Topics in Geometric	Analysis 2025
Palazzo del Castelle	tto, Pisa
Intro ducing	Various Notions of
Distances	between Space-Times
	Christina Sormani CUNYGC and Lehman College (with Anna Sakovich) Secold through Write in black

When we model	
the Big Bang using	t
an FLRW Spacetime,	0
or the neighborhood of	
a Black Hole using	
Schwarzschild Spacetime	
or an isolated empty region	
with Minkowski Space	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

We have ignored all	
the black holes, dust, and gravity wells	
within the universe	
And ignored the stars	
near the black hole	
And ignored the possible	
black holes and planets of	
small mass in the "empty" region	

reality:
feomorphic to each other.
nce between Space-Times

Choquet - Bruhat and Geroch : Solving Einst	ein's Equations
Geven initeal data (M, h, K)	ture Development
-> Zurique maximal	space-cime (1012)
future development (N ⁺ ,g) Insteal D	ota (M, L, K)
Example: Reemannean Schwarzschild (H,g,O) — future Schwarzschild spacetime (Nsch	, 3)
Stability Theorems exist using methods -	from Analysis:
Green initial data (M, hj, Kj) -> (M, ho, Ko) 2	$\square \rightarrow \square$
then future developments $(N^+, g_j) \rightarrow (N, g_o)$	$\exists \rightarrow \Box$
Challenge: Prove Stability Theorem	s cohen
the manifolds are not diffeomorphic.	

Intrinsic Distances between Riemannian
Manifolds which are not diffeomorphic:
· Gromov - Hausdorff (GH) distance
· Metric Measure (mm) distance
· Intrinsic Flat (7) distance
All convert (M,g) into a metric space (M, dg) using the Riemannian metric tensor, g.
All are definite: d (M, M2) = 0 => M, isometric to M2
Riemannian Isometry (=> Distance Preserving Bijection
Challenge Convert Spacetimes into Metric Spaces.

Riemannian Manifolds (M,,g,) and (M,,g)
viewed as metric spaces (M,, dg,) and (M2, dg2)
$d_{g}(p,q) = inf \xi L_{g}(c) (lo) = p \text{ and } c(l) = g \xi \int_{P} c$ $g \text{ is positive definite so } L_{g}(c) > 0$
F:M,-M2 is Distance Preserving if dg(p,q)= dg(F(p), F(q)) Up,qEM, Dist. Pres. bijections are Riemannian Isometries: Eg=g2
Space-times have Lorentzian metric tensors:
$g(v,v) \leq 0$ when v is "causal", g^{-+++} , \sum_{past}
J ₊ (p) = causal future of p = Eq1 = future directed causal curve C { from ((0)=p to c(1)=q }
Lorentz Distance between points such that ge3+(p) p
dg (p,q) = sup Elg(c) c(o)=p and c(i)=q and C causal S
Lorentzian Isometries Figisgi preserve Structure 5+ and Distance og

How to Convert a Space-time into a metric space?
We will use the Null Distance Jo of Sormani-Vega
Cosmological time, T, of Andersson - Galloway - Howard
$T_g(p) = \sup \{ d_g(p,q) \mid q \in J(p) \} \in [0,\infty]$
Regular if To(p) is finite and time from
lim 7, (cls))=0 for past inextensible curves. 5+0 J for past inextensible curves.
Future Development Space-time (N,g) Hoem 3 %: (0,7(p)] > M s.t.
has regular To Top(t)=t and & (T(p))=P
(N, J7) is a metric space when T is regular
$\hat{d}_{\tau}(p,q) = \inf \sum_{i=1}^{n} \tau(p_i) - \tau(p_{i-1}) $
i=1 where inf is over $p=p_0, q=p_N$, $p:eJ^{+}(p_{i+1}) \wedge J^{+}(p_{i+1}) P P_2 P_4$

