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Data Analytics
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Data Analytics

The process of extracting useful insights from (raw) data.

Same as Data Mining: the process of discovering valuable information
from (large) databases using algorithms able to find hidden patterns in
data (Feldman & Dagan 1995).




Data Analytics

The process of extracting useful insights from (raw) data.

OECD 2015 report: countries could be getting much more out of Data
Analytics in terms of economic and social gains.

&) OECD



Data Analytics

The process of extracting useful insights from (raw) data.

w>> OECD We need a “Data-drive Innovation” where the usage of Data

Analytics improves or foster new products, methods and markets.



Big Data is a stable presence in science. The volume and rate of data produced in many scientific
disciplines in some cases could exceed our ability to effectively treat and analyse them.



Big Data is a stable presence in science. The volume and rate of data produced in many scientific
disciplines in some cases could exceed our ability to effectively treat and analyse them.

- cosmological simulations;

Image credit: Springel et al. (2005)



Big Data is a stable presence in science. The volume and rate of data produced in many scientific
disciplines in some cases could exceed our ability to effectively treat and analyse them.

- data from telescopes;

Image credit: ESO



Big Data is a stable presence in science. The volume and rate of data produced in many scientific
disciplines in some cases could exceed our ability to effectively treat and analyse them.
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Big Data is a stable presence in science. The volume and rate of data produced in many scientific
disciplines in some cases could exceed our ability to effectively treat and analyse them.

- extreme phenomena in particle physics.

Image credit: Luca Taylor



What “Big Data” really is?



The problem arose in the late 1990s within the META Group. For analysts it was becoming evident
that their clients were increasingly encumbered by their data assets.



Big Data: a first definition (Gartner Group IT Glossary; Laney 2001)

“Big data is high-volume, -velocity and -variety information assets that demand cost-effective,
innovative forms of information processing for enhanced insight and decision making”



Gartner 3 VS (Laney 2001)

VOLUME: the amount of data that could be generated (TB up to EB of data to process,
..I records, transactions, tables, dataframes)

L VARIETY: the different types of data we could have in our data sets (structured,
v semi-structured, unstructured, mixed, multimedia)

VELOCITY: the speed at which new data is generated, collected and analyzed



IBM 4 Vs (2012)

I VOLUME:
lll

%% VARIETY:

VELOCITY:

¢ VERACITY: the messiness or trustworthiness of the data (missing values, authenticity,
= & origin/reputation, uncertainties due to data inconsistency and incompleteness, ambiguities)




5 Vs (2015)

VOLUME:

%% VARIETY:

VELOCITY:

VERACITY:

VALUE: The ability to turn data into value/money, scientific/business models can be
associated to the data (statistics/events, correlations, hypothesis)

O 9 5 4



Science is basically asking questions: traditionally, scientists “query the world” and
data is coupled to a specific hypothesis.



The rapid growth in data is leading to a sort of “eScience”: we now download the
world trying to massively acquire in support of many hypotheses.



Science in most cases is driven by data more than by computation: because the
cost of storing and acquisition has dropped precipitously, dealing with the scientific
stored data requires several levels of analysis and various processing/algorithms to

obtain complex models.



In short words, we will not face in science (especially in Astrophysics) an extreme
computational complexity, we are already facing it.



A new paradigm

Moore’s Law has held for decades (the processing power
roughly doubles every two years).
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A new paradigm
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A new paradigm
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A new paradigm
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This can be considered as the end of the Moore’s Law as we know it. Increasing the
performances cannot be achieved just through increasing hardware speed. We need a new
approach: distributed computation must be exploited.




Machine Learning

One of the fundamental families of algorithms used to extract information from data is
represented by Machine Learning (ML). ML is a process able to map inputs to the output.



Machine Learning

Statistics models the process
that gave rise to data

ML tries to make an accurate
prediction, given the data




Machine Learning

Traditional techniques rely on
relatively small samples
combined with heavy
assumptions about data and its
distributions.

ML automatically discovers
regularities in data using
computational models that
generalize the patterns found into
new but similar data.




Machine Learning

ML tends to make no pre-assumptions. The usual approach is, in most cases,
empirical: the accuracy or even the applicability of the model is checked a posteriori.



Machine Learning

“Machine Learning is the designing of computational models able to
learn from data without being explicitly programmed”



Machine Learning

as subfield of the Artificial Intelligence field, ML is mainly concerned
with using computers for learning

“Machine Learning is the designing of computational models able
to learn from data without being explicitly programmed”



Machine Learning

as subfield of the Artificial Intelligence field, ML is mainly concerned
with using computers for learning

“Machine Learning is the designing of computational models able
to learn from data without being explicitly programmed”

with little to no human involvement, learning means any process whereby
the system improves its performance based on experience



Machine Learning

Credit Shantanu N. Zagade for Packt Publishing

In the last decade ML has spread rapidly
throughout computer science and beyond

web search, spam filters, recommender
systems, ads placement, credit scoring,
fraud detection, trading, drug design...



