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Why machine learning?

e See yesterday’s talk!
o Bigdata
o Powerful algorithms



My favorite performance examples

Learning how to translate without seeing a single
translation example, just having two independent
monolingual corpora (https://arxiv.org/abs/1711.00043)
Alpha-Fold: contest to predict protein folding, alphafold
ranked first with 25 correct predictions out of 43 tests. The
second ranked reached 3 out of 43.

AlphaGo => AlphaZero: AlphaGo beat humans at “Go”,
learning from human matches and know-how. Then
AlphaZero learned from scratch. AlphaZero beat AlphaGo
100-0

AlphaZero learned chess too, and beat the best existing
chess program

Al recently proved math theorems, 1200 of them
Microsoft and Alibaba Als beated humans in text
understanding test (SQuUAD)

DeepFake: never ever believe what you see on a screen,
even in videos
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Machine learning is a key element of HEP analysis

examples are everywhere..

-
PhySvB& ABOUT BROWSE PRESS COLLECTIONS

e Particle identification and kinematic measurement L paper observation of Higgs to bb

e Signal to background discrimination (BDT and DNN are
very popular in HEP experiments)

e Data quality anomaly detections

e Job processing optimization

Viewpoint: Higgs Decay into Bottom
Quarks Seen at Last

Howard E. Haber, Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA, USA

September 17,2018 « Physics 11,91

Two CERN experiments have observed the most probable decay channel of the Higgs boson—a milestone in the

pursuit to confirm whether this remarkable particle behaves as physicists expect.

More to come:

e Reconstruction of charged particle trajectories (aka
tracking)
e ..more applications...

4 different ML
algorithms used
for different tasks
in this analysis




Examples from CHEP

e Machine learning for QCD theory and data
analysis

e  BESIII drift chamber tracking with machine
learning

e FPGA-accelerated machine learning inference
as a service for particle physics computing

L _ e  Constraining effective field theories with machine
4-8 November 2019, Adelaide, Australia

Max( fii)

learning
e Fast simulation methods in ATLAS: from
™ P @ classical to generative models
: \ S, e Using ML to Speed Up New and Upgrade
) /@\ \@\o Detector Studies
Fir // e The Tracking Machine Learning Challenge
", e Particle Reconstruction with Graph Networks for
@ e N L g irregular detector geometries
mx fix= £ ln/u X ” e ..42 contribution with “Machine Learning” in the
| O 70 }} title/abstract
(/“ < 7% e
/ / - {}.. Ji 8 7220
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https://indico.cern.ch/event/773049/contributions/3476046/
https://indico.cern.ch/event/773049/contributions/3476046/
https://indico.cern.ch/event/773049/contributions/3474771/
https://indico.cern.ch/event/773049/contributions/3474771/

ML basics



Types of typical ML problems

Classification: which category a given input belong to.

Regression: value of a real variable given the input.

Clustering: group similar samples

Anomaly detection: identify inputs that are different from others
Generation/synthesis of samples: produce new samples, similar to the
original data, starting from noise/random numbers

Denoising: remove noise from an input dataset

Transcriptions: describe in some language the input data
Translations: translate between languages

Encoding and decoding: transform input data to a different representation
...many more...



Function approximation

e The goal of a ML algorithm is to approximate an unknown function (typically the
Probability Density Function of the data) given some example data
e The function is typically f: R" -> R™ (often m=1)
e In classification we try to approximate the probability for each example, with inputs represented as a
vector x to belong to a given category (v) (e.g. the probability to be a LHC Higgs signal event vs a

Standard Model background one)
e In regression we approximate the function that given the inputs (x) returns the value of the variable

to predict (y)
classification regression

x2

x1




Model

A model for the functions that can be used to approximate the PDF must be
specified. The model can be simple (e.g. sum of polynomials up to degree N)
or complex (e.g. all the functions that could be coded in M lines of C++)

Different ML techniques are based on different “models”
o Each technique further allow to specify the exact model
o The parameters describing the exact model are called “hyper-parameters” (e.g. the degree N

of the polynomial, or the maximum number of C++ line M can be considered hyper
parameters)

We will see example of models with different complexity:
o Linear regression
o Decision trees
o Atrtificial Neural Networks



