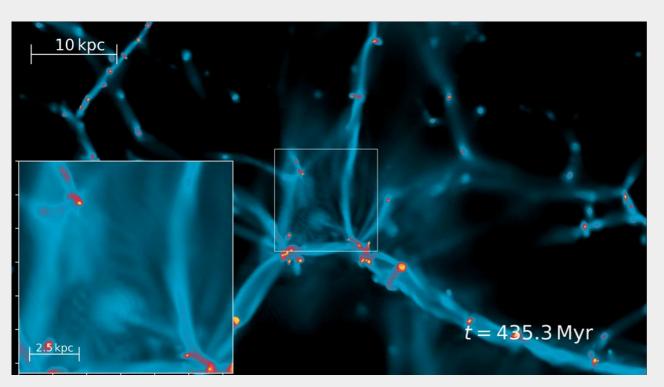

Scientific Data Analysis in Astrophysics:

synthetic spectra from galaxies in cosmological simulations


Andrea Pallottini

main references for models used in the lectures: Pallottini+17b, Vallini+18, Kohandel+19 see https://github.com/apallottini/sda_school (already present on your HD)

Galaxy evolution with cosmological simulations: basic ingredients

example: merger of galaxies at at $z \sim 9$

Gas thermo-dynamics

$$\partial_t \rho + \nabla \rho \mathbf{v} = 0$$

$$\partial_t \rho \mathbf{v} + \nabla (\rho \mathbf{v} \mathbf{v} + P) = -\rho \nabla \Phi$$

$$\partial_t \rho e + \nabla \rho \mathbf{v} (e + P/\rho) = -\rho \mathbf{v} \nabla \Phi + \mathcal{H} - \Lambda$$

Dark Matter evolution

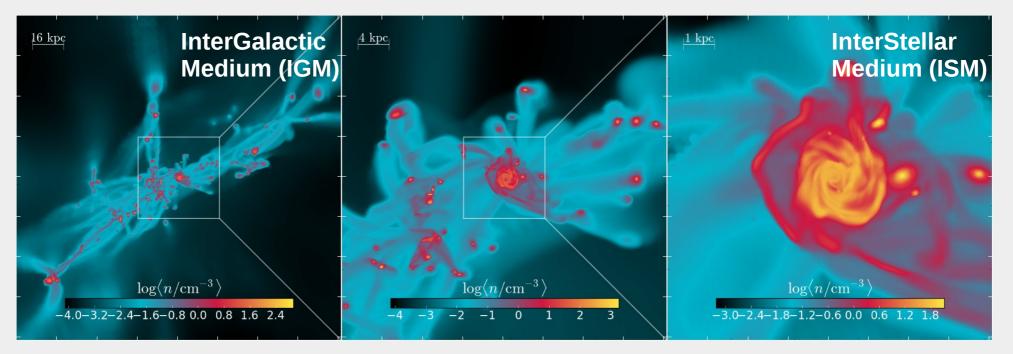
$$\ddot{\mathbf{x}}_{dm} = -\nabla \Phi(\mathbf{x}_{dm})$$

(self)gravity

$$\Delta \Phi = 4\pi G(\rho_{dm} + \rho)$$

cosmological framework

$$\mathrm{d}s^2 = -c^2 \mathrm{d}t^2 + a(t)^2 \mathrm{d}\mathbf{x}^2$$


initial conditions generated as perturbations with parameters taken from CMB observations