Once we have metric spaces (Mj, dj), we have
intrinsic distances like d _{GH} , d _{mm} , and d _T :
$d_{GH}(M_1, M_2) = \inf d_H^2(\varphi(M_1), \varphi(M_2)) \varphi$
where the inf is over compact 2 Mi ()
and distance preserving Pi; Mi > Z M2 P2 Z
Recall the Hausdorff Distance is
$d_{11}^{2}(u_{1}, u_{2}) = \inf \{r \mid u_{1} \in T_{r}(u_{2}) \mid u_{2} \in T_{r}(u_{1}) \} \{ \{T \} \} $
This depends on the extrinsic 2 but dGH is intrinsic!
These intrinsic distances are definite:
$d_{GH}(M_1, M_2) = 0 \iff dist. pres. bijection F: M_1 \rightarrow M_2$
When (Hj,dgj) are Riemannian this holds = Fx g1 = g2
Challenge: dist pres bijections for Space-Times do not give Fxg, = g2

Examples of Space-times exist with distance preserving bijections
F: (N, , Jg,) -> (Nz, Jgz) that are not Lorentzian Isometries: Fx g, 7 gz
Lorentzian Isometries preserve the Causal Structure: $F(p) \in J_{+}(F(q)) \iff p \in J_{+}(q)$
Recall the Null Distance $\hat{d}_g(p,q) = \inf \sum_{i=1}^{N} \mathcal{T}(p_i) - \mathcal{T}(p_{i-1}) $
where infis over $p = p_0, q = p_N, p_i \in J^{(p_i)} \cap J^{(p_{i+1})}$ Defn: The null distance encodes causality: $p \in J_{+}(q) \iff \hat{d}_{\gamma}(p, q) = \mathcal{T}(p) - \mathcal{T}(q)$
[Sakouich - Sor]: 7; is regular and proper on N; => dr; causality.
[Sek-S]: If F: N, → Nz preserves time: Tz(F(p)) = T(p) Up ∈ N,
and preserves null distance: $\hat{d}_{z}(F(p_{1}), F(p_{2})) = \hat{d}_{1}(p_{1}, p_{2}) \forall p_{1}, p_{2} \in \mathbb{N},$
also more general theorems of Burtscher-Garcia Hoveling and Galloway.

New paper with Sakovich: We define various notions of
definite intrinsic distances between
"Causally Null Compactifiable Space-Times" (Nj,gj), which
have associated compact metric space times (Nj, Ĵg;, Tj)
defined using bounded regular cosmological times, 7;, whose
null distances encode causality: $p \in J_{+}(2) \Leftrightarrow d_{\mathcal{T}}(p, g) = \mathcal{T}(p) - \mathcal{T}(g)$
$\begin{aligned} \text{Intrinsic Vistance:} & = \begin{pmatrix} (N_1, g_1), (N_2, g_2) \end{pmatrix} = d \\ & = d \text{ist} \begin{pmatrix} (N_1, d_{g_1}, T_{g_1}), (N_{2_1}, d_{g_{2_1}}, T_{g_{2_1}}) \\ & = d \text{ist} \end{pmatrix} = \mathcal{O} \text{if} $
J F: N, → N which preserves time: T2(F(p)) = T1(p) Up ∈ N1
and proserves null distance: $d_g(F(p_i), F(p_i)) = d_g(p_i, p_i) \forall p_i, p_i \in N_i$ $\iff F$ is a foreatries Teametry F.g. = Q_2 (by encoding)
causa lity J)