Machine Learning

Adapted from Fig. 13 of Dieleman et al. (2015

In the last decade ML has spread rapidly
throughout computer science and beyond

galaxy morphology classification,
photometric redshift determination,
cosmological simulations...




Case study: AlphaGo

October 2015: AlphaGo defeats Fan Hui (“It’s
not a human move. I’'ve never seen a human
play this move [...] So beautiful. So beautiful.”)

March 2016: AlphaGo defeats Lee Sedol



horse : 0.993 4

&

Case study: Image recognition

ML automatically understands the content of
images and associate relevant keywords. Deep
Convolutional Neural Networks spot faces even

if they are partially hidden/upside down.

© Sachin Fartade/Mofigh
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Case study: GAME

< 5

“GAlaxy Machine learning for Emission lines”:
a code used for astrophysical applications

able to infer the physical properties of
galaxies from spectra (Ucci et al. 2017, 2018, 2019).
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Case study: Amazon Go

Amazon Go is a store with no checkout required.
An experience made possible by computer vision
and sensor fusion, combined with deep learning
technologies.

The “just walk out technology” automatically
detects when products are taken from or
returned to the shelves and keeps track of them
in a virtual cart.
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Why Machine Learning?



Why Machine Learning?

ML is useful when we do not have a simple and clear algorithmic and/or an analytic
representation of our problem



Why Machine Learning?

ML is useful when we do not have a simple and clear algorithmic and/or an analytic
representation of our problem

log,, Number / mag / Mpc?

1600.AB

luminosity function
representation: Schechter function



Why Machine Learning?

ML is useful when we do not have a simple and clear algorithmic and/or an analytic
representation of our problem
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Supervised Learning

ML algorithms can figure out how to perform tasks by generalizing from examples. The main goal
in Supervised Learning is to learn a model from labeled data that allows us to make predictions
about unseen or future data.
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classification for predicting class labels regression for predicting continuous outcomes



Supervised Learning
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Supervised Learning: Decision Trees

Decision Trees recursively partition the input feature space into an increasing number of “leaves”. Each
leaf represents a value for the target variable.



Supervised Learning: Decision Trees

Decision Trees recursively partition the input feature space into an increasing number of “leaves”. Each
leaf represents a value for the target variable.
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Supervised Learning: Decision Trees

Decision Trees recursively partition the input feature space into an increasing number of “leaves”. Each
leaf represents a value for the target variable.
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Supervised Learning: Decision Trees

Decision Trees recursively partition the input feature space into an increasing number of “leaves”. Each
leaf represents a value for the target variable.
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Supervised Learning: Decision Trees

Decision Trees recursively partition the input feature space into an increasing number of “leaves”. Each
leaf represents a value for the target variable.
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Supervised Learning: Decision Trees

Decision Trees find final decision boundaries automatically based on the data.

== ‘Overﬁt' estim:ator —
el — True polynomial | PROs
valid for a large range of applications
af 1 extremely fast and simple
| easy implementation
2
—¢ /
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Ensemble methods

Many base learning algorithms (Trees) can be combined into an “ensemble learner” (Forest) which
can achieve better results




Ensemble method: AdaBoost

AdaBoost method adds decision trees sequentially to generate a forest

1°t step
correctly classified
training - base - instances
examples assign equal weights learner uncorrectly
classified instances
n step

trainin o
& correctly classified

examples base ‘ : ,
E— ; E——— instances
_ : with learner
increase the weights

of uncorrectly updated uncorrectly classified instances
classified instances Welghts

In each iteration we apply the base learners on the training set with updated weights
The final model is the weighted sum of the n learners.
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Deep Learning

Deep learning could be defined as a set of algorithms that were developed to train in the most
efficient way artificial neural networks with many layers.

Neural network

hidden layer

Adapted from: http://neuralnetworksanddeeplearning.com/chap5.html



Deep Learning

“Simple” neural networks (i.e. with one hidden layer) can easily classify handwritten digits with
an accuracy better than 98%.

Neural network

hidden layer

input layer
output layer

Adapted from: http://neuralnetworksanddeeplearning.com/chap5.html



Deep Learning

Nonetheless, networks with more hidden layers can be even more powerful.

