

Nonlinear potential theory through the looking-glass

And the Riemannian Penrose inequality we found there

with M. Fogagnolo, L. Mazzieri, A. Pluda and M. Pozzetta

*Topics in Geometric Analysis*Pisa, 25th June 2025

Luca Benatti

lbenatti.math@gmail.com

	1
Introduction	1
Riemannian Penrose inequality	2
Monotonicity formulas	3
Asymptotic analysis	4

Following the White Rabbit down the (black) hole Introduction

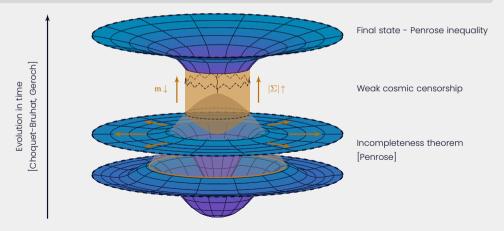
1

Conjecture - Penrose inequality

Given a time slice of an isolated gravitational system with an energy condition

$$\mathfrak{m} \geq \sqrt{\frac{|\Sigma|}{16\pi}}$$

where \mathfrak{m} is the total mass and Σ is an outermost apparent horizon.



An **initial data set** (M,g,K) is a triple, where (M,g) is a Riemannian 3-manifold and K is a symmetric (0,2)-tensor, satisfying the Einstein constraint equations

$$\mu \coloneqq \frac{1}{2} \left(\mathbf{R} + \mathrm{tr} K^2 - \left| K \right|^2 \right), \ \stackrel{K=0}{=} \frac{1}{2} \mathbf{R}, \tag{energy density}$$

$$J \coloneqq \operatorname{div}(K - \operatorname{tr} Kg) \cdot \overset{K=0}{=} 0.$$
 (momentum density)

- The **dominant energy condition** is $\mu \ge |J|$. $\stackrel{K=0}{\Longleftrightarrow} R \ge 0$.
- \circ (M,g,K) is time-symmetric $\Leftrightarrow K=0$.
- \circ A surface Σ is an **outermost apparent horizon** $\stackrel{K=0}{\Longleftrightarrow} \Sigma$ is a outermost minimal surface.
- $\circ \ (M,g,K) \text{ is } \textbf{isolated} \stackrel{K=0}{\Longleftrightarrow} (M,g) \text{ is asymptotically flat }$

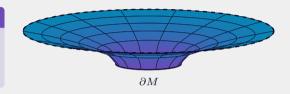
Definition - Asymptotically flat manifold

 $(M,g) \text{ is } \mathscr{C}^k_\tau \text{-asymptotically flat provided } M \smallsetminus K \cong \mathbb{R}^3 \smallsetminus B_R \text{ and } |g-\delta| = O_k(|x|^{-\tau}).$

Spatial Schwarzschild manifold

Given $\mathfrak{m} \geq 0$, it is

$$\left(\mathbb{R}^3 \! \smallsetminus \! B_{2\mathfrak{m}}, \left(1 \! + \! \frac{\mathfrak{m}}{2|x|}\right)^4 \delta\right).$$



- Dominant energy condition: R = 0.
- \circ Apparent horizon: ∂M is outermost minimal.
 - Isolated: $(\mathscr{C}_1^{\infty}$ -)asymptotically flat.

The quantity $\mathfrak m$ represents the mass of the black hole and satisfies the equality in the Penrose inequality

$$\mathfrak{m} = \sqrt{\frac{|\partial M|}{16\pi}}.$$

The natural choice would be to integrate the mass density

$$\frac{1}{8\pi} \int_{M} \mu \, dVol \stackrel{K=0}{=} \frac{1}{16\pi} \int_{M} R \, dVol.$$

 ${f but}$ we have no superposition principle, and the mass of Schwarzschild is 0

Linearizing around δ

$$\frac{1}{16\pi} \int_{M} \! \nabla \mathbf{R}_{|_{\delta}}(g-\delta) \mathrm{d}x = \lim_{R \to +\infty} \frac{1}{16\pi} \int_{B_{R}} \partial_{k}(\partial_{j}g_{kj} - \partial_{k}g_{jj}) \mathrm{d}x$$

Definition - ADM mass [Arnowitt, Deser, Misner '61 · Phys. Rev.]

$$\mathfrak{m}_{\mathrm{ADM}} \coloneqq \lim_{R \to +\infty} \frac{1}{16\pi} \int_{\partial B_R} (\partial_j g_{kj} - \partial_k g_{jj}) \frac{x^k}{|x|} \mathrm{d}\sigma_\delta$$

Theorem - [Bartnik '86 · CPAM], [Chruściel '86 · SPRINGER]

 $\mathfrak{m}_{\mathrm{ADM}}$ is a geometric invariant if (M,g) is \mathscr{C}_{τ}^1 -asymptotically flat, $\tau>1/2$.