Timeless Intrinsic distances: (Sormani-Vega, Allen-Budscher, Kunzinger, Saemann) $d_{GH}^{LS}((N_1, g_1), (N_2, g_2)) = d_{GH}((N_1, \hat{d}_{g_1}), (N_2, \hat{d}_{g_2})) \text{ are not definite}.$ We must keep track of time and encode causality. Big Bang Space - Time (announced with Vega, Sakowtch-Sor) is definite! $\int_{S-GH}^{BB} \left(\overrightarrow{P}, \overrightarrow{P} \right) = \int_{GH}^{Pt} \left((\overrightarrow{N}_{1}, \overrightarrow{J}_{g_{1}}, \overrightarrow{P}_{1}^{BB}), (\overrightarrow{N}_{2}, \overrightarrow{J}_{g_{2}}, \overrightarrow{P}_{2}^{BB}) \right) \qquad \begin{array}{c} \text{shen} \\ & \text{shen} \\ & \text{Tis} \\ & \text{proper} \end{array}$ $\int_{S-GH}^{BB} \left(\overrightarrow{P}, \overrightarrow{P} \right) = \int_{GH}^{Pt} \left((\overrightarrow{N}_{1}, \widehat{d}_{g_{1}}, \overrightarrow{P}_{1}^{BB}), (\overrightarrow{N}_{2}, \widehat{d}_{g_{2}}, \overrightarrow{P}_{2}^{BB}) \right)$ where P_{j}^{BB} is the Cointed GH distance [Grown Ling bang point - South that $T_{g_{j}}(q) = \widehat{d}_{g_{j}}(q, \overrightarrow{P}_{j}^{BB})$ Future Developed Space-Time is definite when Tis proper $\mathcal{J}_{S-GH}\left(\mathcal{M},\mathcal{M},\mathcal{J}_{g_1}\right) = \mathcal{J}_{GH}^{FU}\left((\overline{N}_1,\mathcal{M}_1,\hat{\mathcal{J}}_{g_1}),(\overline{N}_2,\mathcal{M}_2,\hat{\mathcal{J}}_{g_2})\right)$ where Mg C N; is the inteal data set of such that Tg; (g) = inf & dg; (g, p) [p M;]

Big Bang and Future Developed Spacetimes with proper, 7,
are Causally Null Compactifiable Space-Times
They have cosmic strops T'(Tmin, Tmax) which convert
into compact metric spaces (N, dy) that
encode causality $p \in J_{+}(q) \Leftrightarrow \hat{d}_{\gamma}(p,q) = \mathcal{T}(p) - \mathcal{T}(q)$
$J_{S-GH}^{BB} Definite Proof: J_{S-GH}^{BB} (\overline{\nabla}, \overline{\Psi}) = J_{GH}^{Pt} ((\overline{N}_1, \widehat{J}_{g_1}, p_1^{BB}), (\overline{N}_2, \widehat{J}_{g_2}, p_2^{BB})) = 0 iff$
$\Im F: \overline{N}, \rightarrow \overline{N}_2$ that preserves distances and $F(p_i^{BB}) = P_i^{BB}$
so Falso preserves time Tg; (2) = dg; (2, p;)= Encodes = Fx gi gz
$d_{S-GH}^{FP} Proof: d_{S-GH}^{FD} \left(\bigoplus_{S-GH} \left(\bigoplus_{S-GH} \left((N_1, M_1, \hat{J}_{g_1}), (N_2, M_2, \hat{J}_{g_2}) \right) = 0 \text{ if } f$
$\Im F: \overline{N}, \rightarrow \overline{N}_2$ that preserves distances and $F(M,) = M_2$
so Falso prestime: $T_{g_j}(z) = \inf \{\hat{d}_{g_j}(z,p) \mid p \in M_j\} \Rightarrow Encodes$ cansality $\Rightarrow F_* g_i \circ g_z$

Challenge : What about asymptotically flat
and other Space-Times whose T is not proper.
Exhaust these space-times (N,g) with
Sub-Space-Times, (Rig), such that N= URi
such that each (Risy) are Causally Null Compactifiable
Exhausting an asymptotically flat spacetime by Si
null compactifiable space times has known methods To get a Cansully Null Compactifiable sub-space time;
take $\Omega_i = J^-(\Omega_i)$ and apply a Galloway Then
Challenge: Define a definite intrinsic distance between
any pair of Cansully Null Compactificable Space-Times

