Nonlinear potential theory through
the looking-glass
And the Riemannian Penrose inequality we found there

tat

q) with M. Fogagnolo, L. Mazzieri, A. Pluda and M. Pozzetta

Topics in Geometric Analysis
Pisa, 251" June 2025

2
O
=
5

Luca Benatti
lbenattimath@gmail.com

I:WF Osterreichischer
Wissenschaftsfonds


mailto:lbenatti.math@gmail.com

Introduction

Riemannian Penrose inequality

Monotonicity formulas

Asymptotic analysis




Following the White Rabbit down the (black) hole

Introduction



@ Conjecture - Penrose inequality

THE PENROSE INEQUALITY

Given a time slice of an isolated gravitational system with an energy condition

where m is the total mass and X is an outermost apparent horizon.

Evolution in time
[Choquet-Bruhat, Geroch]
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Final state - Penrose inequality

Weak cosmic censorship

Incompleteness theorem
[Penrose]



INITIAL DATA SETS

(¢}

Definition - Asymptotically flat manifold

An initial data set (M, g, K) is a triple, where (M, g) is a Riemannian 3-manifold and K is a
symmetric (0,2)-tensor, satisfying the Einstein constraint equations

K=0 1

2
Ji=div(K —trKg). "=%0. (momentum density)

M;:%(R+trK2—|K|2), R, (energy density)

. o K=0
The dominant energy condition is . > | J|<——=R>0.
(M,g,K) is time-symmetric < K =0.
. . K=0 . .
A surface X is an outermost apparent horizon <= X is a outermost minimal surface.

K=
(M, g,K) is isolated <— (1M g) is asymptotically flat

(M, g) is €F-asymptotically flat provided M\ K ~R3\Bg and [g— 68| = Oy (|z|™7).
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Spatial Schwarzschild manifold

Given m >0, itis

4
3 s
(R \Bopm, <1+ 2‘x|> 6) :

© Dominant energy condition: R=0.
o Apparent horizon: &M is outermost minimal.
o Isolated: (¢p°-)asymptotically flat.

oM

The quantity m represents the mass of the black hole and satisfies the equality in the Penrose
inequality

|oM|

=V Ter

SCHWARZSCHILD BLACK HOLE



THE MASS

The natural choice would be to integrate the mass density

1 0 1
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but we have no superposition principle, and the mass of Schwarzschild is 0

Linearizing around ¢

1 r
@ m(/MVR‘S(ng)dfoETm 1677/ 01 (091 ;—0kg,;)dx

Definition - ADM mass [Arnowitt, Deser, Misner ‘61 - Phys. Rev.]

1 zk
= li 0.0y —0.q.;)—d
Mapy = lim 167T/69BR( 19k — 0k 9;;) 2747

Theorem - [Bartnik ‘86 - CPAM], [Chrusciel ‘86 - SPRINGER]

mp IS @ geometric invariant if (M, g) is €2-asymptotically flat, 7> 1/2.
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LITERATURE

In the general case..

o [Malec, Murchadha ‘94 - Phys. Rev. D] under spherical symmetries.

O O O

[Malec, Mars, Simon ‘02 - Phys. Rev. Lett.] under additional constraints.
[Mars, Soria 16 - Class. Quantum Gravity] Penrose inequality along null hypersurfaces.
[Allen, Bryden, Kazaras, Khuri 25] suboptimal Penrose inequality.

.. and in the time-symmetric case.

o [Bray ‘01 - JDG] for disconnected horizons (up to dimension 8 [Bray, Lee ‘09 - DUKE]).

o [Huisken, llmanen ‘01 - JDG] for connected horizons using inverse mean curvature flow (IMCF).

o [Agostiniani, Mantegazza, Mazzieri, Oronzio 22] for connected horizons using nonlinear potential
theory (NPT) (cf. [Xia, Yin, Zhou 24 - Adv. Math.] for a sharp version on spatial Schwarzschild).

&=l

(M, g) is an asymptotically flat Riemannian manifold with R > 0 and compact outermost min-
imal connected boundary & M.
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Foreshadowing the fight against the Jabberwocky

Riemannian Penrose inequality



RIEMANNIAN PENROSE INEQUALITY o }

Theorem - [Huisken, Imanen ‘01 - JDG]
Let (M,g) be a ¢{-asymptotically flat 3-Riemannian manifold with R >0 and Ric > C/|z|* and a

minimal connected outermost boundary M. Then,

[oM]
Tom = AP

Moreover, the equality holds if and only if (M, g) is isometric to the Schwarzschild of mass m xpyy.