Neural network “Deep” neural network
hidden layer . hidden layer 1 hidden layer 2 hidden layer 3
input layer
)
output layer
b 4

Adapted from: http://neuralnetworksanddeeplearning.com/chap5.html



Deep Learning

Deep networks use the intermediate
layers to build up multiple levels of
abstraction.

For example, in visual pattern
recognition, the first layer might learn
to recognize edges, the neurons in the
second layer could learn to recognize
more complex shapes, the third layer
would then recognize still more
complex shapes, and so on.

Deep neural network

input layer

hidden layer 1 hidden layer 2 hidden layer 3
NG

output layer

NS

Adapted from: http://neuralnetworksanddeeplearning.com/chap5.html
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Convolutional Neural Networks
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Adapted from: https://www.mathworks.com/



Convolutional Neural Networks
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Convolutional Neural Networks

/
: g
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D D — BICYCLE

FULLY
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN CONNECTED SOFTMAX
FEATURE LEARNING CLASSIFICATION

1.0 1| 1 [NOSEG
0, 1. 1 [ENES 4
Oxl 0><0 1x1 1 1
ofof1(1|o0
ofi1(1(0|o0 -
Convolved T Input
Image

Feature



Convolutional Neural Networks

— CAR
— TRUCK
— VAN

Ij Ij — BICYCLE

TN

FULLY
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU  POOLING FLATTEN O igp SOFTMAX
FEATURE LEARNING CLASSIFICATION

The purpose of RELU is to introduce non-linearity
(given that convolution is a linear operation, i.e.
matrix multiplication)

Input Feature Map Rectified Feature Map

RELU: y = Max(0,x) 2

y=0

ANy ,
white ='positive values Only non-negative values




Convolutional Neural Networks

~

INPUT

— CAR
— TRUCK
— VAN

D. ﬁ — BICYCLE

Y Y
FEATURE LEARNING CLASSIFICATION
12 {20 [ 30 | O
8 1121 2 | 0] 2x2 Max-Pool - 20 | 30
34 | 70 | 37 | 4 112 | 37
112|100 | 25 | 12

Pooling (also called subsampling or downsampling) downsample, i.e.
reduces the dimensionality of each feature map.



Convolutional Neural Networks

4 — CAR
— TRUCK
— VAN
—— A S
’ < 7 O [] — BicyeLe
FULLY
INPUT CONVOLUTION + RELU  POOLING  CONVOLUTION + RELU POOLING pamen FULLY - sortmax
Y & Y
FEATURE LEARNING CLASSIFICATION

Putting all together with a fully connected neural net at the end.



A “not-so- S|mple” Deep Learnmg Net fer
Cosmological appllcatlons s
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Billions of years ago

My research focuses on the Interstellar Medium of \ I ..
galaxies. The aim is to understand the “high Ak
redshift Universe” (z > 6, age < 1 Gyr)

Neutral
hydrogen Cosmic
and ‘dark ages’
helium
Recombination HISEELS First galaxies

lllustration: Nik Spencer; sources: NASA/WMAP Science Team; R. Ellis (Caltech)





http://www.youtube.com/watch?v=kifF3RYcfn0
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Deep learning 21-cm images of the Cosmic Dawn it et ai. 2019)
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Most common libraries, programming languages

@ pgthon ‘ MATLAB

.en TensorFIow
Keras




Most common libraries, programming languages

# python

o T

TensorF
Keras
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"GAME-~._ . .
“GAlaxy Machine learning for Emission linés”
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Main (baryonic) ingredients of galaxies

Interstellar Medium




Interstellar Medium (ISM)

Main (baryonic) ingredients of galaxies:

e stars
e gas

lllustration: Eagle Nebula (Messier 16), Credit NASA :



Interstellar Medium (ISM)

Main (baryonic) ingredients of galaxies: ' ol 1 - i ni LA .

e stars g : e :? e O

e gas ' & A : e
. b

e dust e
o

lllustration: Eagle Nebula (Messier 16), Credit NASA



Interstellar Medium (ISM)

Main (baryonic) ingredients of galaxies:

stars

gas

dust

cosmic rays

e.m. radiation ISM
magnetic field

lllustration: Eagle Nebula (Messier 16), Credit NASA :



Typical physical conditions

density of an HIl region: 100 cm™

size: 10 pc ~ 3 x 10" cm

lllustration: Eagle Nebula (Messier 16), Credit NASA :



Typical physical conditions

density of an HIl region: 100 cm™
density of the air (sea level): 10" cm™

size: 10 pc ~ 3 x 10" cm
radius of our Solar System: 4.5 x 10'2 cm

lllustration: Eagle Nebula (Messier 16), Credit NASA :