Parameters

e A specific model typically have parameters (e.g. the coefficient of the
polynomials or the characters of the 10 lines of C++).

e Parameters are learned in the “training phase”.

e Different models or similar model with different hyper-parameters settings
have different n.d.o.f. in the parameters phase space
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Obijective function

e A goal for what is “a good approximation” have to be defined
e This is called objective function (or loss function or error function ...)
e Is a function that returns higher(or lower) value depending how good or bad

the approximation is
o Loss functions have to be minimized
e Example functions

o Classification problems: binary cross entropy

o Regression problems: Mean Square Error (i.e. the chi2 with sigma=1, | hope you are not
surprised by this choice!)

The process is not very different from a typical phys-lab1 chi2 fit... but the number
of parameters can be several orders of magnitude larger (103 to 10%6)

11



Objective function: binary cross entropy

In classification problems the function to approximate is typically R" -> [0,1]
o  Where, for example, 0 means background and 1 means signal

The binary cross entropy is defined as follows:
l N
Hy(q) = -~ ; i - 10g(p(y)) + (1 = ;) - log(1 = p(y,))

The above function has large negative value when an example with y=1 is

classifed with a p ~ 0 and no loss when p ~ 1
o Viceversa if y=0, p ~ 1 has large loss and p ~ 0 has no loss

Minimizing the binary cross-entropy we maximize the likelihood in a process
with 0 or 1 outcome:
L= Hp 1 — pz —

~log(L) = —log(sz (1—ps)' %) Z[Jelog pi) + (1 — yi)log(1 — pi)]
12



Learning / Training

For a given model, and given set of hyper-parameters, how do we infer the
parameters that minimize the objective function?

The idea of ML is to get the parameters from “data” in a so called “training”
step

Each ML technique has a different approach to training

Different types of training
o Supervised: i.e. for each example we know the correct answer
o Unsupervised: we do not know “what is what”, we ask the ML algorithm to learn the
probability density function of the examples in the features phase space
o Reinforcement learning: have agents playing a punishment/reward game

13



Supervised learning

e \We want to teach something we (the supervisors) already know (at least on
the training samples)
e For each example we need to have the “right answer” / “truth” , for example:
o Labels telling if a given example signal or background

o Labels classifying the content of an image (multiple labels are possible)
o Correct values of some quantity, e.g. generated energy of a particle

e Sample can be labelled in various ways:
o Humans labelling existing data
o Data being “generated” from known functions (e.g. simulations)

e Learn the probability of the label y, given the input x, i.e. P(y|x)
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Unsupervised learning

e Often we do not have labels (or we have labels only for few data points)
e Unsupervised learning techniques allow to train networks that can perform
similar tasks as the supervised ones, e.g.

o Originall urTclus‘tereld déta .
o Classification of “common” patterns

o Dimensionality reduction, compression
o Prediction of missing inputs
O

Anomaly detection

Clustered data

e In practice learn the Probability Density  -{=———+————— S35+

]

Function of the data, independently of
any “label” variable, i.e. P(x)
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Supervised vs unsupervised

Supervised and unsupervised are not as different as one would imagine, in fact
e P(x) can be seen as n supervised problems, one for each feature
n
p(X) — HP(XI | X1y )X'i—l)
i=1

e P(y | x) can also be computed, if we treat y as an
learning deriving hence p(x, y) , as

13 b

x” in unsupervised

(%)
Ply[x) = >y (%)
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Reinforcement learning

Applies to “agents” acting in an “environment” that updates their state

e Itis similar to supervised learning as a “reward” has to be calculated

e The supervisor anyhow doesn’t necessarily know what is the best action to
perform in a given state to interact with the environment, it just computes the
reward

e Learn to make best decision in a given situation

o The right move in chess or go match
Agent
state (s[t]) Policy m: S—A

o Drive a car in the traffic
o Etc..
reward (r[t+1])
—l Environment]%

action (a[t])

17



Capacity and representational power

Different models (i.e. techniques/hyper-parameters values) allow to represent
different type of functions

Models with more free parameters typically can approximate a larger number
of functions => higher capacity

Remember: we do not know the actual function to aproximate, we just want to

learn from examples o R
With limited samples we have a tradeoff to ] |
handle:

