
Introduction to Machine
Learning in (particle)

physics
SNS - SCIENTIFIC DATA ANALYSIS SCHOOL

Andrea.Rizzi@unipi.it - 28/11/2019

1

mailto:Andrea.Rizzi@unipi.it

Why machine learning?
● See yesterday’s talk!

○ Big data
○ Powerful algorithms

My favorite performance examples
● Learning how to translate without seeing a single

translation example, just having two independent
monolingual corpora (https://arxiv.org/abs/1711.00043)

● Alpha-Fold: contest to predict protein folding, alphafold
ranked first with 25 correct predictions out of 43 tests. The
second ranked reached 3 out of 43.

● AlphaGo => AlphaZero: AlphaGo beat humans at “Go”,
learning from human matches and know-how. Then
AlphaZero learned from scratch. AlphaZero beat AlphaGo
100-0

● AlphaZero learned chess too, and beat the best existing
chess program

● AI recently proved math theorems, 1200 of them
● Microsoft and Alibaba AIs beated humans in text

understanding test (SQuAD)
● DeepFake: never ever believe what you see on a screen,

even in videos 3

Machine learning is a key element of HEP analysis
examples are everywhere..

● Particle identification and kinematic measurement
● Signal to background discrimination (BDT and DNN are

very popular in HEP experiments)
● Data quality anomaly detections
● Job processing optimization

More to come:

● Reconstruction of charged particle trajectories (aka
tracking)

● ...more applications…

PRL paper observation of Higgs to bb

4 different ML
algorithms used
for different tasks
in this analysis 4

Examples from CHEP
● Machine learning for QCD theory and data

analysis
● BESIII drift chamber tracking with machine

learning
● FPGA-accelerated machine learning inference

as a service for particle physics computing
● Constraining effective field theories with machine

learning
● Fast simulation methods in ATLAS: from

classical to generative models
● Using ML to Speed Up New and Upgrade

Detector Studies
● The Tracking Machine Learning Challenge
● Particle Reconstruction with Graph Networks for

irregular detector geometries
● ...42 contribution with “Machine Learning” in the

title/abstract

5

https://indico.cern.ch/event/773049/contributions/3476046/
https://indico.cern.ch/event/773049/contributions/3476046/
https://indico.cern.ch/event/773049/contributions/3474771/
https://indico.cern.ch/event/773049/contributions/3474771/

ML basics

6

Types of typical ML problems
● Classification: which category a given input belong to.
● Regression: value of a real variable given the input.
● Clustering: group similar samples
● Anomaly detection: identify inputs that are different from others
● Generation/synthesis of samples: produce new samples, similar to the

original data, starting from noise/random numbers
● Denoising: remove noise from an input dataset
● Transcriptions: describe in some language the input data
● Translations: translate between languages
● Encoding and decoding: transform input data to a different representation
● ...many more...

7

● The goal of a ML algorithm is to approximate an unknown function (typically the
Probability Density Function of the data) given some example data

● The function is typically f: Rn -> Rm (often m=1)
● In classification we try to approximate the probability for each example, with inputs represented as a

vector x to belong to a given category (y) (e.g. the probability to be a LHC Higgs signal event vs a
Standard Model background one)

● In regression we approximate the function that given the inputs (x) returns the value of the variable
to predict (y)

Function approximation

8

classification regression

x2

x1 x1

y

Model
● A model for the functions that can be used to approximate the PDF must be

specified. The model can be simple (e.g. sum of polynomials up to degree N)
or complex (e.g. all the functions that could be coded in M lines of C++)

● Different ML techniques are based on different “models”
○ Each technique further allow to specify the exact model
○ The parameters describing the exact model are called “hyper-parameters” (e.g. the degree N

of the polynomial, or the maximum number of C++ line M can be considered hyper
parameters)

● We will see example of models with different complexity:
○ Linear regression
○ Decision trees
○ Artificial Neural Networks

 9

Parameters
● A specific model typically have parameters (e.g. the coefficient of the

polynomials or the characters of the 10 lines of C++).
● Parameters are learned in the “training phase”.
● Different models or similar model with different hyper-parameters settings

have different n.d.o.f. in the parameters phase space

10

● A goal for what is “a good approximation” have to be defined
● This is called objective function (or loss function or error function …)
● Is a function that returns higher(or lower) value depending how good or bad

the approximation is
○ Loss functions have to be minimized

● Example functions
○ Classification problems: binary cross entropy
○ Regression problems: Mean Square Error (i.e. the chi2 with sigma=1, I hope you are not

surprised by this choice!)