In the general case...

- [Malec, Murchadha '94 · Phys. Rev. D] under spherical symmetries.
- [Malec, Mars, Simon '02 · Phys. Rev. Lett.] under additional constraints.
- [Mars, Soria 16 · Class. Quantum Gravity] Penrose inequality along null hypersurfaces.
- o [Allen, Bryden, Kazaras, Khuri '25] suboptimal Penrose inequality.
- ... and in the time-symmetric case.
- [Bray '01 · JDG] for disconnected horizons (up to dimension 8 [Bray, Lee '09 · DUKE]).
- [Huisken, Ilmanen '01 · JDG] for connected horizons using inverse mean curvature flow (IMCF).
- [Agostiniani, Mantegazza, Mazzieri, Oronzio '22] for connected horizons using nonlinear potential theory (NPT) (cf. [Xia, Yin, Zhou '24 · Adv. Math.] for a sharp version on spatial Schwarzschild).

(M,g) is an asymptotically flat Riemannian manifold with ${\bf R} \geq 0$ and compact outermost minimal connected boundary ∂M .

Poreshadowing the fight against the Jabberwocky Riemannian Penrose inequality

Theorem - [Huisken, Ilmanen '01 · JDG]

Let (M,g) be a \mathscr{C}_1^1 -asymptotically flat 3-Riemannian manifold with $R \ge 0$ and $Ric \ge -C/|x|^2$ and a minimal connected outermost boundary ∂M . Then,

$$\sqrt{\frac{|\partial M|}{16\pi}} \le \mathfrak{m}_{\mathrm{ADM}}.$$

Moreover, the equality holds if and only if (M,g) is isometric to the Schwarzschild of mass \mathfrak{m}_{ADM} .

Does the Riemannian Penrose inequality holds even for \mathscr{C}_{τ}^{1} –asymptotically flat 3-Riemannian manifold, for $\tau>1/2$?

Consider the Hawking mass

$$\mathfrak{m}_H(\Sigma) \coloneqq \sqrt{\frac{|\Sigma|}{16\pi}} \left(1 - \frac{1}{16\pi} \int_{\Sigma} \operatorname{H}^2 \mathrm{d}\sigma \right).$$

- ∂M is minimal $\Rightarrow \mathfrak{m}_H(\partial M) = \sqrt{|\partial M|/16\pi}$
- Evolve ∂M using the IMCF, namely a family of diffeomorphisms $F_t(\Sigma) = \Sigma_t \subseteq M$ such that

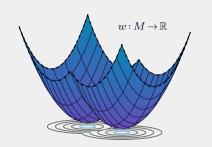
$$\frac{\partial}{\partial t} F_t = \frac{\nu}{\mathbf{H}}.$$

• By the asymptotic behavior of $g\Rightarrow \Sigma_t$ asymptotically approaches large coordinate spheres as $t\to +\infty$ and

$$\overline{\lim}_{t\to +\infty} \mathfrak{m}_H(\Sigma_t) \leq \mathfrak{m}_{\mathrm{ADM}}.$$

• M is 3-dimensional and $\mathbf{R} \geq \mathbf{0} \Rightarrow \mathfrak{m}_H(\Sigma_t)$ is monotone <u>non decreasing</u>. Indeed,

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathfrak{m}_{H}(\Sigma_{t}) = \frac{1}{16\pi} \sqrt{\frac{|\Sigma_{t}|}{16\pi}} \left(\underbrace{8\pi - \int_{\Sigma_{t}} \mathbf{R}^{\top} \mathrm{d}\sigma}_{\geq 0 \; \mathrm{Gauss-Bonnet}} + \int_{\Sigma_{t}} \left|\mathring{\mathbf{h}}\right|^{2} + \mathbf{R} + \frac{\left|\nabla^{\top} \mathbf{H}\right|^{2}}{\mathbf{H}^{2}} \, \mathrm{d}\sigma\right) \geq 0.$$