Defn [Sakovich-5] The intrinsic time d-Hausdorff distance, d between Cansully Null Compactifiable Space-Times. (N: 9:). is
$d_{S-Z-H}((N_{1},g_{1}),(N_{2},g_{2})) = d_{Z-H}((\bar{N}_{1},\hat{d}_{g_{1}},\tau_{g_{1}}),(\bar{N}_{2},\hat{d}_{g_{2}},\tau_{g_{2}})) \text{where}$
the timed Hansdorff distance between compact timed metric spaces
$d_{T-H}((X_1, d_1, T_1), (X_2, d_2, T_2)) = \inf d_H^{\infty}(X_{T_1, X_1}(X_1), K_{T_2, X_2}(X_2))$ where the infimum is over all timed Kuratowski maps.
$\mathcal{K}_{\mathcal{T},X} : X \to \mathcal{I}^{\infty} s.t \mathcal{K}_{\mathcal{T},X}(p) = (\mathcal{T}(p), d(p, p_1), d(p, p_2), d(p, p_2))$ where $g_{p_1}, p_{g_1}, g_{q_2}$ are dense in (X, d)
Thm [Sakouich-S]: The intrinsic timed-Hausdorff distance between Cansully Null Compactifiable Space-Times is definite
Future Work: Relate ds-T-H, ds-BB-H, and ds-FD-H (see conjectures)

Proof d_{7-H} is definite: $d_{7-H}((X_1, d_1, 7,), (X_2, d_2, 7_2)) = 0$
$\Leftrightarrow \forall \mathcal{E} > \mathcal{O} \exists \mathcal{K}_{\mathcal{T}_{j} \times j}^{\mathcal{E}} : X_{j} \rightarrow \mathcal{L}^{\infty} s.t. \exists_{H}^{\mathcal{L}^{\infty}} (\mathcal{K}_{\mathcal{T}_{1}, \times}^{\mathcal{E}} (X_{1}), \mathcal{K}_{\mathcal{T}_{2}, \times}^{\mathcal{E}} (X_{2})) < \mathcal{E}$
$\iff \forall \mathcal{E} > \mathcal{O} \exists \mathcal{X}_{\mathcal{T}_{j}}^{\mathcal{E}}, \exists F_{1,2}^{\mathcal{E}} : \mathcal{X}_{j} \rightarrow \mathcal{X}_{2} \text{ and } \exists F_{2,1}^{\mathcal{E}} : \mathcal{X}_{2} \rightarrow \mathcal{X}_{1} \text{ s.t.}$
den (KE (FIL (p)), KE (p)) < E Up EX, and visa-versa.
$ \mathcal{T}_{2}(F_{1,2}^{\varepsilon}(p)) - \mathcal{T}_{1}(p) < \varepsilon$ and $d(\cdot, p_{i})$ terms of $K_{\mathcal{T}_{i}}^{\varepsilon}$ too
Fiz is E-almost time preserving and E-almost distance preserving
Same for F2,1 and these are also 28-almost inverses
Taking $E \rightarrow 0$, a subseq $\rightarrow F: X_1 \rightarrow X_2$ time + dist pres bijection \square
Proof ds. 7. H is definite: Given (Njig;) Causally Null Compactifiable
$d_{S-\mathcal{T}-H}((N_1,g_1),(N_2,g_2))=0 \iff d_{\mathcal{T}-H}((N_1,\hat{d}_{g_1},\mathcal{T}_{g_1}),(N_2,\hat{d}_{g_2},\mathcal{T}_{g_2}))=0$
$\Box \exists F: N_1 \to N_2 \text{ s.t } F_* g_1 = g_2 \iff \exists F: \overline{N_1} \to \overline{N_2} \text{ time } * \text{ dist pres bijection}$

Introducing Various Notions of Distances between
Space - Times by Sakousch-Sormani (arxiv)
Here we introduce the causally null compactifiable space-times, prove a number of theorems about how to find such space-times;
and prove definitess for the intrinsic distances described above
We also describe more (possibly definite) intrinsic distances:
· de dFD dTK (to appear in future work with Sakovich)
based on the intrensic flat destance of Sormani- Wenger using Ambrosio-Kirchheim
The challenge is setting up an integral current structure
We are working with Meco on setting up bilipschite charts
· JBB JFD JT-K (to appear in future work of Mondino-Perales)
using metric measure spaces and perhaps Wasserstein distances
We survey other notions of convergence of space-times
(that do not involve the null distance) as well.
The paper closes with conjectures and proposed applications.