The process is not very different from a typical phys-lab1 chi2 fit… but the number
of parameters can be several orders of magnitude larger (10^3 to 10^6)

Objective function

11

Objective function: binary cross entropy
● In classification problems the function to approximate is typically Rn -> [0,1]

○ Where, for example, 0 means background and 1 means signal

● The binary cross entropy is defined as follows:

● The above function has large negative value when an example with y=1 is
classifed with a p ~ 0 and no loss when p ~ 1

○ Viceversa if y=0, p ~ 1 has large loss and p ~ 0 has no loss

● Minimizing the binary cross-entropy we maximize the likelihood in a process
with 0 or 1 outcome:

12

● For a given model, and given set of hyper-parameters, how do we infer the
parameters that minimize the objective function?

● The idea of ML is to get the parameters from “data” in a so called “training”
step

● Each ML technique has a different approach to training
● Different types of training

○ Supervised: i.e. for each example we know the correct answer
○ Unsupervised: we do not know “what is what”, we ask the ML algorithm to learn the

probability density function of the examples in the features phase space
○ Reinforcement learning: have agents playing a punishment/reward game

Learning / Training

13

Supervised learning
● We want to teach something we (the supervisors) already know (at least on

the training samples)
● For each example we need to have the “right answer” / “truth” , for example:

○ Labels telling if a given example signal or background
○ Labels classifying the content of an image (multiple labels are possible)
○ Correct values of some quantity, e.g. generated energy of a particle

● Sample can be labelled in various ways:
○ Humans labelling existing data
○ Data being “generated” from known functions (e.g. simulations)

● Learn the probability of the label y, given the input x, i.e. P(y|x)

14

Unsupervised learning
● Often we do not have labels (or we have labels only for few data points)
● Unsupervised learning techniques allow to train networks that can perform

similar tasks as the supervised ones, e.g.
○ Classification of “common” patterns
○ Dimensionality reduction, compression
○ Prediction of missing inputs
○ Anomaly detection

● In practice learn the Probability Density
Function of the data, independently of
any “label” variable, i.e. P(x)

15

Supervised vs unsupervised
Supervised and unsupervised are not as different as one would imagine, in fact

● P(x) can be seen as n supervised problems, one for each feature

● P(y | x) can also be computed, if we treat y as an “x” in unsupervised
learning deriving hence , as

16

Reinforcement learning
Applies to “agents” acting in an “environment” that updates their state

● It is similar to supervised learning as a “reward” has to be calculated
● The supervisor anyhow doesn’t necessarily know what is the best action to

perform in a given state to interact with the environment, it just computes the
reward

● Learn to make best decision in a given situation
○ The right move in chess or go match
○ Drive a car in the traffic
○ Etc..

17

Capacity and representational power
● Different models (i.e. techniques/hyper-parameters values) allow to represent

different type of functions
● Models with more free parameters typically can approximate a larger number

of functions => higher capacity
● Remember: we do not know the actual function to aproximate, we just want to

learn from examples
● With limited samples we have a tradeoff to

handle:
○ accuracy in representation vs generalization of the

results

18

Capacity and representational power
● Underfitting: the sample is badly represented
● Overfitting / Appropriate capacity are less obvious to define

○ Lack of “generalization” -> overfitting

19

Capacity and representational power
● Underfitting: the sample is badly represented
● Overfitting / Appropriate capacity are less obvious to define

○ Lack of “generalization” -> overfitting
○ Typical method is to check on independent sample

■ Or just split your sample in two and use only half for training

20

Generalization
● We can compare the accuracy between the “training” sample and the

“generalization/validation” sample

● Bias/variance trade-off
○ y: function (with random noise)
○ h(x): approximated function 21

Regularization
In order to control the “generalization gap”

● the objective function can be modified adding a regularization term
○ Introduce a “cost” in increasing the capacity of the model or in accessing some parts of the

model-parameters space

● the examples in training dataset can be
increased with augmentation techniques

○ Adding stochastic noise to existing examples
○ Transforming the existing examples with

transformation that are known to be invariant
for the solution we look for

https://xgboost.readthedocs.io/en/latest/tutorials/model.html

22

https://xgboost.readthedocs.io/en/latest/tutorials/model.html

Hyperparameters(model) optimization
● It is normal to have to test a few, if not several, configurations in the model

hyper-parameter space
○ Scans of hyper-parameters are often performed
○ Different techniques used