Pallottini+17b

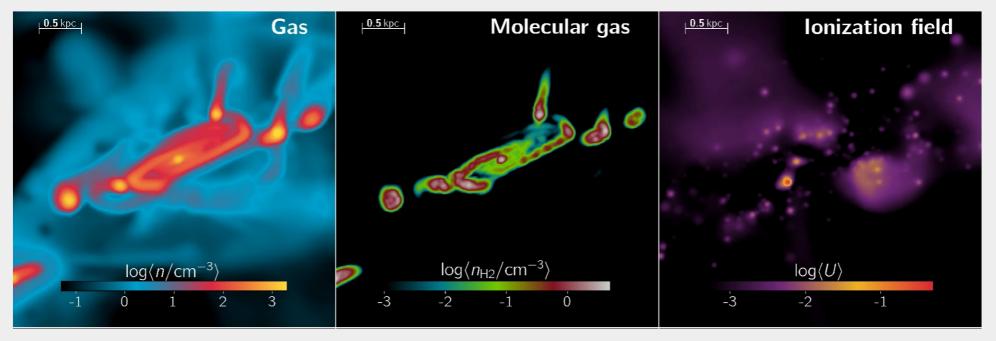
Zooming-in high-z galaxies

Dahlia

Pallottini+17a

Resolution	
gas mass	$m_g\simeq 10^4 { m M}_\odot$
AMR	$\sim 80-0.1{ m ckpc/h}$
at <i>z</i> = 6	$\Delta x \simeq$ 30 pc

Target LGB characteristics (at z=6)		
dark matter	$M_{ m dm} \sim 10^{11} { m M}_{\odot}$	
size	$r_{ m vir}\simeq 15{ m kpc}$	$\mathit{r}_{\mathrm{eff}}\simeq0.5\mathrm{kpc}$
stars	$\textit{SFR} \sim 100 \ \mathrm{M_{\odot}/yr}$	$M_{\star} \sim 10^{10} { m M}_{\odot}$
gas	$\it M_H \sim 10^{10} { m M}_\odot$	$M_{ m H2} \sim 10^8 { m M}_\odot$
metals	$Z\simeq 0.5{ m Z}_\odot$	$M_{\mathcal{D}} \sim 10^7 \mathrm{M}_{\odot}$


from cosmological to molecular cloud scales

Model main features		
AMR code RAMSES Teyssier 2002	zoom-in IC MUSIC Hahn 2011	
${ m H}_2$ based star formation (SK relation) Krumholz+09	Stellar tracks from STARBURST99 Leitherer+10	
Thermal and kinetic energy (e.g. Agertz&Kravtsov 2015)		
GRACKLE 2.1 cooling module Bryan+14	Kinetic energy dissipation Mac Low 1999; Teyssier+13	
SN explosions, OB/AGB winds & radiation pressure (e.g. Agertz+13, Hopkins+14)		
Subgrid modelling for blastwaves Ostriker&McKee 1988		

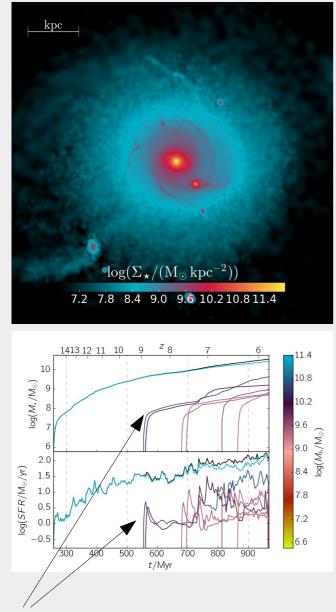
Zooming-in high-z galaxies

Freesia

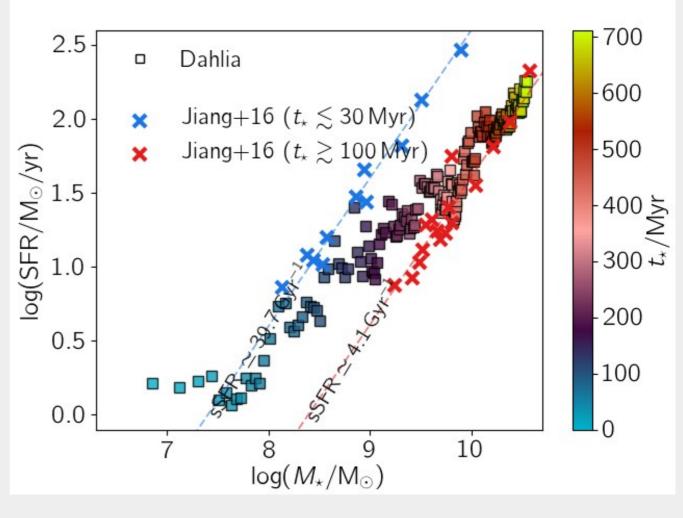
Pallottini+17a,+19

Resolution	
gas mass	$m_g \simeq 10^4 { m M}_\odot$
AMR	$\sim 80-0.1\mathrm{ckpc/h}$
at <i>z</i> = 6	$\Delta x \simeq$ 30 pc