 		7		ん	C			k			· · · · · · · · · · · · · · · · · · ·		1	0	U				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				
 	· · · · · · · · · · · · · · · · · · ·			 . .<	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		50	hri.	sti na	'nq	©	501 g n	na	م د ا		0	· · · · ·	 . .<				· · · · · · · · · · · · · · · · · · ·
 		A	n .		r S	Ł	0	2'	× ~ ~	s t	10	n n n n n n n n n n n n n n	· · · · · · · · · · · · · · · · · · ·	5 5 7 7 7	ť	-he		5[· · · · · · · · · · · · · · · · · · ·	5	be	. (0			· · ·
 . .<	· · · ·	· · · ·		· · · · · · · · · · · · · · · · · · ·		· · · ·	· · ·	· · ·	· · · ·	· · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	· · · · · · · · · · · · · · · · · · ·	· · ·			· · ·

Questions after the talk:
Ariadna Leon - Quiros: is there a Hopf-Rinow Thm
in this setting? Anna Sakouich: See work of
Burtscher and Garcia - Hevelling.
Gerhardt Huisken: can one apply these notions
to study the Newtonian Limit, taking the
speed of light to infinity as in Cederbaum's Work!
Carla Cederbaum: Would be interested in working
$\mathcal{O}_{\mathcal{O}}}}}}}}}}$
Unick Keulew of GN us mm us F on the next two slides:

Gromon - Hausdorff (Rvemannuan) GH T mm Droked to to remove sets Lee-Sormani Intrinsic Flat allows thin gravity wells to strapped $APM_{ASS}(M_{i}) \rightarrow 0 \implies M_{i} \vee \dots \implies E^{s}$ Conj: Converges in Frense, GH conv fails Dong-Song: GH removing sets works

Induinsis Induinsis Flast - Denger Sorman Kindher Ambrosio Mz Mz July Pz Pz July Pz / integral ts currents $d_{T}(M, M_{z}) = ln f \left[M(A) + M(B) \right] A + \partial B = \mathcal{O}(M) - \mathcal{O}(M)$ uses Geometric Measure Theory $d_{mm}(M_1,M_2) = d_{W}(P_{1*},M_1,P_{2*},M_2)$ 920 M 1 Wasserstein distance Optimal Transport - M. RCD 05

	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	
hank	
	- Christina Jormani
	sormanic @ gmail Com
	· · · · · · · · · · · · · · · · · · ·
	an a
G d Littonel	Slides below
	Le at intervest a
a contract of the contract of the may contract of may contract of the second second second second second second	
	· · · · · · · · · · · · · · · · · · ·
	• • • • • • • • • • • • • • • • • • • •

Cosmological Time Function, 7

Andersson-Galloway-Howard defined a time function which is independent of a particular gauge on a given spacetime (see also Wald-Yip):

Defn: $\mathcal{T}_{GH}(p)$ is the supremum of the Lorentz distance from p over all points q in its past. That is,

$$\mathcal{C}_{AGH}(\boldsymbol{\rho}) = \sup_{\boldsymbol{\varsigma} < \boldsymbol{\rho}} \int_{\boldsymbol{\varsigma}} \sqrt{-g(\boldsymbol{\varsigma}'(\boldsymbol{s}), \boldsymbol{\varsigma}'(\boldsymbol{s}))} \, d\boldsymbol{s}$$

where \mathcal{L} is a **future causal curve** from q to ρ . It is said to be "regular" if it is finite on all of M and converges to 0 on all past inextensible curves.

The Null Distance between events in a Spacetime: $\hat{d}_{\tau}(p, q)$ Joint with Vega: Given a time function, τ , on a spacetime, (M, g),

$$\hat{d}_{\tau}(p,q) = \inf_{\beta} \hat{L}_{\tau}(\beta) = \inf_{\beta} \sum_{i=1}^{k} |\tau(\beta(t_i)) - \tau(\beta(t_{i+1}))|$$

where the inf is over all piecewise causal curves β from p to q, which are causal from $x_i = \beta(t_i)$ to $x_{i+1} = \beta(t_{i+1})$:

The Null Distance in Minkowski Spacetime

Joint with Vega: Given a time function, τ , on a spacetime, (M, g),

$$\hat{d}_{ au}(p,q) = \inf_eta \hat{L}_{ au}(eta) = \inf_eta \sum_{i=1}^k | au(eta(t_i)) - au(eta(t_{i+1}))|$$

where the inf is over all piecewise causal curves β from p to q.