Replace $F_t(\Sigma)$ with the level sets $\Sigma_t=\partial\{w\leq t\}$ of a function $w:M\to\mathbb{R}$ such that $\partial M=\{w=0\}$

- + the flow is defined for every t;
- less control on regularity/topology;

Inverse mean curvature flow (IMCF)

[Huisken, Ilmanen '01]

$$\begin{cases} \Delta_1 w_1 = |\nabla w_1| & \text{on } M \backslash \partial M \\ w_1 = 0 & \text{on } \partial M \\ w_1 \to +\infty & \text{on } \mathrm{d}(x,\partial M) \,{\to}\, +\infty. \end{cases}$$

 $\Delta_1 w_1 =$ H: level set *evolve* by IMCF.

Nonlinear potential theory (p-IMCF, $p \in (1,2])$

[Agostiniani, Mantegazza, Mazzieri, Oronzio '22]

$$\begin{cases} \Delta_p w_p \,=\, |\nabla w_p|^p & \text{on } M {\smallsetminus} \partial M \\ w_p \,=\, 0 & \text{on } \partial M \\ w_p \,\to\, +\infty & \text{on } \mathrm{d}(x,\!\partial M) \,\to\, +\infty. \end{cases}$$

 $u_p = e^{-\frac{w_p}{p-1}}$ is p-harmonic.

Inverse mean curvature flow (IMCF)

[Huisken, Ilmanen '01]

Regularity

o is Lipschitz.

Regularity of level sets

- o are strictly outward minimizing;
- \circ are $\mathscr{C}^{1,1}$;
- o weak H and h.

Energy

- $\circ |\partial K^*| = \inf\{|\partial E| : E \supseteq K\}$
- o grows exponentially

$$\left|\Sigma_t^{(1)}\right| \!=\! \mathrm{e}^t \left|\partial M\right|$$

Nonlinear potential theory (p-IMCF, $p \in (1,2]$)

[Agostiniani, Mantegazza, Mazzieri, Oronzio '22]

Regularity

- $\circ \ w_p \in \mathscr{C}^{1,\beta} \text{ and smooth on } \big\{ \nabla w_p \neq 0 \big\};$
- $\circ \ |\nabla w_p|\!\in\! W^{1,2}.$

$$(p=2) \rightsquigarrow \text{smooth}.$$

Regularity of level sets

- has a negligible critical part for a.e. t;
- o smooth away from the critical set.

$$(p=2) \rightsquigarrow \text{smooth for a.e. } t.$$

Energy

- $\circ \ \mathfrak{c}_{p}(\partial K) = \inf \bigl\{ \mathcal{C}_{p} \int |\nabla \phi|^{p} : \phi \in \mathscr{C}_{c}^{\infty}, \phi \geq 1_{K} \bigr\}$
- o grows exponentially

$$\mathfrak{c}_p(\Sigma_t^{(p)})\!=\!\mathrm{e}^t\,\mathfrak{c}_p(\partial M)$$

- The technique based on IMCF requires
 - 1. the monotonicity of the Hawking mass;
 - 2. the <u>convergence</u> of evolved surfaces <u>to coordinate spheres</u>.
- Problem: the smooth IMCF does not always exist, and the flow could develop singularities.
- Solution: pass to a level set/weak formulation.

- 1. Can we prove the monotonicity despite the regularity of w_p ?
- 2. Do the level sets converge to coordinate spheres for large t?