O accuracy in representation vs generalization of the
results

]

18




Capacity and representational power

e Underfitting: the sample is badly represented

e Overfitting / Appropriate capacity are less obvious to define
o Lack of “generalization” -> overfitting

Underfitting Appropriate capacity Overfitting

%./'.<>\/‘\>}.

x Zo To



Capacity and representational power

e Underfitting: the sample is badly represented

e Overfitting / Appropriate capacity are less obvious to define
o Lack of “generalization” -> overfitting
o Typical method is to check on independent sample
m  Orjust split your sample in two and use only half for training

Underfitting Appropriate capacity Overfitting

R .
lo I

x Zo To
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Hrror

Generalization

e \We can compare the accuracy between the “training” sample and the
“‘generalization/validation” sample

Underfitting zone| Overfitting zone

— - Training error
—  Generalization error

Total Error

Variance

Optimum Model Complexily

Error

\k I Generalization gap Bias2

&
:

o -

0 Optimal Capacity

Capacity
e Bias/variance trade-off

Model Complexity

ElCr = h07) =Bl = 57K — B ) P
o y: function (with random noise) o sl W

Bias Variance

o h(x): approximated function o Squared 21



Regularization

In order to control the “generalization gap”

e the objective function can be modified adding a regularization term
o Introduce a “cost” in increasing the capacity of the model or in accessing some parts of the
model-parameters space

i ini obj(# 0) + Q6
e the examples in training dataset can be i) =0+

. . . . A User's interest A User's interest
increased with augmentation techniques
. . . N X X X X X
o Adding stochastic noise to existing examples M.
o Transforming the existing examples with XX N
transformation that are known to be invariant >t
. Observed user’s interest on topic k L CR R PR
for the solution we look for against time t [X] Too many spiits, (f) is high
i User's interest A User’s interest
X X—RJ—x— -)(—x—yd—x—
X b
https://xgboost.readthedocs.io/en/latest/tutorials/model.html % X X i T .
t il :

[X] Wrong split point, L(f) is high [V]] Good balance of Q(f) and L(f)

22


https://xgboost.readthedocs.io/en/latest/tutorials/model.html

Hyperparameters(model) optimization

e Itis normal to have to test a few, if not several, configurations in the model

hyper-parameter space
o Scans of hyper-parameters are often performed
o Different techniques used

e Effectively a “second” minimization is done
o First minimization is on the parameter => minimize on the “training dataset”
o Second minimization is on the hyper-parameters => minimize on the “validation dataset”

e Athird dataset (“test dataset”) is then also needed

o To assess the performance of the algorithm in an unbiased way
o To make an unbiased prediction of the algorithm output

e COiriginal dataset is typically split in uneven parts to be used as training,
validation and test

23



Inference

e A ML model that has been trained can than be used to act on some new data
(or on the test dataset if a prediction has to be made)

e The evaluation of the algorithm output on the “unseen” data is called
inference

e From a computing point of view inference is usually faster than training

24



Limitations of decision trees

Cuts are axis aligned
Classification of x1 > x2 is a a hard
problem for a decision tree
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Artificial Neural Networks



(Artificial) neural networks

. . . 0 wo
e Computation achieved with a network of  _——————"+@ synapse

. . WoIo
elementary computing units (neurons)

e Each basic units, a neuron, has:
o  Weighted input connections to other neurons

cell body

f (ZU),(B,‘ + b)
Zwimi +b :

. . . . output axor=1
o A non linear activation function - ¥
activation
o An output value to pass to other neurons function

e Biologically inspired to brain structure as a

network of neuron

o But artificial NN goal is not that of “simulating” a
brain!

impulses carried
toward cell body
branches
of axon

axon
terminals

\ impulses carried
away from cell body

27



A neural network node: the artificial neuron

e The elementary processing unit, a neuron, can be
seen as a node in a directed graph

e Inputs are summed, with weights, and an activation
function is evaluated on such sum

e Nodes are typically also connected to an input “bias

node” that has a fixed output value of 1

e Different activation functions can be used, common
ones are: sigmoid, atan, relu (rectified linear unit)