Example: Minkowski Spacetime

The metric tensor is $g = -dt^2 + dx_1^2 + dx_2^2$ So if we take $\tau = t$ then the level sets of $\hat{d}_{\tau}(p, \cdot)$ are cylinders aligned perfectly with the light cones.

in a variety

Encodes Causality: $q > p \iff \hat{d}_{\tau}(p,q) = \tau(q) - \tau(p)$

(Allen-Burtscher) (Sakouich-Sormani] (Burtscher · Gurcia-Hevelling] and [Galloway] Prove

On Minkowski w/ T=t:
p(t) \$ 2 2
$\begin{array}{c} B(t_{i}) \\ N_{\beta}(t_{i}) \\ N_{\beta}(t_{i}) \end{array} \xrightarrow{}$
- This captures the
infinitesimal behavior
of a smooth 7
with $g(\sigma\tau,\sigma\tau)=-1$
DIFFICULTY
But our only canonical
7 is Cosmological time
and it is not necessarily
smooth everywhere.

Joint with Sakou	rchi
A Regular Cosmol	ogical Time Locally Encodes Causality
If (N,g) is a Lo	rentzian Manifold and T= TAGH is regular
then UpeN Inb	$d u = t \forall q \in u q \neq p \Leftrightarrow \hat{d}_{\tau}(p,q) = \tau(q) - \tau(p)$
The proof uses	$(t_1, x_1, \dots, x_n) \in U_n \subset (-\varepsilon, \varepsilon) \times \mathbb{R}^m \longrightarrow e_{X_1} (\sum_{j=1}^n x_j \hat{e}_j + i \times i \eta^{j} (t_1))$
Temple's null	$\bigcup_{n \in \mathbb{N}} \sum_{i=1}^{n} x_i \hat{e}_i + x \eta'(t) \in T_{\eta(t)} M $
coords about a	$(t_{1}, 0, \dots, 0) (t_{1}, x_{1}, \dots, x_{m}) = q$
timelike curve M(t)	$n(t) = (n(t)) \sum_{i=1}^{n} x_i \hat{e}_i $ $n(t) = n(t)$
with n(o)=p.	(0,00)
Temple's Eikonal	R^{m+1} TM^{m+1} M^{m+1}
function: is $\omega = t$	$(\epsilon, x_1, \dots, x_n) \longleftarrow x_i = \vec{\nabla} \cdot \hat{e}_i \in T_{n(\ell)} M \longleftarrow q^{=exp}_{n(\ell)} (\vec{\nabla})$
of these coords	

Examples of Causally Null Compactoficable	Specetives;
Cosmic Strips $N_{st} = 2^{-1}(s,t)$	
in FLRW big bang spacetimes with	Ns+
proper cosmological time functions	[satowich-S]
or in future developments of	Nst
compact initial data sets	[Sakovich-5]
Don't even need N to have a bounded cosmo	logical
time as long as it has a time function	n which
is the shift of a cosmotime on a cosmic s	strip. [sake-s]

If N is unbounded in space you can try to exhaust it. N= ()(<i>vi</i> with
causally null compactifiable subspace	times, W _i .
N= Future Minkowski Space	
Pasts of Points J'(p) n 7'(s,t) E R' are causally null compactifiable	[Sakovich-5]
N= Future Exterior Schwarzschild	· · · · · · · · · · · · · · ·
can be exhausted by these sets:	[Sakovich - 5]