● Effectively a “second” minimization is done
○ First minimization is on the parameter => minimize on the “training dataset”
○ Second minimization is on the hyper-parameters => minimize on the “validation dataset”

● A third dataset (“test dataset”) is then also needed
○ To assess the performance of the algorithm in an unbiased way
○ To make an unbiased prediction of the algorithm output

● Original dataset is typically split in uneven parts to be used as training,
validation and test

23

Inference
● A ML model that has been trained can than be used to act on some new data

(or on the test dataset if a prediction has to be made)
● The evaluation of the algorithm output on the “unseen” data is called

inference
● From a computing point of view inference is usually faster than training

24

Limitations of decision trees

● Cuts are axis aligned
● Classification of x1 > x2 is a a hard

problem for a decision tree

25
x1

x2

Artificial Neural Networks

26

(Artificial) neural networks

● Computation achieved with a network of
elementary computing units (neurons)

● Each basic units, a neuron, has:
○ Weighted input connections to other neurons
○ A non linear activation function
○ An output value to pass to other neurons

● Biologically inspired to brain structure as a
network of neuron

○ But artificial NN goal is not that of “simulating” a
brain!

27

A neural network node: the artificial neuron

● The elementary processing unit, a neuron, can be
seen as a node in a directed graph

● Inputs are summed, with weights, and an activation
function is evaluated on such sum

● Nodes are typically also connected to an input “bias
node” that has a fixed output value of 1

● Different activation functions can be used, common
ones are: sigmoid, atan, relu (rectified linear unit)

28

The MLP model
● The most common NN in the ‘90 was the Multi

Layer Perceptron (MLP)
● Graph structure organized in “layers”

○ Input layer (nodes filled with input value)
○ Hidden layer
○ Output layer (node(s) where output is read out)

● Nodes are connected only from one layer to the
next and all possible connections are present
(known as “dense” or “fully connected” layer)

○ No intra-layer connections
○ No direct connections from input to output

● Size of input and output layers are fixed by the
problem

● Hyperparameters are
○ The size of the hidden layers
○ The type of activation function

● The parameters to learn are the weights of the
connections 29

Universal approximation theorem
“One hidden layer is enough to represent (not learn) an approximation of any
function to an arbitrary degree of accuracy” (I. Goodfellow et al. 2016)

● You can approximate any function with arbitrary precision having enough
hidden nodes and the right weights

● How do you get the right weights? You need a “training” for your network
○ The theorem does not say that one hidden layer (+ some training algorithm) is enough to find

the optimal weights, just that they exists!

● Achieving some (even modest with some metric) level of accuracy may need
an unmanageable hidden layer size

○ And may need an unreasonable number of “examples” to learn from

30

Example (1-D input)
Approximate this function

With a weighted sum of functions like this one

31

Example
● The Universal Approximation Theorem says that increasing #nodes I can

increase the accuracy as much as I want
● More hidden nodes, higher “capacity” => more accuracy

https://towardsdatascience.com/can-neural-networks-really-learn-any-function-65e106617fc6
32

Training of an MLP
● How do I get the weights?
● Especially if I have only a few samples?

33

Training a NN
● The goal of training is to minimize the objective

function (possibly both on the training and validation
sample)

■ I.e. we want to minimize the loss as a function of the model
parameters (i.e. the weights)

● For a MLP the basic idea is the following
a. Start with random weights
b. Compute the prediction for a given input x and check the difference with target y and the loss

(repeat for a few example, aka “one batch”)
c. Estimate an update for the weights that reduces the loss
d. Iterate from point (b), repeating for all samples
e. When the sample has been used completely (end of an epoch), iterate from (b) again on all

samples
f. Repeat for multiple epochs

● The important point is how to implement point (c) => (stochastic) gradient
descent

34

lo
ss

weights
space

Gradient Descent

● We know the loss function value in a point
in the weights phase space (e.g. the initial
set of random weights, or the iteration
N-1), computed numerically as the mean
or the sum of the losses for each (or only
some) of our training examples

● We can compute the gradient of the loss
function in that point, we expect the
minimum on “the way down” hence we
adjust our set of weights doing a “step” in
the direction pointed by the gradient with a
step size that is proportional to the length
of the gradient

How to find a minimum?

