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The process of extracting useful insights from (raw) data.

Same as Data Mining: the process of discovering valuable information 
from (large) databases using algorithms able to find hidden patterns in 
data (Feldman & Dagan 1995).

Data Analytics

OECD 2015 report: countries could be getting much more out of Data 
Analytics in terms of economic and social gains.

We need a “Data-drive Innovation” where the usage of Data 
Analytics improves or foster new products, methods and markets.



Big Data is a stable presence in science. The volume and rate of data produced in many scientific 
disciplines in some cases could exceed our ability to effectively treat and analyse them.
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Big Data is a stable presence in science. The volume and rate of data produced in many scientific 
disciplines in some cases could exceed our ability to effectively treat and analyse them.

- cosmological simulations;

- data from telescopes;

- genome sequencing;

- extreme phenomena  in particle physics.

Image credit: Luca Taylor



What “Big Data” really is?



The problem arose in the late 1990s within the META Group. For analysts it was becoming evident 
that their clients were increasingly encumbered by their data assets.



Big Data: a first definition (Gartner Group IT Glossary; Laney 2001)

“Big data is high-volume, -velocity and -variety information assets that demand cost-effective, 
innovative forms of information processing for enhanced insight and decision making” 



Gartner 3 Vs (Laney 2001)

VOLUME: the amount of data that could be generated (TB up to EB of data to process, 
records, transactions, tables, dataframes)

VARIETY: the different types of data we could have in our data sets (structured, 
semi-structured, unstructured, mixed, multimedia)

VELOCITY: the speed at which new data is generated, collected and analyzed
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5 Vs (2015)

VOLUME: the amount of data that could be generated (TB up to EB of data to process, 
records, transactions, tables, dataframes)

VARIETY: the different types of data we could have in our data sets (structured, 
semi-structured, unstructured, mixed, multimedia)

VELOCITY: the speed at which new data is generated, collected and analyzed

VERACITY: the messiness or trustworthiness of the data (missing values, authenticity, 
origin/reputation, uncertainties due to data inconsistency and incompleteness, ambiguities)

VALUE: The ability to turn data into value/money, scientific/business models can be 
associated to the data (statistics/events, correlations, hypothesis)
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Science is basically asking questions: traditionally, scientists “query the world” and 
data is coupled to a specific hypothesis.

The rapid growth in data is leading to a sort of “eScience”: we now download the 
world trying to massively acquire in support of many hypotheses.

Science in most cases is driven by data more than by computation: because the 
cost of storing and acquisition has dropped precipitously, dealing with the scientific 
stored data requires several levels of analysis and various processing/algorithms to 

obtain complex models.

In short words, we will not face in science (especially in Astrophysics) an extreme 
computational complexity, we are already facing it.
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A new paradigm

Moore’s Law has held for decades (the processing power 
roughly doubles every two years).

However, processing speed is no longer the (only) problem: 
getting the data to the processor is the bottleneck.

Example: at a disk transfer rate of 75 MB/sec, the time 
taken to transfer 100 GB of data is 22 mins (higher if 
servers have less than 100 GB of RAM).

This can be considered as the end of the Moore’s Law as we know it. Increasing the 
performances cannot be achieved just through increasing hardware speed. We need a new 

approach: distributed computation must be exploited.
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Machine Learning

Traditional techniques rely on 
relatively small samples 
combined with heavy 

assumptions about data and its 
distributions.

ML automatically discovers 
regularities in data using 

computational models that 
generalize the patterns found into 

new but similar data.

Statistics models the process 
that gave rise to data

ML tries to make an accurate 
prediction, given the data

One of the fundamental families of algorithms used to extract information from data is 
represented by Machine Learning (ML). ML is a process able to map inputs to the output.



Machine Learning

ML tends to make no pre-assumptions. The usual approach is, in most cases, 
empirical: the accuracy or even the applicability of the model is checked a posteriori.