Joint with Sakovich (In dimensions n = 3)
Given two causally null compactifiable spacetimes, (NC, gC, TC),
and a bijection $F: N_1 \rightarrow N_2$ that is
* distance preserving dy (F(p), F(g)) = dy (p,g) Up,g e N,
* time preserving $T_1(p) = T_2(F(p))$ $\forall p \in N_1$
then F is a Lorentzian Isometry F*g2=g1
P (~ () ~) () () > 9 and * and *
1007: by ((p)- (j(2) = de (pier
F preserves the Causal Structure, p>q = F(p) > F(q)
F preserves the Causal Structure, p>q (=) F(p) > F(q) By work of Hawking et al and Levicher which requires n=3:
Froot: by $G(p) - G(q) = dq(p)q(q) - F(q)$ F preserves the Causal Structure, $p > q \iff F(p) > F(q)$ By work of Hawking et al and Levichev which requires $n \ge 3$: F is C' and $F^*q_2 = f^2q_1$ where f^2 is a conformal factor.

											•											• •			• •		• •		• •		•		• •	
	•		• •			•					• •		•						•						• •				• •		• •			
			• •			•					•								· .		•	• •					• •		•		• •			
	•		• •						• •		• •		•			•			•			• •			• •		• •		• •		• •		•	
•	• •		• •			•			• •		• •		• •			•			• •			• •			• •		• •		• •		•		• •	
	•					•			• •		• •					•			• •			• •			• •		• •		• •		• •			
	•					•			• •		• •					•			• •			• •			• •		• •		• •		• •			
•	• •		• •			•			• •		• •		• •			• •			• •			• •		•	• •		• •		• •		•		• •	
•	• •		• •			•			• •		• •		• •						• •			• •			• •		• •		• •		•		• •	
•	• •		1		7		. ·		• •		1		• •			(·			• •			• •	•	/	• •		• •		• •		•		• •	
•	• •		ζ.		(* -	· /	7 .		• •		· /		• •				7		• •			• •	•	•	• •		• •		• •		• •		• •	
•	• •		• •			· L	3	2	i i	Ó	1	-	• •					· .	O) (Ľ			• •		• •		• •		• •		• •	
•	• •		• •	-		•					• .	V	• •			Ċ	J						-		• •		• •		• •		• •		• •	
•	• •		• •			•			• •		• •		• •			• •			• •			• •			• •		• •		• •		• •		• •	
•	• •		• •			•			• •		• •		• •			• •			• •			• •			• •		• •		• •		• •		• •	
	•		• •						• •		• •		• •			•			• •			•			• •				• •		• •		•	
	• •		• •			•			• •		• •		• •						• •			\dot{c}		•			• •		• •	•	• •		• •	
	•		• •						• •		• •		-	- '	61	hr	·ì s	+1	N	a :	1	20	r	\mathbf{N}	a	1.4			• •		• •		•	
	•		• •						• •		• •		• •			•			• •		-	•		•	Γ.		· · ·		• •		• •		•	
	•		• •			•					• •		•		SC	5 r.	m	a	n ĉ	c (9	9	m	ai	•	C	. 0.		• •		• •			
	•		• •			•					• •		•	÷.					•			Ú.			• •				• •		• •			
	•		• •			•					• •		•						•						• •				• •		• •			
	•		• •			•					• •		•						•						• •				• •		• •			
	•		• •			•					• •		•						•						• •				• •		• •			
•	• •		• •						• •		• •		• •			•			• •			• •			• •		• •		• •	•			•	
•	• •		• •						• •		• •		• •			•			• •			• •			• •		• •		• •	•			•	
•	• •		• •						• •		• •		• •			•			• •			• •			• •		• •		• •	•			•	
•	• •		• •						• •		• •		• •			•			• •			• •			• •		• •		• •	•			•	
•	• •		• •						• •		• •		• •			•			• •			• •			• •		• •		• •	•			•	
•	• •		• •						• •		• •		• •			•			• •			• •			• •		• •		• •	•			•	
	•		• •			•			• •		• •					•			•		•	• •					•		• •		•			
	•		• •			•			• •		• •		• •			• •			• •			•					• •		• •		•		• •	
	•		• •			•			• •		•		• •			•			• •			•					• •		• •		•		• •	
	•		• •			•			• •		• •		• •			• •			• •			•					• •		• •		•		• •	