Stochastic Gradient Descent (SGD):

● Compute the gradient on “batches” of
events rather than full sample

● The “noise” may help avoiding local minima 35

Not as simple as you would imagine
● A parameter named learning rate controls how big the step in the direction of the

gradient is
○ A too large step may let you bounce back and forth on the walls of your “valley”
○ A too small step would make your descent lasting forever

● Several variants of SGD
○ Include “momentum” from previous gradient calculations (may help overcome local obstacles)
○ Reduce step size over time
○ Adadelta, Adagrad, Adam, and many more

36

Learning rate, epochs and batches

● The gradient update (in SGD) is repeated
for each “batch” of events

● A full pass of the whole dataset (i.e. all
batches) is called an epoch

● A typical training foresee iteration on
multiple epochs

● The size of the update step can be
controlled with a multiplicative factor called
“learning rate”

○ Learning rate can be adapted over time

37

In reality

38

Training and overfitting

● As discussed earlier if the capacity is large
enough the network could “overfit” on the training
dataset

● Have a separate, stat independent,
validation/generalization sample

● Evaluate performance (with “loss” or with other
metrics) on the validation sample

● Training results depends on many choices
○ Size of batches (amount of “noise”)
○ Learning rate (how much you move along the gradient at

each iteration)
○ Gradient Descent algorithm
○ Capacity of the network

39

Deep networks

40

Deep Feed Forward networks
The simplest extension to the MLP is to just add more hidden layers

Other names of this network architecture

● Deep Feed Forward network
● Deep Dense network, i.e. made (only)

of Dense(ly) connected layers

depth 41

Why going deeper?
Hold on… wasn’t there a theorem saying that MLP is good enough ? Yes but…

● Amount of nodes to represent complex functions can be too high
● Learning the weights on finite samples could be too difficult

Advantages of Deep architectures

● Hierarchical structure can allow easier “abstraction” by the network with early
layers computing low level features and deeper layers representing more
abstract properties

● Number of neurons and connections needed to represent the same function
highly reduced in many realistic cases

42

Deep architectures

43

Dropout and regularization methods
● NN training is a numerical process
● Often the number of samples is limited hence the

gradient accuracy is not great
● Several regularization methods exists to avoid being

dominated by stochastic effects
○ Caps to the weights (so that individual nodes cannot be worth

more than some amount)
○ Dropout techniques: during the training a fraction of nodes

is discarded, randomly, at each iteration
■ NN more robust to noise
■ Effectively “augmenting” the input dataset

44

(Batch) normalization
● Input features have typically different ranges, means, variance
● It is generally useful to “normalize” the input distribution

○ Mean zero
○ Variance 1

● Often it could be practical to compute the normalization on individual batches
rather than full sample

○ Batch vs full sample ? may depend on your use case

45

A typical
observable, e.g.
the invariant
mass of a pairs
of leptons

Normalized
version

Exploit invariance and locality
● Suppose you want to count windows in a 800x600

picture with houses
○ With an MLP or DFF you have 800x600x3(RGB)=1.4M inputs
○ Each node process independently some part of the image
○ The initial “Dense” connection should converge to something

with lot of “zero” weights because far away pixel points have
no reason to be considered at the same time in order to
detect local features

○ => the problem cannot be managed this way

● But the problem is translation invariant!
○ “Windows” are local features, you can just analyze a patch of

the image (locality)
○ A window is a window no matter if it is top left or bottom right

of your image (Invariance)
○ And actually windows are made of even more local features

(some borders/frame, some uniform area, a squared shape)
46

Can we exploit problem invariance?
● Convolutional neural networks (CNN) attempt to exploit invariance against

spatial translations
○ Smaller networks
○ Acting on a single patch of the image
○ Stacking multiple such Convolutional Layers one after the other

47

Limitations
● The linear algebra formalism we use can handle nicely images, hence

implement nicely CNN (translation invariance along x and y)
● There are more invariances out there!

○ Rotation
○ Scale
○ Luminosity
○ … you name it…

● So currently the networks have to learn them all
○ We can do tricks to increase the number of samples in our datasets with augmentation

techniques (i.e. apply random transformations of scale, rotation etc..)
○ “Built-in” invariance (such as the x-y one) has the advantage of reducing by orders of

magnitude the number of weights to learn

48

Understanding the dimensions of the convolution
● Convolution can be 1D, 2D, 3D
● Kernel size, typically square (MxM) with M even (but can be any shape)
● Padding: how to we handle borders? We can do only “valid” windows (no padding) or process

borders as if there were zeros (or other values) outside
● Each “point” in the 1D, 2D, 3D matrix can have multiple features (e.g. R,G,B)
● Each Convolutional layer have mutiple outputs (filters) for every “patch” it scans on (one optimized

to detect if the patch is uniformly filled, one looking for vertical lines, etc..)

