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Reminder / introduction

pass trigger

Detector 
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> physics analysis
Multiple levels of access to data

○ Machine Learning can help at all levels
○ Deep Learning can handle multiple levels
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What is (jet) b-tagging ?
 It is the identification (or "tagging") of jets originating from bottom quark

● So what is a jet?
○ A collection of collimated particles originating from the 

hadronization of a quark or a gluon
○ Clustering particles and detector signal in jets is the way we 

reconstruct the originating partons

● Why b-jet tagging? 
○ Jets production is one of the most common processes at the LHC  

and a background for many analyses
○ b-jets production is suppressed compared to light quark/gluon jets
○ Final states with b-jets are interesting for many analyses:

■ Top quark
■ H-> bb
■ HH (bb+XX)
■ etc.

Z(vv) H(bb):
2b jets + Neutrinos
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b jet properties

b-jets contain B hadrons

● sizeable lifetime (cτ 
~ 500 μm) decay 
length of a few mm 
when boosted

○ Significant Impact 
Parameter (IP)

○ Secondary vertex

● Large mass (5 GeV)
● High rate of 

semileptonic decays 
(25%)

● High momentum 
transfer to the B 
hadron

b-tagging picture
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How is b-tagging done? 
b-tagging relies mostly on the reconstruction of the B hadrons decay products:

● Efficient and robust tracking needed
● Displaced tracks

○ with good IP resolution
● Secondary vertex reconstruction
● The picture is not as simple as outlined

More realistic b-tagging picture
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How is b-tagging done? 
b-tagging relies mostly on the reconstruction of the B hadrons decay products:

● Efficient and robust tracking needed
● Displaced tracks

○ with good IP resolution
● Secondary vertex reconstruction
● The picture is not as simple as outlined

Pileup in pp collisions:

○ Noisy environment
○ Displaced “noise” tracks
○ Critical point: jet-track association

We have to deal with:

○ Uncertainty in track reconstruction
○ Poor IP resolution
○ SV inefficient reconstruction
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b-tagging algorithms
● Can use single discriminating variables

○ Tracks IP, Secondary vertices

● Can combine several discriminating variables with ML
○ ML is used to combine the information in an optimal 

way -> better performance
○ ML techniques are also more robust under different 

conditions (pileup, tracker detector, tracking etc.)

● With Deep Learning we can also bypass some of the 
choices we make before optimization 

○ using lower level inputs
○ It can be more flexible and ultimately better 

performing

Example ML discriminator

● impact parameter significance of charged-particle tracks 
● the presence and properties of reconstructed decay 

vertices 
● flight distance, mass, energy ratio, # charged tracks at 

SV 
● the presence of a lepton in the jet and its pT relative to 

the jet

In ML b-tagging is a supervised 
classification problem
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Benchmarks - some of the CMS standard algorithms
● Inputs
● Algorithm
● Performance: ROC curve

Example

ROC curve for b-tagging :

B efficiency / TP (x - axis)  
vs 

Mistag / FP (y - axis) 9



CSV (Combined secondary vertex)

CSV -> BDT or Shallow NN based 

based on the combination secondary vertex 
and track information

The variables used are chosen based on 
discriminating power / previous knowledge

● Multiple training steps
● 3 categories: vertex - no vertex - 

pseudovertex
● ~ 20 variables, “tagging variables”
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DeepCSV

DNN based version + a few 
more tracks

Using the same set of variables as 
the DeepCSV algorithm - but more 
charged particle tracks. 

DNN based, with four hidden layer 
(i.e. six layers altogether) of a width 
of 100 nodes each. 
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Going deeper - lower level inputs
● Not just discriminating variables 

○ Thanks to capability of DNNs one can be less picky with the 
input choice

○ The algorithm can be more flexible in the optimization of the 
input choice 

● Jet fed to a DNN a set of particles 
● Particles collections - each with the same features

Collections: 
● charged particles 

with b-tagging (not 
only) properties

● Neutral particles (?)

Collections: Reconstructed 
secondary vertices
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Sequence processing

● Sequence of  e.g. tracks
○ Parameter sharing 

■ -> conv 1x1
■ -> recurrent networks

Recurrent node 

Parameter sharing 
across sequence

1x1 conv 

Sharing weights 
among objects
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DeepJet
Conv1D + LSTM to process collections

Stable
(sample dependence)

Preliminary with better tracker and 
compare algorithms

DNN scheme
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DeepVertex
● Going further: vertexing handled by the DNN

○ Vertices from track clusters around displaced tracks

● Multiple level of sequencing

1) Collection of displaced tracks IP
significance based (10 per jet / or zero-pad)

2) A collection of neighbors for each
PCA distance based (20X10 per jet - 20 per seed)

Displaced 
tracks

Cluster 
around 
displaced 
track
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DeepVertex
DNN architecture and performance
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The tutorial
Notebooks here

1. plot_NNinput
2. plot_seedingTrackFeatures
3. keras_DNN
4. CNN1x1_btag
5. lstm_btag 
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https://drive.google.com/drive/folders/1UMQuJNRG3q-_s69oy1laJ1JcXu-8XIgC?usp=sharing


Notebook 1
* loading the data
* check some of the data content and labeling
* plot the labeling
* plot the distributions per category
* example ROC curve
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Notebook 2
not very different from notebook 1

* loading the data
* check another ntuple content

The 2nd ntuple contains variables per track per jet 
So it is a sequence inside a jet

* plot the a distributions per category
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Notebook 3
- Keras user manual (https://keras.io/)

In this notebook, we will

- Load the data from the usual file
- build the feature and the target array
- define a DNN with three layers, fixing node number, activation function, etc
- train the model, using Early Stopping and dynamic learning rate 
- check training history
- check training performances: AUC and confusion matrix
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Notebook 4 (5)
In this notebook, we will

- Load the data from the usual file
- build the feature and the target array
- define a "convolutional" ( "recurrent" ) DNN 

     - The DNN used 1x1 convolution to share parameters between object at the same level (tracks)
     - reference (https://keras.io/layers/convolutional/)
     ( - The DNN uses the LSTM to process the track sequence instead of 1x1 convolution 
       - Recurrent layers info (https://keras.io/layers/recurrent/))

- train the model, using Early Stopping and dynamic learning rate 
- check training history
- check training performances: AUC and confusion matrix
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Performance in data - Scale factors
All algorithms are trained with simulation

● Accurate and up to date simulation of physics processes + detector 

Performance is very similar in data - a bit worse - corrections are needed for analysis.
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More material
ML with Jets in CMS: 
https://indico.cern.ch/event/745718/contributions/3146638/attachments/1753044/2
841151/ML4Jets2018.pdf

Today’s Introduction by Andrea Rizzi
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https://indico.cern.ch/event/745718/contributions/3146638/attachments/1753044/2841151/ML4Jets2018.pdf
https://indico.cern.ch/event/745718/contributions/3146638/attachments/1753044/2841151/ML4Jets2018.pdf
https://docs.google.com/presentation/d/133xackTPC0SmS86BRvbB6xGhOjxrwccua3SJl4DK1BE/edit?usp=sharing

