a threshold level and generate a mask

#find pixels above the threshold
mask_blue = hst_blue.data>(sn_threshold_blue*hst_blue_noise_level)

HUNTING GALAXIES IN AN ASTRONOMICAL IMAGE

- generate signal-to-noise ratio (SNR) map
- define a threshold level and generate a mask
- label the structures in a • multidimensional array

#determine the centroid of all identified objects

blue_pixels_arr = np.asarray(blue pixels)

HUNTING GALAXIES IN AN ASTRONOMICAL IMAGE

- generate signal-to-noise ratio (SNR) map
- define a threshold level and generate a mask
- label the structures in a multidimensional array
- calculate the photometric centroid

#turn pixel coordinates in to astronomical coordinates (x,y) -> (RA,Dec)
blue_coord = hst_blue_wcs.all_pix2world(blue_pixels_arr[:,1],blue_pixels_arr[:,0],0)

HUNTING GALAXIES IN AN ASTRONOMICAL IMAGE

- generate signal-to-noise ratio (SNR) map
- define a threshold level and generate a mask
- label the structures in a multidimensional array
- calculate the photometric centroid
- generate a catalogue of extragalactic sources

#turn pixel coordinates in to astronomical coordinates (x,y) -> (RA,Dec)
blue_coord = hst_blue_wcs.all_pix2world(blue_pixels_arr[:,1],blue_pixels_arr[:,0],0)

	1	#RA	DEC
	2	1.501201533323518902e+02	2.255580432211921504e+00
	3	1.501271569594991888e+02	2.255662676511354547e+00
	4	1.501260879294809740e+02	2.255729704911888067e+00
	5	1.501245893425685267e+02	2.255992453901231709e+00
	6	1.501359065662555281e+02	2.256141202033094206e+00
	7	1.501328519825382273e+02	2.256086014050021404e+00
	8	1.501188178368863362e+02	2.256400657842178692e+00
	9	1.501307379875519246e+02	2.256660074344509326e+00
	10	1.501328057471069712e+02	2.256786633523686803e+00
	11	1.501175604341250676e+02	2.256863299909120268e+00
	12	1.501175925696436195e+02	2.257121885978219833e+00
	13	1.501234895518483938e+02	2.257183293693242110e+00
	14	1.501179540543875248e+02	2.257425053648479896e+00
	15	1.501181811289956158e+02	2.257252776207845812e+00
	16	1.501303859047442586e+02	2.257374631758512162e+00
	17	1.501326013344514649e+02	2.257497129142929548e+00
	18	1.501177491970632332e+02	2.257863616106043914e+00
	19	1.501358683832628174e+02	2.257885989371087643e+00
	20	1.501246923072806396e+02	2.257919808742051782e+00
	21	1.501348574272848566e+02	2.258186387017588004e+00
	22	1.501299356961779097e+02	2.258206235468105838e+00
	23	1.501284924459576757e+02	2.258283152452662090e+00
	24	1.501231468347557723e+02	2.258997788900573234e+00
	25	1.501227380B81309728e+02	2.258947759150648160e+00
	26	1.501283346338818205e+02	2.258976759346065233e+00
	27	1.501273777755998537e+02	2.259266086072532875e+00
	28	1.501212778608782230e+02	2.259292784996972614e+00
	29	1.501303071086194905e+02	2.259624996826600452e+00
	30	1.501346842865602014e+02	2.259544197481857974e+00
	31	1.501358460453445218e+02	2.259968576923834682e+00
	32	1.501316709855317697e+02	2.260611770436528278e+00
p 1	33	1.501235582304366574e+02	2.260685561946683464e+00
bel	34	1.501199746894155282e+02	2.261033654606239729e+00
	35	1.501277998341232944e+02	2.261113545193483176e+00
	36	1.501230932014763937e+02	2.261562707080464474e+00

- cross-correlation of galaxy catalogues
- galaxies at z>6 are in the `red' and `green' catalogue, but they are not included in the `blue' catalogue

- cross-correlation of galaxy catalogues
- galaxies at z>6 are in the `red' and `green' catalogue, but they are not included in the `blue' catalogue

- cross-correlation of galaxy catalogues
- galaxies at z>6 are in the `red' and `green' catalogue, but they are not included in the `blue' catalogue

- cross-correlation of galaxy catalogues
- galaxies at z>6 are in the `red' and `green' catalogue, but they are not included in the `blue' catalogue