Typical physical conditions

density of an HIl region: 100 cm™

size: 10 pc ~ 3 x 10" cm
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5791Hg
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lllustration: Eagle Nebula (Messier 16), Credit NASA [



Typical physical conditions

density of an HIl region: 100 cm™

size: 10 pc ~ 3 x 10" cm

lllustration: Eagle Nebula (Messier 16), Credit NASA [
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Typical physical conditions

density of an HIl region: 100 cm™

: 19 Py A | 530) 6584
size: 10 pc ~3x 10" cm

H
4340

[SIl
6725 BArIII]
135

Nelll
[3 968]

.,JLQ. UJL JJL%

4000 5000 ﬁ6000 7000 8000 9000 10000 &
Wavelength (A)

Flux (erg/is/cm2 /A)

lllustration: Eagle Nebula (Messier 16), Credit NASA [
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Direct method (electron temperature)

(auroral to nebular line ratios, Pérez-Montero 2017)

Ry, = ([OIIl] A4959 + [Olll] A5007) / [Olll] A4363

R, = ([OI] A3726 + [Oll] A3729) / ([OII] A7319 + [Oll] A7330)
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Direct method (electron temperature)

(auroral to nebular line ratios, Pérez-Montero 2017)

Ry, = ([OIIl] A4959 + [Olll] A5007) / [Olll] A4363

R, = ([OI] A3726 + [Oll] A3729) / ([OII] A7319 + [Oll] A7330)

relations between the nebular-to-auroral
line ratios and the electron temperature
as a function of the electron density
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Empirical calibrations

(Pagel et al. 1979, Vilchez & Esteban 1996, Pettini & Pagel 2004,
Maiolino et al. 2008, Nagao et al. 2011, Marino et al. 2013, Curti et al. 2017)

log [OI1I]/HB

R, = ([Oll] A3727 + [Oll]] A4959 + [OIII] A5007) / HB

N, = [NII] A6583 / Ha

R = ([Olll] A51.80 um + [OlI] A88.33 um) / [NII] A57.21 pm

log [O11]/HB
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Comparison of theoretical spectra
from a grid of photoionization models

(McGaugh 1991, Zaritsky et al. 1994, Kewley & Dopita 2002,
Kobulnicky & Kewley 2004, Tremonti et al. 2004, Kewley & Ellison 2008,
Dopita et al. 2016)




Numerical codes

(IZI Blanc et al. 2015, pygz Dopita et al. 2013,

HII-CHI-mistry Pérez-Montero 2014,
BOND Vale Asari et al. 2016)
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Flux [ergs/s/cm?/A]

GALAXY MACHINE LEARNING

GAME (GAlaxy Machine learning for Emission lines, ucci et al. 2017, 2018) iS a hew, fast
code able to reconstruct the physical properties of the ISM in (distant) galaxies
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Flux [ergs/s/cm?/A]
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GAME (GAlaxy Machine learning for Emission lines, ucci et al. 2017, 2018) iS a hew, fast
code able to reconstruct the physical properties of the ISM in (distant) galaxies
by using all the available information encrypted in spectra

1€=13

7000
wavelength [A]

7500

GALAXY MACHINE LEARNING

-
S
=
o
2
7]
7]
S
£
=
Z
m
7]




Inspiration...



Inspiration... Shazam!

n
o R

you are in a shop and you it there is a match you are then
like the music you are given the metadata of the audio
hearing: tap the button (title, lyrics, video, artist...)

shazam analyzes the captured sound by creating
the fingerprint of the audio, it starts the search
for matches in the database (Wwang 2003)



A “Shazam for galaxies”

£ T
[ NGC 2276
6 [ sc .

8 -

4 4

F(A) / F(5500)

3 -

" L . L
4000 4500 6000 6500 6000 6500 7000
Wavelength ()

you have an you are then given the “metadata” of
observational/synthetic the galaxy (gas volume density,
spectrum of a galaxy ionization state, metallicity...)

the algorithm works by analyzing the
emission line intensities, it works on the
models in the database



A “Shazam for galaxies”
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4000 4500 6000 8500 7000

6000 6500
Wavelength ()

you have an you are then given the “metadata” of
observational/synthetic the galaxy (gas volume density,
spectrum of a galaxy ionization state, metallicity...)

the algorithm works by analyzing the

emission line intensities, it works on the
models in the database
® 0 e



Method (Ucci et al. 2017, 2018)

grid of models: metallicity, column density,
ionization parameter, density

CLOUDY v13.03

@ large library of emission line intensities (50,000 models)

are inferred from an input spectrum using emission line

GAME @ Supervised Machine Learning (SML): physical properties
intensities as input features



grid of models: metallicity, column density,
lonization parameter, density

Parameter minimum  maximum
log(Z/Zs) -3.0 0.5
log(n/cm™) -3.0 5.0
log(U) -4.0 3.0
log(Ng /em™) 17.0 23.0