Finding allies at the tea party Monotonicity formulas

We introduce the p-Hawking mass, which is

$$\mathfrak{m}_H^{(p)}(\Sigma) = \frac{\mathfrak{c}_p(\Sigma)^{\frac{1}{3-p}}}{8\pi} \left(4\pi - \int_{\Sigma} \frac{\operatorname{H}^2}{4} \operatorname{d}\!\sigma + \int_{\Sigma} \left(\frac{\operatorname{H}}{2} - \frac{|\nabla w_p|}{3-p} \right)^2 \operatorname{d}\!\sigma \right)$$

$$\mathfrak{c}_1(\Sigma_t^{(1)}) = |\Sigma_t^{(1)}|/4\pi \text{ and } \mathbf{H} = |\nabla w_1| \Rightarrow \mathfrak{m}_H^{(1)}(\Sigma_t^{(1)}) = \mathfrak{m}_H(\Sigma_t^{(1)}).$$

$$\mathfrak{m}_H(\Sigma) \leq \left[|\Sigma|^{\frac{1}{2}} \, \mathfrak{c}_p(\Sigma)^{-\frac{1}{3-p}} \right] \mathfrak{m}_H^{(p)}(\Sigma).$$

Theorem - [Fogagnolo, Mazzieri '22 · J. Funct. Anal.]

$$\mathfrak{c}_p(\Sigma_t^{(p)}) \xrightarrow{p \to 1^+} \mathfrak{c}_1(\Sigma_t) \text{ for almost every } t.$$

$$\varliminf_{p\to 1^+}\mathfrak{m}_H^{(p)}(\partial M)\geq \mathfrak{m}_H(\partial M)=\sqrt{\frac{|\partial M|}{16\pi}}.$$

Theorem - [B —, Pluda, Pozzetta '24]

Let w_p be the proper p-IMCF, $p \in [1,2]$. Then, $t \mapsto \mathfrak{m}_H^{(p)}(\Sigma_t^{(p)})$ is monotone nondecreasing and

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathfrak{m}_{H}^{(p)}(\boldsymbol{\Sigma}_{t}^{(p)}) \geq \frac{\mathfrak{c}_{p}(\boldsymbol{\Sigma}_{t}^{(p)})^{\frac{1}{3-p}}}{16\pi(3-p)}\left(8\pi - \int_{\boldsymbol{\Sigma}_{t}^{(p)}}\mathbf{R}^{\intercal}\mathrm{d}\sigma + \int_{\boldsymbol{\Sigma}_{t}^{(p)}}\big|\mathring{\mathbf{h}}\big|^{2} + \mathbf{R} + \frac{\left|\boldsymbol{\nabla}^{\intercal}|\boldsymbol{\nabla}\boldsymbol{w}_{p}|\right|^{2}}{\left|\boldsymbol{\nabla}\boldsymbol{w}_{p}\right|^{2}} + \frac{5-p}{p-1}\left(\frac{\mathbf{H}}{2} - \frac{\left|\boldsymbol{\nabla}\boldsymbol{w}_{p}\right|}{3-p}\right)^{2}\mathrm{d}\sigma\right).$$

 \circ For p > 1, monotonicity was proven in [Agostiniani, Mantegazza, Mazzieri, Oronzio '22].

- \circ H and h have a geometric interpretation (and agree a.e. with the analytic one).
- o Monotonicity follows by computations and a **Gauss-Bonnet**-type **theorem**.
- For p = 1, the theorem was proven in [Huisken, Ilmanen '01 · JDG].

Theorem - [B — , Pluda, Pozzetta '24]

 $\mathfrak{m}_H^{(p)}(\Sigma_t^{(p)}) \to \mathfrak{m}_H(\Sigma_t^{(1)}) \text{ in } L^1_{\mathrm{loc}} \text{ and the lower bound for the derivative is lower semicontinuous as } p \to 1^+.$

The difficult part is to send $p \rightarrow 1^+$ in

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathfrak{m}_{H}^{(p)}(\Sigma_{t}^{(p)}) \geq \frac{\mathfrak{c}_{p}(\Sigma_{t}^{(p)})^{\frac{1}{3-p}}}{16\pi(3-p)}\left(8\pi - \int_{\Sigma_{t}^{(p)}}\mathrm{R}^{\intercal}\mathrm{d}\sigma + \int_{\Sigma_{t}^{(p)}}\big|\mathring{\mathbf{h}}\big|^{2} + \mathrm{R} + \frac{\left|\nabla^{\intercal}|\nabla w_{p}|\right|^{2}}{\left|\nabla w_{p}\right|^{2}} + \frac{5-p}{p-1}\left(\frac{\mathrm{H}}{2} - \frac{\left|\nabla w_{p}\right|}{3-p}\right)^{2}\mathrm{d}\sigma\right),$$

but the best convergence result we had was

Theorem - [Mari, Rigoli, Setti '22 · AJM]†

 $w_p \rightarrow w_1$ locally uniformly as $p \rightarrow 1^+$.

