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Multiple levels of access to data
o Machine Learning can help at all levels > physics analysis
o Deep Learning can handle multiple levels
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What is (jet) b-tagging ?

It is the identification (or "tagging") of jets originating from bottom quark

e Sowhatis ajet?
o Acollection of collimated particles originating from the
hadronization of a quark or a gluon

o  Clustering particles and detector signal in jets is the way we
reconstruct the originating partons

e  Why b-jet tagging?
o  Jets production is one of the most common processes at the LHC
and a background for many analyses
o b-jets production is suppressed compared to light quark/gluon jets

o Final states with b-jets are interesting for many analyses: \" >
Top quark . '
H-> bb > N
HH (bb+XX) B
etc.
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b jet properties

b-jets contain B hadrons

sizeable lifetime (ct1
~ 500 um) decay
length of a few mm

when boosted

o  Significant Impact
Parameter (IP)

o  Secondary vertex

Large mass (5 GeV)
High rate of
semileptonic decays
(25%)

High momentum
transfer to the B
hadron
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How is b-tagging done?

b-tagging relies mostly on the reconstruction of the B hadrons decay products:

e Efficient and robust tracking needed
e Displaced tracks More realistic b-tagging picture
o  with good IP resolution TR
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How is b-tagging done?

b-tagging relies mostly on the reconstruction of the B hadrons decay products:

e Efficient and robust tracking needed
e Displaced tracks
o with good IP resolution
e Secondary vertex reconstruction
e The picture is not as simple as outlined

Pileup in pp collisions: We have to deal with:
o  Noisy environment o  Uncertainty in track reconstruction
o Displaced “noise” tracks o  Poor IP resolution

o  Critical point: jet-track association o SV inefficient reconstruction



b'tagglng algorlthms In ML b-tagging is a supervised

e Can use single discriminating variables classification problem
o Tracks IP, Secondary vertices

e Can combine several discriminating variables with ML
o ML is used to combine the information in an optimal
way -> better performance
o ML techniques are also more robust under different
conditions (pileup, tracker detector, tracking etc.)

Example ML discriminator
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e With Deep Learning we can also bypass some of the
choices we make before optimization
o using lower level inputs
o It can be more flexible and ultimately better
performing
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Benchmarks - some of the CMS standard algorithms
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CSV (Combined secondary vertex)
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DeepCSV

{s=13 TeV, 2016
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Going deeper - lower level inputs

e Not just discriminating variables

o Thanks to capability of DNNs one can be less picky with the
input choice

o The algorithm can be more flexible in the optimization of the
input choice

e Jetfed to a DNN a set of particles
e Particles collections - each with the same features

Collections: Reconstructed Collections:
secondary vertices e charged particles
with b-tagging (not
only) properties
e Neutral particles (?)
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DeepJet

Conv1D + LSTM to process collections
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DeepVertex

e (Going further: vertexing handled by the DNN

o Vertices from track clusters around displaced tracks

e Multiple level of sequencing

1) Collection of displaced tracks IP
significance based (10 per jet / or zero-pad)

2) A collection of neighbors for each
PCA distance based (20X10 per jet - 20 per seed)

Displaced
tracks

Cluster
around
displaced
track
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DeepVertex

DNN architecture and performance
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The tutorial

Notebooks here

plot NNinput
plot_seedingTrackFeatures
keras_ DNN

CNN1x1_btag

Istm_btag

a ko=
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https://drive.google.com/drive/folders/1UMQuJNRG3q-_s69oy1laJ1JcXu-8XIgC?usp=sharing

Notebook 1

* loading the data

* check some of the data content and labeling
* plot the labeling

* plot the distributions per category

* example ROC curve

18



Notebook 2

not very different from notebook 1

* loading the data

* check another ntuple content
The 2nd ntuple contains variables per track per jet
So it is a sequence inside a jet

* plot the a distributions per category

19



Notebook 3

- Keras user manual (https://keras.io/)
In this notebook, we will

- Load the data from the usual file

- build the feature and the target array

- define a DNN with three layers, fixing node number, activation function, etc
- train the model, using Early Stopping and dynamic learning rate

- check training history

- check training performances: AUC and confusion matrix

20



Notebook 4 (5)

In this notebook, we will

- Load the data from the usual file
- build the feature and the target array
- define a "convolutional"” ( "recurrent” ) DNN

- The DNN used 1x1 convolution to share parameters between object at the same level (tracks)
- reference (https://keras.io/layers/convolutional/)
( - The DNN uses the LSTM to process the track sequence instead of 1x1 convolution

- Recurrent layers info (https://keras.io/layers/recurrent/))

- train the model, using Early Stopping and dynamic learning rate
- check training history
- check training performances: AUC and confusion matrix
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misid. probability

Performance in data - Scale factors

All algorithms are trained with simulation

e Accurate and up to date simulation of physics processes + detector

Performance is very similar in data - a bit worse - corrections are needed for analysis.
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More material

ML with Jets in CMS:
https://indico.cern.ch/event/7457 18/contributions/3146638/attachments/1753044/2

841151/ML4Jets2018.pdf

Today’s Introduction by Andrea Rizzi
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https://indico.cern.ch/event/745718/contributions/3146638/attachments/1753044/2841151/ML4Jets2018.pdf
https://indico.cern.ch/event/745718/contributions/3146638/attachments/1753044/2841151/ML4Jets2018.pdf
https://docs.google.com/presentation/d/133xackTPC0SmS86BRvbB6xGhOjxrwccua3SJl4DK1BE/edit?usp=sharing