N

wil

A

X2

Y= f(wl.X1+w2.X2 +b)
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The MLP model

e The most common NN in the ‘90 was the Multi
Layer Perceptron (MLP) Input Layer Hidden Layer Output Layer

e Graph structure organized in “layers”
o Input layer (nodes filled with input value)
o Hidden layer
o  Output layer (node(s) where output is read out)

e Nodes are connected only from one layer to the
next and all possible connections are present

(known as “dense” or “fully connected” layer)

o  No intra-layer connections
o  No direct connections from input to output

e Size of input and output layers are fixed by the
problem
e Hyperparameters are
o The size of the hidden layers
o The type of activation function
e The parameters to learn are the weights of the
connections 29
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Universal approximation theorem

“One hidden layer is enough to represent (not learn) an approximation of any
function to an arbitrary degree of accuracy” (I. Goodfellow et al. 2016)

e You can approximate any function with arbitrary precision having enough
hidden nodes and the right weights

e How do you get the right weights? You need a “training” for your network

o The theorem does not say that one hidden layer (+ some training algorithm) is enough to find
the optimal weights, just that they exists!

e Achieving some (even modest with some metric) level of accuracy may need

an unmanageable hidden layer size
o And may need an unreasonable number of “examples” to learn from

30



Example (1-D input)

Approximate this function

With a weighted sum of functionstike-thisone

31



Example

e The Universal Approximation Theorem says that increasing #nodes | can
increase the accuracy as much as | want
e More hidden nodes, higher “capacity” => more accuracy

/ ny(x) = Relu(—5x — 7.7)
n2(z) = Relu(—1.2z — 1.3)
n3(x) = Relu(1.2z + 1)
n4(z) = Relu(l.2z — .2)
ns(z) = Relu(2z — 1.1)
ne(z) = Relu(b5x — 5)

" Z(x) = ~m(z) — na(x) = ns(2)
/ +na(z) + ns(z) + ne(x)

https://towardsdatascience.com/can-neural-networks-really-learn-any-function-65e106617fc6
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Training of an MLP

e How do | get the weights?
e Especially if | have only a few samples?

/ ny(x) = Relu(—5x — 7.7)
n2(z) = Relu(—1.2z — 1.3)
n3(x) = Relu(l.2z + 1)
n4(z) = Relu(l.2x — .2)
ns(z) = Relu(2x — 1.1)

/ / ne(x) = Relu(5x — 5)
: Z(x) = —ny(z) — na(x) — nz(x)

/ + n4(z) + ns(x) + ne(x)

XB+x2-x-1

33



Training a NN &

loss

The goal of training is to minimize the objective
function (possibly both on the training and validation

sample)
m |.e. we want to minimize the loss as a function of the model 0

parameters (i.e. the weights) 0
For a MLP the basic idea is the following weights -1 /
a. Start with random weights space
b. Compute the prediction for a given input x and check the difference with target y and the loss
(repeat for a few example, aka “one batch”)
c. Estimate an update for the weights that reduces the loss
d. Iterate from point (b), repeating for all samples
e. When the sample has been used completely (end of an epoch), iterate from (b) again on all
samples

f. Repeat for multiple epochs
The important point is how to implement point (c) => (stochastic) gradient
descent

-1
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How to find a minimum?

Gradient Descent

e \We know the loss function value in a point
in the weights phase space (e.g. the initial
set of random weights, or the iteration
N-1), computed numerically as the mean
or the sum of the losses for each (or only
some) of our training examples

e \We can compute the gradient of the loss >
function in that point, we expect the wi
minimum on “the way down” hence we
adjust our set of weights doing a “step” in Stochastic Gradient Descent (SGD):
the direction pointed by the gradient with a
step size that is proportional to the length
of the gradient

e Compute the gradient on “batches” of
events rather than full sample

e The “noise” may help avoiding local minima 3s



Not as simple as you would imagine

e A parameter named learning rate controls how big the step in the direction of the
gradient is
o Atoo large step may let you bounce back and forth on the walls of your “valley”
o Atoo small step would make your descent lasting forever

e Several variants of SGD
o Include “momentum” from previous gradient calculations (may help overcome local obstacles)
o  Reduce step size over time
o Adadelta, Adagrad, Adam, and many more