Does the Riemannian Penrose inequality holds even for ¢’ -asymptotically flat 3-Riemannian
(N manifold, for 7> 1/2?


https://mathscinet.ams.org/mathscinet-getitem?mr=1916951

‘ 7))
o Consider the Hawking mass
.7,/E 1 2
mg(X):= 16m 1-— Tom H do

e OMis minimal = m g (OM)=/|0M|/167
o Evolve 9 M using the IMCF, namely a family of diffeomorphisms F, () =%, C M such that

0 v
—F,=—.
ot' ' H
e By the asymptotic behavior of g = X, asymptotically approaches large coordinate spheres as

t — +o0 and
Im mg(3;,)<m .
a 1+ a(3¢) Smapm

e M is 3-dimensional and R >0 = m (X, ) is monotone non decreasing. Indeed,

d =, . v H]

— >0.

ar ™ (Ee) = 167r\/ 167r< / R da+/2t|h| R de) =0
'3

>0 Gauss-Bonnet

IDEA OF THE PROOF



LEVEL SET FLOW

Replace F,(X) with the level sets &, = o{w <t}
@ of a function w: M — R such that 9M = {w =0}
+ the flow is defined for every ¢;

- less control on regularity/topology;

Inverse mean curvature flow (IMCF) Nonlinear potential theory (p-IMCF, p € (1,2])
[Huisken, llmanen 01] [Agostiniani, Mantegazza, Mazzieri, Oronzio 22 |
Ajw; = [Vw,| on M\OM Apw, = [Vw,|P on M\OM
wy; =0 on oM w, = 0 on oM
wy — +00 ond(z,0M)— +oo. wy, — +00 ond(xz,0M)— +oco.

A, w, =H: level set evolve by IMCF. U, :e*% is p-harmonic.


https://mathscinet.ams.org/mathscinet-getitem?mr=1916951
https://doi.org/10.48550/arXiv.2205.11642
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NPT & IMCF AT A GLANCE

Inverse mean curvature flow (IMCF)
[Huisken, Ilmanen “01]

Regularity
o is Lipschitz.

Reqgularity of level sets

o are strictly outward minimizing;
o are¢ll;

o weak H and h.

Energy

o |OK*|=inf{|0E|: ED K}

o grows exponentially

2| =etjonn

Nonlinear potential theory (p-IMCF, p € (1,2])
[Agostiniani, Mantegazza, Mazzieri, Oronzio 22]

Regularity

o w, %A and smooth on {Vw, #0};
o |Vw,|e W2

(p=2) ~» smooth.

Reqgularity of level sets

© has a negligible critical part for a.e. ¢;

o smooth away from the critical set.
(p=2) ~ smooth for a.e. .

Energy
0 ¢, (0K)=inf{C, [|V|": €€, p>1x}

o grows exponentially

p(ZP) =etc, (OM)


https://mathscinet.ams.org/mathscinet-getitem?mr=1916951
https://doi.org/10.48550/arXiv.2205.11642

A QUICK RECAP

o The technique based on IMCF requires

1. the monotonicity of the Hawking mass;
2. the convergence of evolved surfaces to coordinate spheres.

o Problem: the smooth IMCF does not always exist, and the flow could develop singularities.
o Solution: pass to a level set/weak formulation.

1. Can we prove the monotonicity despite the regularity of w,,?

2. Do the level sets converge to coordinate spheres for large t?



Finding allies at the tea party

Monotonicity formulas
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We introduce the p-Hawking mass, which is
3 P AV
m}’;(z)* (47r /7(1 +/ <H_\3w |> do)

=|2W¥|/47 and H=|Vw; | = mY(SP) =m (2.

m g (2) < [1512 ¢, ()75 | mE(®),

Theorem - [Fogagnolo, Mazzieri ‘22 - J. Funct. Anal.]

(p) P
) —— ¢; () for almost every ¢.

lim mH (OM)>m g (OM)= ‘?67]\1‘

p—1t

HAWKING-TYPE MASSES


https://doi.org/10.1016/j.jfa.2022.109638

MONOTONICITY FORMULAS

Theorem - [B—, Pluda, Pozzetta '24]

Let w,, be the proper p-IMCF, p & [1,2]. Then, t+m'% (2{¥) is monotone nondecreasing and

. 1 2 2
¢, (B3 .2 VT |Vw —p(H |Vw
iwﬁ;y(z(;”pM STrf/ RTda+/ iy +R+%+5—p(—f| P‘) do |.
() =P |va‘ p—11\2 3—p

t

o For p> 1, monotonicity was proven in [Agostiniani, Mantegazza, Mazzieri, Oronzio 22].

o For p=1, the theorem was proven in [Huisken, liImanen ‘01 - JDG].

o H and h have a geometric interpretation (and agree a.e. with the analytic one).

© Monotonicity follows by computations and a Gauss-Bonnet-type theorem.