One of the fundamental families of algorithms used to extract information from data is 
represented by Machine Learning (ML). ML is a process able to map inputs to the output.
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Machine Learning

“Machine Learning is the designing of computational models able 
to learn from data without being explicitly programmed”

with little to no human involvement, learning means any process whereby 
the system improves its performance based on experience

as subfield of the Artificial Intelligence field, ML is mainly concerned 
with using computers for learning



In the last decade ML has spread rapidly 
throughout computer science and beyond

web search, spam filters, recommender 
systems, ads placement, credit scoring, 

fraud detection, trading, drug design...

Credit Shantanu N. Zagade for Packt Publishing

Machine Learning



In the last decade ML has spread rapidly 
throughout computer science and beyond

galaxy morphology classification, 
photometric redshift determination, 

cosmological simulations...

Adapted from Fig. 13 of Dieleman et al. (2015)

Machine Learning



Case study: AlphaGo

October 2015: AlphaGo defeats Fan Hui (“It’s 
not a human move. I’ve never seen a human 

play this move [...] So beautiful. So beautiful.”)

March 2016: AlphaGo defeats Lee Sedol



Case study: Image recognition

ML automatically understands the content of 
images and associate relevant keywords. Deep 
Convolutional Neural Networks spot faces even 

if they are partially hidden/upside down.



Case study: GAME

“GAlaxy Machine learning for Emission lines”: 
a code used for astrophysical applications 

able to infer the physical properties of 
galaxies from spectra (Ucci et al. 2017, 2018, 2019).

online at: game.sns.itA Supervised Machine Learning code
to extract physical properties from emission line 

spectra

IFU data
(MUSE, JWST, ALMA…)

Spaxel
(emission lines)

Simulated

Observed



Case study: Amazon Go

Amazon Go is a store with no checkout required. 
An experience made possible by computer vision 
and sensor fusion, combined with deep learning 
technologies.

The “just walk out technology” automatically 
detects when products are taken from or 
returned to the shelves and keeps track of them 
in a virtual cart.
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Why Machine Learning?

handwritten digits
representation: ???

luminosity function
representation: Schechter function

ML is useful when we do not have a simple and clear algorithmic and/or an analytic 
representation of our problem



Supervised Learning

classification for predicting class labels regression for predicting continuous outcomes

ML algorithms can figure out how to perform tasks by generalizing from examples. The main goal 
in Supervised Learning is to learn a model from labeled data that allows us to make predictions 

about unseen or future data.



training

square

triangle

circle

trained ML  
model

?

answer: 
square

Supervised Learning
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Supervised Learning: Decision Trees

Decision Trees recursively partition the input feature space into an increasing number of “leaves”. Each 
leaf represents a value for the target variable.



Decision Trees find final decision boundaries automatically based on the data.

PROs
valid for a large range of applications
extremely fast and simple
easy implementation

CONs
they are prone to overfitting

Supervised Learning: Decision Trees



Ensemble methods

Many base learning algorithms (Trees) can be combined into an “ensemble learner” (Forest) which 
can achieve better results



Ensemble method: AdaBoost

AdaBoost method adds decision trees sequentially to generate a forest

In each iteration we apply the base learners on the training set with updated weights
The final model is the weighted sum of the n learners.



Deep Learning



Deep Learning

Deep learning could be defined as a set of algorithms that were developed to train in the most 
efficient way artificial neural networks with many layers.

Adapted from: http://neuralnetworksanddeeplearning.com/chap5.html

Neural network



Deep Learning

“Simple” neural networks (i.e. with one hidden layer) can easily classify handwritten digits with 
an accuracy better than 98%.

Adapted from: http://neuralnetworksanddeeplearning.com/chap5.html

Neural network



Deep Learning

Nonetheless, networks with more hidden layers can be even more powerful.

Adapted from: http://neuralnetworksanddeeplearning.com/chap5.html

Neural network “Deep” neural network



Deep Learning

Deep networks use the intermediate 
layers to build up multiple levels of 
abstraction.

For example, in visual pattern 
recognition, the first layer might learn 
to recognize edges, the neurons in the 
second layer could learn to recognize 
more complex shapes, the third layer 
would then recognize still more 
complex shapes, and so on.