Target LGB characteristics (at z=6)		
dark matter	$\it M_{ m dm} \sim 10^{11} { m M}_{\odot}$	
size	$r_{ m vir}\simeq 15{ m kpc}$	$\mathit{r}_{ m eff}\simeq 0.5{ m kpc}$
stars	$\textit{SFR} \sim 100 \ \mathrm{M_{\odot}/yr}$	$M_{\star} \sim 10^{10} { m M}_{\odot}$
gas	$M_H \sim 10^{10} { m M}_\odot$	$M_{ m H2} \sim 10^8 { m M}_\odot$
metals	$Z\simeq 0.5{ m Z}_\odot$	$\textit{M}_{\rm D} \sim 10^7 {\rm M}_{\odot}$

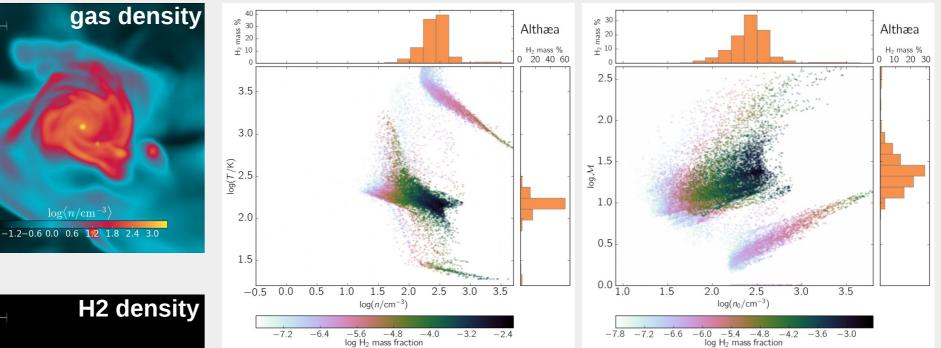

from cosmological to molecular cloud scales

- non-equilibrium chemical networks to form molecular hydrogen and in turn it into stars
- radiation field tracked on the fly to account for ionization and photodissociation effetcs


Stellar component properties

Dahlia

Pallottini+17a,b


other galaxies in the field

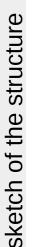
- star formation increasing with time
- frequent induced burst due to merger/gas inflows
- turbulent early life (sSFR=SFR/M_{*}~40/Gyr)
- intense radiation and stellar feedback are expected

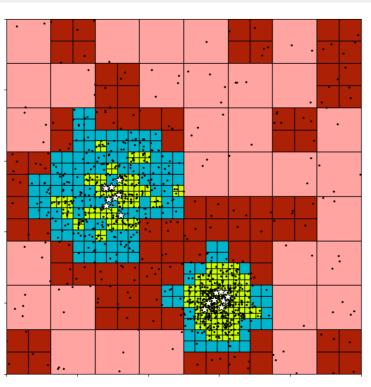
Molecular gas properties

Althæa



clumpy and concentrated in the galactic disk relatively denser and hotter wrt the MW higher turbulence, as a consequence of feedback




Pallottini+17b,Vallini+18

Predictions for the gas properties: line emission and comparison with observations