2D-conv (on 6x6x3 image)
3x3 kernel
no padding

5 filters

49

Pooling
● Pooling layers are simply finding

maxima or computing average in
patches of some convolution layer
output

● Pooling is used to reduce the
space dimensionality after a
convolutional layer

○ The Conv “filters” look for features (e.g.
a filter may look for cats eyes)

○ The Pooling layer checks if in a given
region some filtered fired (there was a
cut eye somewhere in this broad
region)

50

Typical CNN architecture

51

Exploiting time invariance
● Some problems are “time invariant”

○ E.g. recognize words in a sentence (written or spoken)

● Order matters and some causality is implied in the sequence
● Length of the inputs or the output may not be fixed

Recurrent Networks (RNN)

● Iterative networks with output passed again as input
○ Allow some “memory” of the previous inputs and/or some internal “state” of what the network

understood so far in the sequence

● Most commonly used RNN are LSTM (Long Short Term Memory) and GRU
(Gated Recurrent Unit)

52

LSTM and GRU
● LSTM and GRU are RNN units with additional features

to control their “memory”
● “Gates” allow to control (keep or drop) input, output and

internal state
● The advantage of gated units is that they can forget so

that when processing a sequence they focus on the
relevant part (e.g. when processing a text we may know
that each time we encounter a space the word is over)

LSTM

GRU

53

Different ways of processing time series
● Recurrent Networks can be used to implement networks with variable number

of inputs and outputs
○ Encoding, Decoding, Sequence2Sequence

54

Transfer learning
Transfer learning is a technique to reuse a network training for a task to perform
another task with reduced retraining

● E.g. a Conv2D network meant for image
processing have initial layers processing “local
features”... that is not very domain specific (if you
trained on flowers images it may work on
animals too)

● Very useful when the available sample of the
proper domain is small

○ E.g. annotated medical images are harder
to get than labelled real world pictures

55

Example of unsupervised architecture: autoencoders
● An example architecture that doesn’t

need labelled data is the “autoencoder”
● The network is shaped so that one of the

inner layer has a much smaller dimension
than the input

● The target is an output matching the
input

● Being able to reproduce the input from
the “coded” information in the inner layer
means that the network was able to
extract the important features of the input

56

Generative Adversarial Networks
How about generating realistic samples
?

● E.g. generate pictures of animals
or showbiz like faces

● Or something more useful in
(HE)physics such as generating
hadronic shower of a quark/gluon

GAN works with two independent
networks:

● A generator
● A discriminator

● The discriminator separates samples of the
training dataset from samples generated by the
generator

● No label is needed in the training set as we
know where each sample comes from

● Generator loss is controlled by the
discriminator being able to recognize the fake

57

GAN progress
2014: “dogs with three heads” 2018: coherent generation of faces

See also https://thispersondoesnotexist.com/
58

https://thispersondoesnotexist.com/

Graph nets and message passing
● CNN and LSTM exploit cartesian invariance to reduce the problem dimensions
● What if the problem have different symmetries?
● E.g. you can represent on a graph many type of data and have some invariance on the operations

you want to perform on each node/edge
● Locality in this case is driven by “how many connections are separating two nodes”

○ In order to let the information go from one node to another a “message passing” schema is
used (i.e. the evaluation is iterative and at each step the information from nearest node can
flow in)

https://github.com/deepmind/graph_nets
59

https://github.com/deepmind/graph_nets

Some example HEP applications

High level signal to background discrimination
● The most common application of ML algorithms (BDT or DNN) is for final S/B

discrimination.
○ Inputs are handcrafted features (invariant masses, decay hypothesis, angles in different

reference frames, etc...)
○ Training is supervised using MC simulation as datasets (labels are known from MC truth)

Jet identification
● B-tagging: identify jets of particles originating from b-quarks

○ See this afternoon hands-on session

● Boosted jets: distinguish (fat) jets originating from a vector boson hadronic
data wrt QCD backgroun