Adapted from: http://neuralnetworksanddeeplearning.com/chap5.html

Deep neural network



A simple Deep Learning Net for image recognition



Convolutional Neural Networks

Adapted from: https://www.mathworks.com/



Convolutional Neural Networks

Images are matrices of pixel values, eventually one for each channel (i.e. RGB)



Convolutional Neural Networks



Convolutional Neural Networks

RELU: y = Max(0,x)

The purpose of RELU is to introduce non-linearity 
(given that convolution is a linear operation, i.e. 

matrix multiplication)



Convolutional Neural Networks

Pooling (also called subsampling or downsampling) downsample, i.e. 
reduces the dimensionality of each feature map.



Convolutional Neural Networks

Putting all together with a fully connected neural net at the end.



A “not-so-simple” Deep Learning Net for 
Cosmological applications



My research focuses on the Interstellar Medium of 
galaxies. The aim is to understand the “high 

redshift Universe” (z > 6, age < 1 Gyr) 

Illustration: Nik Spencer; sources: NASA/WMAP Science Team; R. Ellis (Caltech)



http://www.youtube.com/watch?v=kifF3RYcfn0


Deep learning 21-cm images of the Cosmic Dawn (Gillet et al. 2019)
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GAME
“GAlaxy Machine learning for Emission lines”



Interstellar Medium (ISM)

Main (baryonic) ingredients of galaxies:

● stars

Illustration: Messier 4 by HST, Credit NASA/STScI/WikiSky
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Interstellar Medium (ISM)

Main (baryonic) ingredients of galaxies:

● stars
● gas
● dust
● cosmic rays
● e.m. radiation
● magnetic field

ISM

Illustration: Eagle Nebula (Messier 16), Credit NASA
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Typical physical conditions

density of an HII region: 100 cm-3

density of the air (sea level): 1019 cm-3

size: 10 pc ~ 3 x 1019 cm
radius of our Solar System: 4.5 x 1012 cm

Illustration: Eagle Nebula (Messier 16), Credit NASA



Physical properties (SFR, metallicity, etc.) of ISM in galaxies are 
usually inferred from spectroscopic information

We detect galaxies at high redshift, but we still do not have a 
clear understanding of their Interstellar Medium. The main aim is 

to study the composition and structure of the ISM



Direct method (electron temperature)
(auroral to nebular line ratios, Pérez-Montero 2017)

RO3 = ([OIII] λ4959 + [OIII] λ5007) / [OIII] λ4363

RO2 = ([OII] λ3726 + [OII] λ3729) / ([OII] λ7319 + [OII] λ7330)



Direct method (electron temperature)
(auroral to nebular line ratios, Pérez-Montero 2017)

RO3 = ([OIII] λ4959 + [OIII] λ5007) / [OIII] λ4363

RO2 = ([OII] λ3726 + [OII] λ3729) / ([OII] λ7319 + [OII] λ7330)
relations between the nebular-to-auroral 
line ratios and the electron temperature 

as a function of the electron density



Empirical calibrations
(Pagel et al. 1979, Vilchez & Esteban 1996, Pettini & Pagel 2004,
 Maiolino et al. 2008, Nagao et al. 2011, Marino et al. 2013, Curti et al. 2017)

R23 = ([OII] λ3727 + [OIII] λ4959 + [OIII] λ5007) / Hβ

N2  = [NII] λ6583 / Hα

R   = ([OIII] λ51.80 μm + [OIII] λ88.33 μm) / [NIII] λ57.21 μm



Comparison of theoretical spectra 
from a grid of photoionization models
(McGaugh 1991, Zaritsky et al. 1994, Kewley & Dopita 2002,
Kobulnicky & Kewley 2004, Tremonti et al. 2004, Kewley & Ellison 2008,
Dopita et al. 2016)



Numerical codes
(IZI Blanc et al. 2015, pyqz Dopita et al. 2013,
 HII-CHI-mistry Pérez-Montero 2014,
BOND Vale Asari et al. 2016)



GAME (GAlaxy Machine learning for Emission lines, Ucci et al. 2017, 2018) is a new, fast 
code able to reconstruct the physical properties of the ISM in (distant) galaxies



GAME (GAlaxy Machine learning for Emission lines, Ucci et al. 2017, 2018) is a new, fast 
code able to reconstruct the physical properties of the ISM in (distant) galaxies

by using all the available information encrypted in spectra



Inspiration...