Data structure of a simulation snapshot

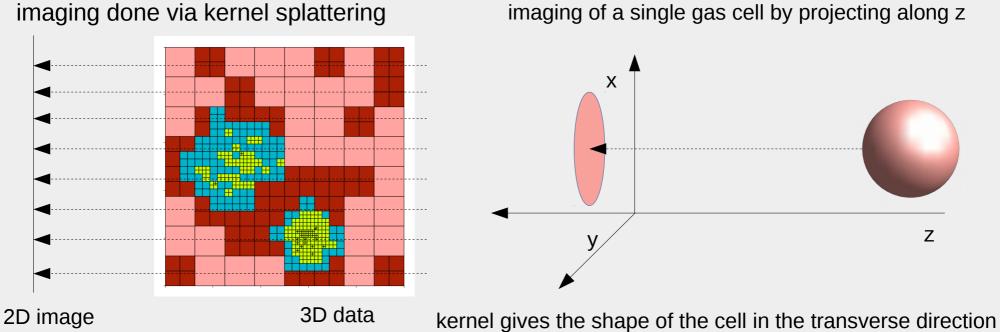
$$\begin{array}{l} \overset{\text{DM:}}{\underset{i=1,\ldots,N_{dm}}{\overset{i}{\underset{j=1,\ldots,N_{dm}}{N_{\star}}}} & \boldsymbol{x}_{dm}^{i}, \boldsymbol{x}_{dm}^{j}, \boldsymbol{x}_{dm}^{j}, \boldsymbol{x}_{\star}^{j}, \boldsymbol{v}_{\star}^{j}, t_{\star}^{j} \\ \overset{\text{Stars:}}{\underset{j=1,\ldots,N_{\star}}{S_{\star}}} & \boldsymbol{m}_{\star}^{j}, \boldsymbol{x}_{\star}^{j}, \boldsymbol{v}_{\star}^{j}, t_{\star}^{j} \\ & \boldsymbol{j}=1,\ldots,N_{\star} \\ \end{array}$$

$$\begin{array}{l} \overset{\text{Gas:}}{\underset{k=1,\ldots,N_{cells}}{S_{\star}}} & \boldsymbol{\rho}_{H}^{k}, \boldsymbol{\rho}_{H}^{k}, \boldsymbol{m}_{\star}^{k}, \boldsymbol{\rho}_{H}^{k}, \boldsymbol{m}_{\star}^{k}, \boldsymbol{\chi}^{k}, \boldsymbol{\chi$$

data available for the hands-on:

Adaptive Mesh Refinement structure:

gas properties of the ISM of Althæa, a galaxy at high z

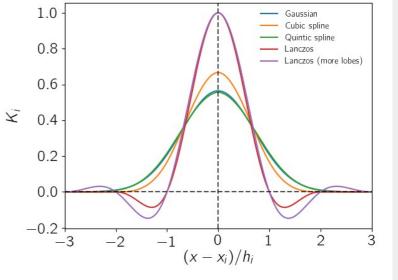

neighbours, parents, and children information

$$n[\mathrm{cm}^{-3}], m[\mathrm{M}_{\odot}], T[\mathrm{K}], Z[\mathrm{Z}_{\odot}], \mathbf{x}[\mathrm{kpc}], \Delta x[\mathrm{kpc}], \mathbf{v}[\mathrm{km}\,\mathrm{s}^{-1}]$$

number_density, mass, temperature, metallicity, position, sph_length, velocity organized as a dictionary of N or Nx3 arrays with explicit units

Pallottini+17b

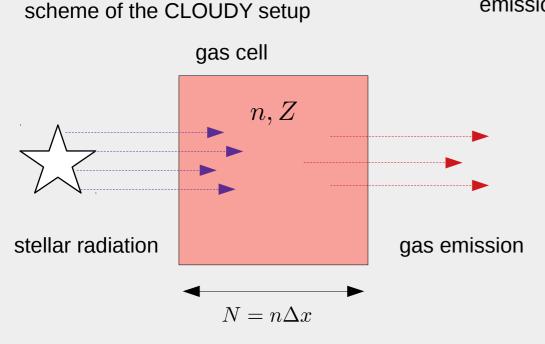
Visualization of the data structure


averaging along the line of sight: e.g. density

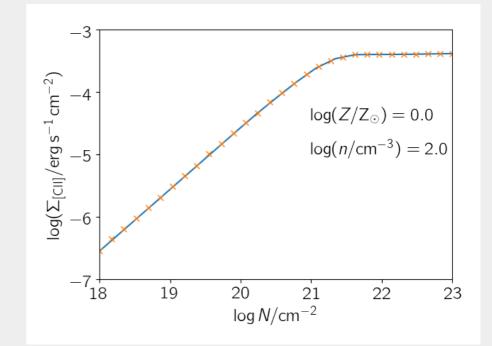
$$\langle n \rangle(x,y) = \underbrace{\sum_{i} n_{i} m_{i} K(x,x_{i},\Delta x_{i}) K(y-y_{i},\Delta x_{i})}_{\sum_{i} m_{i} K(x,x_{i},\Delta x_{i}) K(y-y_{i},\Delta x_{i})}$$