○ Several techniques tested

from K.Cranmer

Tracking with graph nets
● Track reconstruction is the most time

expensive algorithm at CMS/ATLAs
○ Currently using seeding + kalman filter

● Several group testing ML based ideas
○ Graph nets: the connection of hits to tracks are

like a graph to prune

Reconstruction of complex detector topologies

● Some (planned) detectors have
irregular geometries so that
clustering of measurements
belonging to the same particle is
not obvious

○ Use graph networks to represent non
trivial connection map

● Particle Flow algorithm can also
be designed to exploit graph nets
to associate information from
different detectors

DNN Tools

65

Keras
● Keras is a python library that allow to build, train and evaluate NN with many

modern technologies
● Keras supports multiple backends for actual calculations
● Two different syntax are usable to build the network architecture

○ Sequential: simple linear “stack” of layers
○ Model (functional API): create more complex topologies

● Multiple type of “Layers” are supported
○ Dense: the classic fully connected layer of a FF network
○ Convolutional layers
○ Recurrent layers

● Multiple type of activation functions
● Various optimizers and gradient descent techniques

66

Other common tools
Common alternative to keras

● Pytorch
● Sonnet
● Direct usage of TensorFlow (or other backends such as Theano, Torch, …)

○ Need to write yourself some of the basics of NN training
○ Especially useful to develop new ideas (e.g. a new descent technique, a new type of basic

unit/layer)

67

Keras Sequential example

68

Keras “Model” Functional API
A NN can be seen as the composition of multiple functions (one per layer), e.g.

● A simple stack of layers is: y=f5(f4(f3(f2(f1(x)))))
● A more complex structure could be something like

● The functional API allow to express the idea that each
layer is evaluate on the output of a previous layer, i.e.

x = Input()
layer1=FirstLayerType(parameters) (x)
layer2=SecondLayerType(parameters) (layer1)
layer3=ThirdLayerType(parameters) (x)
layer4=FourthLayerType(parameters)([layer2,layer3])

69

Input “x”

layer1

layer2

layer3

layer4

y=f4(f2(f1(x)),f3 (x))

An MLP in keras

70

from keras.models import Model

from keras.layers import Input, Dense

x = Input(shape=(32,))

hid = Dense(32)(x)

out = Dense(1)(hid)

model = Model(inputs=x, outputs=out)

model.summary()
from keras.utils import plot_model

plot_model(model, to_file='model.png')

From the ~1995 to ~2010
from keras.models import Model
from keras.layers import Input, Dense

x = Input(shape=(32,))
hid = Dense(32)(x)
out = Dense(1)(hid)
model = Model(inputs=x, outputs=out)

from keras.models import Model
from keras.layers import Input, Dense

x = Input(shape=(32,))
b = Dense(32)(a)
c = Dense(32)(b)
d = Dense(32)(c)
e = Dense(32)(d)
model = Model(inputs=x, outputs=e)

71

Training a model with Keras
from keras.layers import Input, Dense

from keras.models import Model

This returns a tensor

inputs = Input(shape=(784,))

a layer instance is callable on a tensor, and returns a tensor

x = Dense(64, activation='relu')(inputs)

x = Dense(64, activation='relu')(x)

predictions = Dense(10, activation='softmax')(x)

This creates a model that includes

the Input layer and three Dense layers

model = Model(inputs=inputs, outputs=predictions)

model.compile(optimizer='rmsprop',

 loss='categorical_crossentropy',

 metrics=['accuracy'])

model.fit(data, labels) # starts training

Those are numpy arrays with your data
72

Keras layers

73

Keras basic layers
● Basic layers

○ Inputs
○ Dense
○ Activation
○ Dropout

● Convolutional layers
○ Conv1D/2D/3D
○ ConvTranspose or “Deconvolution”
○ UpSampling and ZeroPadding
○ MaxPooling, AveragePooling
○ Flatten

● More stuff
○ Recursive layers
○ ...check the keras docs...

74

Simple Exercise
● Partition a 2D region with a simple function

○ E.g. x>y or x*2>y

● Generate few samples
● Build a MLP or a DNN with similar number of parameters that approximate

the given function

https://colab.research.google.com/drive/1X9uppZENlN9PbX4Tr4e959JSyq4ePv3
S

75

https://colab.research.google.com/drive/1X9uppZENlN9PbX4Tr4e959JSyq4ePv3S
https://colab.research.google.com/drive/1X9uppZENlN9PbX4Tr4e959JSyq4ePv3S