§ = s0d
| = momentum ||
~  nag

- adagrad
adadelta
rmsprop

A

w,

4

w' w w' w
Too small: converge Too big: overshoot and
very slowly even diverge
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Learning rate, epochs and batches

e The gradient update (in SGD) is repeated
for each “batch” of events A }/‘

e Afull pass of the whole dataset (i.e. all R
batches) is called an epoch . gl B

e Atypical training foresee iteration on
multiple epochs

e The size of the update step can be
controlled with a multiplicative factor called

“learning rate”
o Learning rate can be adapted over time

low learning rate

high learning rate

good learning rate

37



In reality
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Training and overfitting

e As discussed earlier if the capacity is large
enough the network could “overfit” on the training
dataset

e Have a separate, stat independent,
validation/generalization sample

e Evaluate performance (with “loss” or with other
metrics) on the validation sample

e Training results depends on many choices
o Size of batches (amount of “noise”)
o Learning rate (how much you move along the gradient at
each iteration)
o Gradient Descent algorithm
o Capacity of the network

’ ey
accuracy training accura

validation accuracy:
little overfitting

validation accuracy: strong overfitting

Y

epoch
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Deep networks

40



Deep Feed Forward networks

The simplest extension to the MLP is to just add more hidden layers

Other names of this network architecture

e Deep Feed Forward network Y. her I N B=

layer L,

layer Ly layer Ly

e Deep Dense network, i.e. made (only)
of Dense(ly) connected layers

Input Layer Hidden Layer Output Layer

41



Why going deeper?

Hold on... wasn’t there a theorem saying that MLP is good enough ? Yes but...

e Amount of nodes to represent complex functions can be too high
e Learning the weights on finite samples could be too difficult

Advantages of Deep architectures

e Hierarchical structure can allow easier “abstraction” by the network with early
layers computing low level features and deeper layers representing more
abstract properties

e Number of neurons and connections needed to represent the same function
highly reduced in many realistic cases

42



Deep architectures
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Dropout and regularization methods

e NN training is a numerical process

e Often the number of samples is limited hence the
gradient accuracy is not great

e Several regularization methods exists to avoid being

dominated by stochastic effects
o Caps to the weights (so that individual nodes cannot be worth
more than some amount)
o Dropout techniques: during the training a fraction of nodes
is discarded, randomly, at each iteration
m NN more robust to noise
m Effectively “augmenting” the input dataset

2.0

#

5 (VA A v AL AR
WA R AN G

‘g v-"‘\“" Y % 'W&@@M\/\/\fm

A

With dropout




(Batch) normalization

e Input features have typically different ranges, means, variance

e |tis generally useful to “normalize” the input distribution
o Mean zero
o Variance 1

e Often it could be practical to compute the normalization on individual batches

rather than full sample
o Batch vs full sample ? may depend on your use case

T T T T T background

signal

L R
104 Dimuon
d=0.67

10! 4

Normalized
version

10° 4 /

1014

A typical /

observable, e.g.
the invariant
mass of a pairs

Of Ie tons 110 115 120 125 130 135 140 145 150 155 -15 -10 -05 00 0.5 10 15 2.0
P m(u) (GeV)
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Exploit invariance and locality

e Suppose you want to count windows in a 800x600

picture with houses

o  With an MLP or DFF you have 800x600x3(RGB)=1.4M inputs

o Each node process independently some part of the image

o The initial “Dense” connection should converge to something
with lot of “zero” weights because far away pixel points have
no reason to be considered at the same time in order to
detect local features

o =>the problem cannot be managed this way

e But the problem is translation invariant!
o “Windows” are local features, you can just analyze a patch of
the image (locality)
o Awindow is a window no matter if it is top left or bottom right
of your image (Invariance)
o And actually windows are made of even more local features
(some borders/frame, some uniform area, a squared shape)

46



Can we exploit problem invariance?

e Convolutional neural networks (CNN) attempt to exploit invariance against

spatial translations
o Smaller networks
o Acting on a single patch of the image
o  Stacking multiple such Convolutional Layers one after the other

Input layer (S!) 4 feature maps

1 (Cl) 4 feature maps (S2) 6 feature maps (C2) 6 feature maps

l convolution layer l sub-sampling layer l convolution layer I sub-sampling layer lfully connected MLPI