variable to average mass weighting

integration along the line of sight: e.g. gas surface density


$$\Sigma_g(x,y) = \sum_i m_i K(x,x_i,\Delta x_i) K(y,y_i,\Delta x_i)$$

note that the kernel has dimension of an inverse lengt


e.g. Labadens+12, Pontzen+13

imaging of a single gas cell by projecting along z

Line emission calculation

emission for a gas cloud as a function of N from CLOUDY

here the radiation field intensity is fixed to the mean found in Althæa

from surface brightness to luminosity for the gas cell of index *i*

$$L^i_{\rm [CII]} = \Sigma^i_{\rm [CII]} \Delta x^2_i$$

to compute the surface brightness map

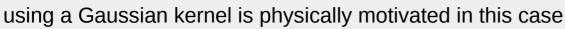
$$\Sigma_{\text{[CII]}}(x,y) = \sum_{i} L^{i}_{\text{[CII]}} K(x,x_{i},\Delta x_{i}) K(y,y_{i},\Delta x_{i})$$

grid of CLOUDY models, that is interpolated for n, Z, N

$$\log(n/\text{cm}^{-3}) \in [-2, \dots, 4.5] \quad \# = 14$$

 $\log(Z/Z_{\odot}) \in [-3, \dots, 0.5] \quad \# = 8$
 $\log(N/\text{cm}^{-2}) \in [15, \dots, 23] \quad \# = 30$

Ferland+13,+17, Vallini+17


Computing spectra

a spectrum depend both on the luminosity and the kinematic structure along the line of sight

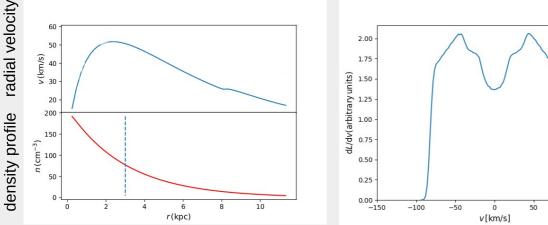
$$\frac{\mathrm{d}L}{\mathrm{d}v_z}(v_z) = \sum_i L_i K(v_z, v_z^i, c_i)$$

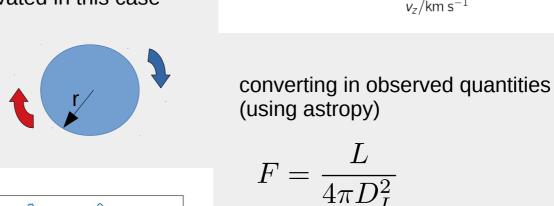
Doppler effect due to proper motion: $c_i = \gamma_{\Lambda/2}$

thermal broadening of the line:

 v_z^i

Ζ

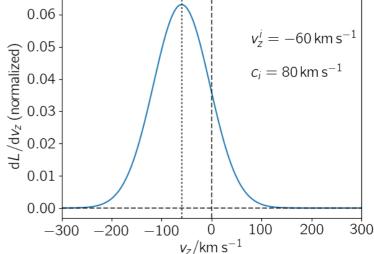

 $^{\prime}\mathrm{K}_{b}T_{i}/\mathrm{m}_{p}$


100

150

kinematic can be tricky: e.g. rotating disk seen edge-on

profiles due to a self-gravitating gas disk (no DM here)



$$D_L = D_L(z, \text{ cosmological model})$$

$$F_{\nu} = \frac{\mathrm{d}F}{\mathrm{d}\nu} = \frac{1}{4\pi D_L^2} \frac{\mathrm{d}L}{\mathrm{d}v_z} \frac{\mathrm{d}v_z}{\mathrm{d}\nu}$$

Kohandel+19

resulting profile has a characteristic double horned structure