- cross-correlation of galaxy catalogues
- galaxies at z>6 are in the `red' and `green' catalogue, but they are not included in the `blue' catalogue

- cross-correlation of galaxy catalogues
- galaxies at z>6 are in the `red' and `green' catalogue, but they are not included in the `blue' catalogue
- determine the astrometry uncertainty
- define a area around my candidate galaxy at z>6

- cross-correlation of galaxy catalogues
- galaxies at z>6 are in the `red' and `green' catalogue, but they are not included in the `blue' catalogue
- determine the astrometry uncertainty
- define a area around my candidate galaxy at z>6
- visual inspection

- Lyman Breck Technique: large uncertainty on *z* determination
- The detection of two emission line is necessary to confirm the redshift of our candidate

- Lyman Breck Technique: large uncertainty on z determination
- The detection of two emission line is necessary to confirm the redshift of our candidate
- Our ALMA observations target [CII]158µm and [OIII]88µm, which are redshifted to mm (~300-500 GHz) bands at z≥6

- Lyman Breck Technique: large uncertainty on z determination
- The detection of two emission line is necessary to confirm the redshift of our candidate
- Our ALMA observations target [CII]158µm and [OIII]88µm, which are redshifted to mm (~300-500 GHz) bands at z≥6
- Extract a spectrum from our cube
- Fit the spectrum with a Gaussian profile

- Lyman Breck Technique: large uncertainty on z determination
- The detection of two emission line is necessary to confirm the redshift of our candidate
- Our ALMA observations target [CII]158µm and [OIII]88µm, which are redshifted to mm (~300-500 GHz) bands at z≥6
- Extract a spectrum from our cube
- Fit the spectrum with a Gaussian profile
- Estimate redshift

... DETERMINING GALAXY PROPERTIES

6

Jy]

- [CII]158µm and [OIII]88µm line can be used to distinguish a Milky Way like galaxy from a metal-poor galaxy (i.e. low heavy element abundance)
- Estimate the luminosity of the [CII]158µm and [OIII]88µm line
- Determine the luminosity ratio between the two lines

L = 1.04 x 10**=3 x Sdv[Jy km/s] x d1**2[Mpc**2] x observed_frequency[GBz]

& dv = amplitude x (2 x pi)**0.5 x stddev / mean x c[velocity speed]

L = 1.04e-3*Sdv*d1**2*observed_frequency/le8 print("L = {) 10^8 Loun".format(L))

festimate the luminosity of the line fequation for far-infrared lines

Sdv is the integrated flux of the line

print("Sdv = (} Jy km/s".format(Sdv))

a where

A MORE COMPLEX 3D DATACUBE

- MUSE (Multi Unit Spectroscopic Explorer) observations at 4700-9100Å
- >200 galaxies out to z~6.5
- low-z galaxies (z~1-3) have multiple rest-frame optical emission lines

A MORE COMPLEX 3D DATACUBE

- MUSE (Multi Unit Spectroscopic Explorer) observations at 4700-9100Å
- >200 galaxies out to z~6.5
- low-z galaxies (z~1-3) have multiple rest-frame optical emission lines

A MORE COMPLEX 3D DATACUBE

- MUSE (Multi Unit Spectroscopic Explorer) observations at 4700-9100Å
- >200 galaxies out to z~6.5
- low-z galaxies (z~1-3) have multiple rest-frame optical emission lines
- a continuum emission due to the stellar population

#define a function for the spectral fitting
#insert initial guess of the model values (amplitude, mean, stddev)
gaussian_int = models.GaussianlD(amplitude=15, mean=7835, stddev=1)
polynomial_init = models.LinearlD()

#set the type of fitting: linear least square fitting
fit_gaussian = fitting.LevMarLSQFitter()

#perfome the fit

gaussian = fit_gaussian(gaussian_int+polynomial_init, wl_crop, spec_crop)

A MORE COMPLEX 3D DATACUBE

- MUSE (Multi Unit Spectroscopic Explorer) observations at 4700-9100Å
- >200 galaxies out to z~6.5
- low-z galaxies (z~1-3) have multiple rest-frame optical emission lines
- a continuum emission due to the stellar population
- series of possible of optical lines

for i in range(len(list_restframe_wl)):
 print(list_restframe_wl_name[i])
 z = observed_wavelength/list_restframe_wl[i]-1.
 print("redshift of the galaxy is: {}".format(z))