47



Limitations

e The linear algebra formalism we use can handle nicely images, hence
implement nicely CNN (translation invariance along x and y)

e T[here are more invariances out there!
o Rotation

o Scale
o  Luminosity
O ...younameit...

e So currently the networks have to learn them all
o  We can do tricks to increase the number of samples in our datasets with augmentation
techniques (i.e. apply random transformations of scale, rotation etc..)

o “Built-in” invariance (such as the x-y one) has the advantage of reducing by orders of
magnitude the number of weights to learn

48



Understanding the dimensions of the convolution

e Convolution can be 1D, 2D, 3D

e Kernel size, typically square (MxM) with M even (but can be any shape)

e Padding: how to we handle borders? We can do only “valid” windows (no padding) or process
borders as if there were zeros (or other values) outside

e Each “point” in the 1D, 2D, 3D matrix can have multiple features (e.g. R,G,B)

e Each Convolutional layer have mutiple outputs (filters) for every “patch” it scans on (one optimized
to detect if the patch is uniformly filled, one looking for vertical lines, etc..)

2D-conv (on 6x6x3 image)
3x3 kernel
no padding
5 filters

49




Pooling

Pooling layers are simply finding
maxima or computing average in
patches of some convolution layer
output

Pooling is used to reduce the
space dimensionality after a
convolutional layer

o The Conv “filters” look for features (e.g.

a filter may look for cats eyes)

o The Pooling layer checks if in a given
region some filtered fired ( there was a
cut eye somewhere in this broad
region)

Average Pooling

Max Pooling
29 | 15 | 28 | 184
0O (100 | 70 | 38
12 | 12 7 2
12 | 12 | 45 6

2%2
pool size
\J
100 | 184
12 | 45

31 15 | 28 | 184
0O [100| 70 | 38
12 | 12 7 2
12 | 12 | 45 6
2x2
pool size
4
36 | 80
12 | 15
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Typical CNN architecture

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 ReLU activation
Convolution Convolution 1 f—&
(SI)'(dS) k:;'.'el Max-Pooling (5 I)'(dS) k::".‘e' Max-Pooling (with
valid padding 2x2) valid padding (2x2) ) ‘ \dropout)

\

o, X

INPUT nl channels nl channels n2 channels n2 channels || = // \‘ 9
(28 x28x 1) (24 x 24 x n1) (12 x12 xn1) (8 x8xn2) (4x4xn2)

OUTPUT

n3 units
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Exploiting time invariance

e Some problems are “time invariant”
o E.g. recognize words in a sentence (written or spoken)

e Order matters and some causality is implied in the sequence
e Length of the inputs or the output may not be fixed

(?_D ® ® ® ®

f T T
LaH - [(afaia
Recurrent Networks (RNN) ‘ é} Q‘b

e lterative networks with output passed again as input
o Allow some “memory” of the previous inputs and/or some internal “state” of what the network
understood so far in the sequence

e Most commonly used RNN are LSTM (Long Short Term Memory) and GRU
(Gated Recurrent Unit)
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LSTM and GRU

LSTM and GRU are RNN units with additional features

LSTM

to control their “memory”
“Gates” allow to control (keep or drop) input, output and

internal state 1
The advantage of gated units is that they can forget so
that when processing a sequence they focus on the
relevant part (e.g. when processing a text we may know
that each time we encounter a space the word is over)

GRU
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Different ways of processing time series

e Recurrent Networks can be used to implement networks with variable number

of inputs and outputs
Encoding, Decoding, Sequence2Sequence

@)

one to one

one to many

many to one

many to many

many to many
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Transfer learning

Transfer learning is a technique to reuse a network training for a task to perform
another task with reduced retraining

e E.g. a Conv2D network meant for image
processing have initial layers processing “local
features”... that is not very domain specific (if yc
trained on flowers images it may work on
animals too)

e \ery useful when the available sample of the
proper domain is small

o E.g. annotated medical images are harde
to get than labelled real world pictures

higher slope higher asymptote

-----------------------
LA
.
““
.
o
*

------ with transfer
— Wwithout transfer

performance

higher start

training
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Example of unsupervised architecture: autoencoders

e An example architecture that doesn't
need labelled data is the “autoencoder”

e The network is shaped so that one of the —F ~ ~
inner layer has a much smaller dimension \ TR~ (///7 \ /
than the input — \ N SN /////—\ a AW

e The target is an output matching the = Vv R N \VaE B / N
input I AN S A N S

e Being able to reproduce the input from — / \[1/ L ~x NS
the “coded” information in the inner layer VN =V
means that the network was able to -
extract the important features of the input \ N~ / \ N J/