Photoionization models

metallicity (Z/ Z)
ionization state (ionization parameter U or
FUV flux in the Habing band 6 - 13.6 eV)

U

| /'OC L F(H)

174
T L
dmRsnc

hv  47Rinc
density (n / cm™)
column density (N, / cm™)

Ny = nds b T TN
0 The Rosette nebula (NGC 2237)

(Credit WIYN and NOAO/AURA/NSF)




Parameter minimum  maximum

grid of models: metallicity, column density,

log(Z/Zs) 20 0.5
ionization parameter, density Ing:g/(CUH;‘3> o i
log(Ng /em™) 17.0 23.0

CLOUDY v13.03

large library of emission line intensities (50,000 models)



@ Library of emission line intensities




@ Library of emission line intensities

features labels

model #1 .--
|
I
model #50,000 ---
| | T
Oll n
ot [OlI] U




Parameter minimum  maximum

grid of models: metallicity, column density,

log(Z/Zs) S 0.5
. . . log(n/cm™3) -3.0 5.0
ionization parameter, density e o i
log(Ng /em™) 17.0 23.0
CLOUDY v13.03
large library of emission line intensities (50,000 models!)
GAME Supervised Machine Learning (SML): physical properties

are inferred from an input spectrum using emission line
intensities as input features



@ Supervised Machine Learning (SML)

library of emission line intensities
----------------===




Supervised Machine Learning (SML)

data cube

library of emission line intensities
---------------=-=

) ‘ training

20

e -0.82
g 8
-5 -1.6
-10 -2.4
-15 -3.2

-20 -15 -10



Integral Field Spectroscopy (IFS)

| Image at a single wavelength ‘

| Spectrum from one pixel |

'4

o

wavelength

flux density

Data Cube

Image collapsed across
all wavelengths -

pixel: a data point on a CCD
spaxel: a spectrum in a data cube
voxel: a data point in a data cube

¥ 0
N0
> \\s‘/b'

~ 0/7
N
N

(A) uonisod

Ko = - —

combines imaging and
spectroscopy: “3D spectroscopy”

output: data cube




Results: application to IFU observations ucci et ai. 2018, 2019)

knot #3 * .

= N w SN (0]
log (Ha / 10720 erg s71 cm™2)

o

MUSE observations of Henize 2-10 (cresci et al. 2017)
prototype of starburst HIl galaxies (ien et al. 1976)

D = 8.23 Mpc (1 arcsec = 40 pc)

M, ~3.7x10° M,

SFR ~1.9 M, yr! (Reines et al. 2011)



Results: application to IFU observations ucci et ai. 2018, 2019)

_<o(U)U>=0.56".. .
ionization para

<o(Ay)/Ay>=045 ¢ .= 16

extinction: : . »

12

10
8 0.30
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4 0.00

-20 -15 =10 -5 0 5 10 15
Aa (") 2 -0.15
0 -0.30
-20 -15 -10 -5 O 5 10 15

Aa (%) -0.45
-0.60
-0.75
More than 75,000 spaxels processed on a ~0.90

desktop PC in less than 4 hr -20 -15 =10 -5 0 5 10 15
P Aa (")



Results: radially-averaged profiles uci et a. 2018, 2019)

distance (pc) distance (pc)
100 200 300 400 O 100 200 300 400

density col. density
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GAME Predictive performances (k-fold cross validation)

Test data

G Training data

—

Iteration 1

Iteration 2

Iteration 3

Iteration k

<

—400%00“00000000000000
—000909000000000000000
—00000000000000000000

—+0000000900000909900009

All data

S
L4l

the library is split into k folds

the code trains the ML algorithm
on k-1 and then tests on the left-out

GAME computes the score k
consecutive times, and gives back
the mean of these scores for each
physical property



GAME Predictive performances (results on 1 fold)
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Ucci et al. (201

-0.6 -0.4-0.2 0.0 0.2 0.4 0.6
log (Zprep / Z1rue)

line wavelength [A]
HB 4861
(O 1I11] 5007
He I 5876
01 6300
Ha 6563
[N I1] 6584
He I 6678
[S 11] 6717
(S 1) 6731
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Hands-on session .

-



> cd /media/...

> cd astrophysws classes/ .

< .
t

> cd ucci_machine_learning_orni-galaxy_spectra/

> module load python/3.7.2

> jupyter-notebook &