Theorem - [B—, Pluda, Pozzetta '24]

m(}’? (EP) s m (=) in L] . and the lower bound for the derivative is lower semicontinuous as p — 1.


https://doi.org/10.48550/arXiv.2411.06462
https://doi.org/10.48550/arXiv.2205.11642
https://mathscinet.ams.org/mathscinet-getitem?mr=1916951
https://doi.org/10.48550/arXiv.2411.06462
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The difficult part is to send p — 17 in

¢ (E(p))ﬁ
i t

) = =12 V' | Vuw, — H |Vw 2
SmBEP) > 2t (g RTda+/ I8° + R+ %+J(f—| P‘) do |,
167(3—p) 5P =P |Vw,| p—1\2 3—p

d
dt

but the best convergence result we had was

Theorem - [Mari, Rigoli, Setti 22 - AIM]T

w, —w; locally uniformly as p — 1*.

T After [Moser ‘07 - JEMS] and [Kotschwar, Ni ‘09 - Ann. Sci. Ec. Norm. Supér.].

—1t
If m7) (=) is bounded in L, then \|Hf\pr|\|L2(E(p)> o
t
Theorem - [B—, Pluda, Pozzetta '24]

p—1t
° w, —>w1 in W,L4 for every g < +occ.

® T Ll E"t” (in curvature varifolds sense) for almost every t.

A UNIFIED PERSPECTIVE


https://doi.org/10.1353/ajm.2022.0016
https://doi.org/10.4171/JEMS/73
https://doi.org/10.24033/asens.2089
https://doi.org/10.48550/arXiv.2411.06462

4 Enjoy the world beyond the looking-glass
Asymptotic analysis
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ASYPTOTIC BEHAVIOUR

Let (M, g) be #1:1-asymptotically flat and Ric>  Let (M,g) be ¥, ,,-asymptotically flat. Then

>1/2

—2
—Clz| . Then 1. ws =log|z| —loges (S8)) +log(14+ O (x| 7))
1. wy =2log|z| —2log(c1 (£5)) +o(1), 2. V;wy =8;loglz|+O(jz|~"7),

(1) 2(at/2) o1 —
2. 2y ~S?(et/?)in g 3, Hvivjwz78i8j10g|m\”L2<2t):O(e 2y,
In particular, In particular,

tii};noomH(E(tl)) <Mapm- tiifloom(j?(zf)) <mMapum-

We obtain a non-sharp upper bound for the Hawking mass, indeed

. T 1 Yy—
Jim mp(S) < T e (50)F ¢(2) 7 mB(S,) <Cmap-

c2(2‘~;>):cp@;”?')ﬁ(Hou)) for all p e (1,2].


https://mathscinet.ams.org/mathscinet-getitem?mr=1916951

15 )
Recall the definition of the p-Hawking mass

1
x)3p H2 H |[Vw,|\?
(p) :D( _ - p
mpy(X)= e (47‘(’ L 7 do+/;<2 3 p ) do

|donotknowifm<,§>(zgp>) [co(Z8) 7 co(2) | mB(SE).

o Take any p e (1,2]. For large t, = is almost spherical. Hence,

2 v
afow | wpl\? o o / B ) e (L g,
dt /s 4 2 3—p 3 ) 3—p 167 /s (p)
t t

o By de I'Hopital rule we infer

(p) N 325
D\ )T (2¢ )3 ! 7(2? )é ! m2(SP) <myp-
~ t—4o0 CI(ESSP))% = pies 52(2?) H\Zt ) S
© We conclude that

loM]|

—— < lim m! (8M)<mADM

p—1t

EXPLOITING THE MIRROR IMAGE
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Theorem - [B—, Fogagnolo, Mazzieri 24 - CPAM]
Let (M, g) be a ¢} -asymptotically flat 3-Riemannian manifold, 7 > 1/2, with R >0 and a minimal con-
nected outermost boundary. Then,

oM
T6r = MaDM-

Moreover, the equality holds if and only if (M, g) is isometric to the Schwarzschild of mass m pyy.

o We also proved a Penrose inequality for the isoperimetric mass m;, introduced by Huisken
[Huisken '09], in €°-asymptotically flat manifolds.

o Combining the theorem above with [Jauregui, Lee ‘19 - CRELLE], we show that m;., = m sy under

optimal decay assumptions, which implies [Bartnik ‘86 - CPAM], [Chrusciel ‘86 - SPRINGER].

RPI UNDER OPTIMAL DECAY


https://doi.org/10.1002/cpa.22239
https://www.ias.edu/video/marston-morse-isoperimetric-concept-mass-general-relativity
https://doi.org/10.1515/crelle-2017-0007
https://doi.org/10.1002/cpa.3160390505
https://mathscinet.ams.org/mathscinet-getitem?mr=1102938
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