Encoder Decoder
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Generative Adversarial Networks

How about generating realistic samples
?

e E.g. generate pictures of animals fraining st AVL

. . Real
or ShOWbIZ. like faces | . a / .@ — {Fake

e Or something more useful in _
— @ I %

Discriminator

(HE)physics such as generating |
hadronic shower of a quark/gluon =) Fake image

e The discriminator separates samples of the
training dataset from samples generated by the

GAN works with two independent

networks: generator
e No label is needed in the training set as we
e A generator know where each sample comes from
e A discriminator e Generator loss is controlled by the

discriminator being able to recognize the fake >



GAN progress

2014: “dogs with three heads”

2018: coherent generation of faces

See also https://thispersondoesnotexist.com/
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Graph nets and message passing

e CNN and LSTM exploit cartesian invariance to reduce the problem dimensior
e What if the problem have different symmetries?
e E.g. you can represent on a graph many type of data and have some invarian
you want to perform on each node/edge
e Locality in this case is driven by “how many connections are separating two r
o Inorder to let the information go from one node to another a “message passing” schema is

used (i.e. the evaluation is iterative and at each step the information from nearest node can
flow in )

23

S

=
yaval
<
}
c

o
I
5
}
Sl

59

https://github.com/deepmind/graph nets



https://github.com/deepmind/graph_nets

Some example HEP applications



High level signal to background discrimination
The most common application of ML algorithms (BDT or DNN) is for final S/B

discrimination.
Inputs are handcrafted features (invariant masses, decay hypothesis, angles in different

O
reference frames, etc...)
o Training is supervised using MC simulation as datasets (labels are known from MC truth)
41.31b" (13 TeV)
- 3
% s CMS ¢ Data Bl gozHob
w Supplementary Il Z+bb [ vvaHF
10% F 24 Highp []z+bb Ez+
B Signal WM Background B z+udscg | G
10* B vveLF W single top
“r S48 uncertainty == VH,H-sbb

Frequency

14 25
DNN output layer

DNN output



Jet identification

B-tagging: identify jets of particles originating from b-quarks
o See this afternoon hands-on session
Boosted jets: distinguish (fat) jets originating from a vector boson hadronic
data wrt QCD backgroun il itk AR
o Several techniques tested P U * . i8S
WY = 7  choice of jet _°.-I.
. algorithm matters s

* best: desc-pt kt, C/A - °*

e “gating” improves
performance

——

anti-k:

h ‘ '. h -' : from K.Cra

nmer



Tracking with graph nets

e [rack reconstruction is the most time

expensive algorithm at CMS/ATLAs

o  Currently using seeding + kalman filter

e Several group testing ML based ideas
o Graph nets: the connection of hits to tracks are

like a graph to prune

Seeding

Kalman Filter




Reconstruction of complex detector topologies

Some (planned) detectors have
irregular geometries so that
clustering of measurements
belonging to the same particle is

not obvious

o Use graph networks to represent non
trivial connection map

Particle Flow algorithm can also
be designed to exploit graph nets
to associate information from
different detectors
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DNN Tools



Keras Keras

e Keras is a python library that allow to build, train and evaluate NN with many
modern technologies
e Keras supports multiple backends for actual calculations

e Two different syntax are usable to build the network architecture

o Sequential: simple linear “stack” of layers
o Model (functional API): create more complex topologies

e Multiple type of “Layers” are supported

o Dense: the classic fully connected layer of a FF network A

o  Convolutional layers e
o Recurrent layers e B
I I i : [aoms] e [imezoe] \
e Multiple type of activation functions ‘H*

e \arious optimizers and gradient descent techniques
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Other common tools