Inspiration... Shazam!

you are in a shop and you 
like the music you are 

hearing: tap the button

shazam analyzes the captured sound by creating 
the fingerprint of the audio, it starts the search 

for matches in the database (Wang 2003)

it there is a match you are then 
given the metadata of the audio 

(title, lyrics, video, artist…)



A “Shazam for galaxies”

you have an 
observational/synthetic 
spectrum of a galaxy

the algorithm works by analyzing the 
emission line intensities, it works on the 

models in the database

you are then given the “metadata” of 
the galaxy (gas volume density, 

ionization state, metallicity…)



A “Shazam for galaxies”

you have an 
observational/synthetic 
spectrum of a galaxy

the algorithm works by analyzing the 
emission line intensities, it works on the 

models in the database

you are then given the “metadata” of 
the galaxy (gas volume density, 

ionization state, metallicity…)

but...



Supervised Machine Learning (SML): physical properties 
are inferred from an input spectrum using emission line 

intensities as input features

1
grid of models: metallicity, column density, 

ionization parameter, density

large library of emission line intensities (50,000 models) 2

Method (Ucci et al. 2017, 2018)

3

CLOUDY v13.03

GAME



1
grid of models: metallicity, column density, 

ionization parameter, density



       Photoionization models

● metallicity (Z / Z
⊙
)

● ionization state (ionization parameter U or 
FUV flux in the Habing band 6 - 13.6 eV)

● density (n / cm-3)
● column density (NH / cm-2)

The Rosette nebula (NGC 2237)
(Credit WIYN and NOAO/AURA/NSF)

1



1

large library of emission line intensities (50,000 models) 2

CLOUDY v13.03

grid of models: metallicity, column density, 
ionization parameter, density



       Library of emission line intensities2



n
U

Z

[OII]
[OIII]

[CII]

…... …...

model #1

model #50,000

.

.

.

       Library of emission line intensities2

features labels



Supervised Machine Learning (SML): physical properties 
are inferred from an input spectrum using emission line 

intensities as input features

1

large library of emission line intensities (50,000 models!) 2

3

CLOUDY v13.03

GAME

grid of models: metallicity, column density, 
ionization parameter, density



training

library of emission line intensities

       Supervised Machine Learning (SML)3



training

library of emission line intensities

       Supervised Machine Learning (SML)3

data cube



Integral Field Spectroscopy (IFS)

combines imaging and 
spectroscopy: “3D spectroscopy”

output: data cube

pixel: a data point on a CCD
spaxel: a spectrum in a data cube
voxel: a data point in a data cube

voxel

spaxel



MUSE observations of Henize 2-10 (Cresci et al. 2017)

prototype of starburst HII galaxies (Allen et al. 1976)

D = 8.23 Mpc (1 arcsec = 40 pc)

M⛤ ~ 3.7 x 109 Mʘ

SFR  ~ 1.9 Mʘ yr-1 (Reines et al. 2011)

Results: application to IFU observations (Ucci et al. 2018, 2019)



Results: application to IFU observations (Ucci et al. 2018, 2019)

More than 75,000 spaxels processed on a 
desktop PC in less than 4 hr

ionization parameter

extinction

metallicity



Results: radially-averaged profiles (Ucci et al. 2018, 2019)



GAME Predictive performances (k-fold cross validation)

the library is split into k folds

the code trains the ML algorithm 
on k-1 and then tests on the left-out

GAME computes the score k 
consecutive times, and gives back 
the mean of these scores for each 
physical property



GAME Predictive performances (results on 1 fold)

Ucci et al. (2017)

Ucci et al. (2018)



Hands-on session



> cd /media/...

> cd astrophysics_classes/

> cd ucci_machine_learning_on_galaxy_spectra/

> module load python/3.7.2

> jupyter-notebook &