Common alternative to keras

e Pytorch
e Sonnet

e Direct usage of TensorFlow (or other backends such as Theano, Torch, ...)
o Need to write yourself some of the basics of NN training
o Especially useful to develop new ideas (e.g. a new descent technique, a new type of basic
unit/layer)

67



Keras Sequential example

# first neural network with keras tutorial

from numpy import loadtxt

from keras.models import Sequential

from keras.layers import Dense

# load the dataset

dataset = loadtxt('pima-indians-diabetes.csv', delimiter=',")
# split into input (X) and output (y) variables

X = dataset[:,0:8]

y = dataset[:,8]

10 # define the keras model

11 model = Sequential()

12 model.add(Dense(12, input_dim=8, activation='relu'))
13 model.add(Dense(8, activation="relu'))

14 model.add(Dense(1l, activation="sigmoid'))

15 # compile the keras model

16 model.compile(loss="binary_crossentropy', optimizer='adam', metrics=["'accuracy'])
17 # fit the keras model on the dataset

18 model.fit(X, y, epochs=150, batch_size=10)

19 # evaluate the keras model

20 _, accuracy = model.evaluate(X, y)

21 print('Accuracy: %.2f' % (accuracy*100))

Loo~NOTUVLTHA WN -




Keras “Model” Functional API

A NN can be seen as the composition of multiple functions (one per layer), e.g.

A simple stack of layers is: y=f(f,(f(f,(F,(x)))))
A more complex structure could be something like

y=f,(1,(f,(x)).f; (%) )

The functional API allow to express the idea that each
layer is evaluate on the output of a previous layer, i.e.

x = Input()

layer1=FirstLayerType(parameters) (x)
layer2=SecondLayerType(parameters) (layer1)
layer3=ThirdLayerType(parameters) (x)
layerd=FourthLayerType(parameters)([layer2,layer3])

Input “x”

Iayeﬂ/\

layer3

layer2

S

/

layer4d




An MLP in keras

from keras.models import Model

from keras.layers import Input, Dense
x = Input (shape=(32,))

hid = Dense (32) (x)

out = Dense (1) (hid)

model = Model (inputs=x, outputs=out)

model .summary ()
from keras.utils import plot model

plot model (model, to file='model.png')

Model: "model_1"

Layer (type)__ 0ut55£ Shape Param #
input_1 (InputLayer) (None, 32) 0

dense_1 (Dense) ~ (None, 32) 1056
dense_2 (Dense) (None, 1) 33

Total params: 1,089
Trainable params: 1,089
Non-trainable params: 0

input_1: InputLayer

dense_1: Dense

\

dense_2: Dense
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From the ~1995 to ~2010

from keras.models import Model
from keras.layers import Input, Dense

x = Input (shape=(32,))

hid = Dense (32) (x)

out = Dense (1) (hid)

model = Model (inputs=x, outputs=out)

from keras.models import Model
from keras.layers import Input,

= Input (shape=(32,))
32) (
32) (
32) (
32) (

(

= Dense

= Dense

® Q Q O X
Il

(
(
Dense (
(
= Dense (32)

a
b
c
d
model = Model (1

Dense

nputs=x, outputs=e)
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Training a model with Keras

from keras.layers import Input, Dense

from keras.models import Model

inputs = Input (shape=(784,))

x = Dense (64, activation='relu') (inputs)
x = Dense (64, activation='relu') (x)
predictions = Dense (10, activation='softmax') (x)

model = Model (inputs=inputs, outputs=predictions)

model.compile (optimizer="rmsprop',
loss='"categorical crossentropy',
metrics=["'accuracy'])

model.fit (data, labels)

Those are numpy arrays with your data
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Keras layers
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Keras basic layers

e Basic layers

o Inputs

o Dense

o Activation
o Dropout

e Convolutional layers

o Conv1D/2D/3D
ConvTranspose or “Deconvolution”
UpSampling and ZeroPadding
MaxPooling, AveragePooling
Flatten

e More stuff
o Recursive layers
o ...check the keras docs...

O O O O
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Simple Exercise

e Partition a 2D region with a simple function
o E.g.x>yorx*2>y
e Generate few samples
e Build a MLP or a DNN with similar number of parameters that approximate

the given function

https://colab.research.google.com/drive/1X9uppZENIN9PbX4Tr4e959JSyg4ePv3

S
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