† After [Moser '07 · JEMS] and [Kotschwar, Ni '09 · Ann. Sci. Éc. Norm. Supér.].

 $\left. \left\{ \mathfrak{m}_{H}^{(p)}(\Sigma_{t}^{(p)}) \text{ is bounded in } L^{1}, \text{then } \left\| \mathbf{H} - \left| \nabla w_{p} \right| \right\|_{L^{2}(\Sigma^{(p)})} \xrightarrow{p \to 1^{+}} 0. \right.$

Theorem - [B —, Pluda, Pozzetta '24]

- $\circ \ w_n \xrightarrow{p \to 1^+} w_1 \text{ in } W_{\text{loc}}^{1,q} \text{ for every } q < +\infty.$
- $\circ \Sigma_{+}^{(p)} \xrightarrow{p \to 1^{+}} \Sigma_{+}^{(1)}$ (in curvature varifolds sense) for almost every t.

4 Asymptotic analysis

Theorem - [Huisken, Ilmanen '01 · JDG]

Let (M,g) be $\mathscr{C}^{1,1}$ -asymptotically flat and $\mathrm{Ric}\!\geq\! -\mathrm{C}|x|^{-2}.$ Then

l.
$$w_1 = 2\log|x| - 2\log(\mathfrak{c}_1(\Sigma_0^{(1)})) + o(1)$$
,

2.
$$\Sigma_t^{(1)} \sim \mathbb{S}^2(\mathbf{e}^{t/2})$$
 in \mathscr{C}^1 .

In particular,

$$\lim_{t\to +\infty} \mathfrak{m}_H(\Sigma_t^{(1)}) \! \leq \! \mathfrak{m}_{\mathrm{ADM}}.$$

Theorem

Let (M,g) be $\mathscr{C}^1_{\tau>1/2}$ -asymptotically flat. Then

l.
$$w_2 = \log |x| - \log \mathfrak{c}_2(\Sigma_0^{(2)}) + \log (1 + O(|x|^{- au}))$$

2.
$$\nabla_i w_2 = \partial_i \log |x| + O(|x|^{-1-\tau}),$$

3.
$$\left\|\nabla_i\nabla_j w_2 - \partial_i\partial_j\log|x|\right\|_{L^2(\Sigma_t)} = O(\mathrm{e}^{-2\tau t}).$$

In particular,

$$\lim_{t\to +\infty} \mathfrak{m}_H^{(2)}(\Sigma_t^{(2)}) \! \leq \! \mathfrak{m}_{\mathrm{ADM}}.$$

We obtain a <u>non-sharp upper bound</u> for the Hawking mass, indeed

$$\lim_{t\to +\infty} \mathfrak{m}_H(\Sigma_t) \leq \varlimsup_{t\to +\infty} \left[\mathfrak{c}_1(\Sigma_t^{(1)})^{\frac{1}{2}}\,\mathfrak{c}_2(\Sigma_t^{(1)})^{-1}\right] \mathfrak{m}_H^{(2)}(\Sigma_t) \leq \mathrm{C}\mathfrak{m}_{ADM}.$$

$$\mathfrak{c}_2(\Sigma_t^{(p)}) = \mathfrak{c}_p(\Sigma_t^{(p)})^{\frac{1}{3-p}}(1+o(1)) \text{ for all } p \in (1,2].$$

Recall the definition of the p-Hawking mass

$$\mathfrak{m}_H^{(p)}(\Sigma) = \frac{\mathfrak{c}_p(\Sigma)^{\frac{1}{3-p}}}{8\pi} \left(4\pi - \int_{\Sigma} \frac{\operatorname{H}^2}{4} \operatorname{d}\!\sigma + \int_{\Sigma} \left(\frac{\operatorname{H}}{2} - \frac{|\nabla w_p|}{3-p} \right)^2 \operatorname{d}\!\sigma \right)$$

I do not know if $\mathfrak{m}_H^{(p)}(\Sigma_t^{(p)}) \leq \left[\mathfrak{c}_p(\Sigma_t^{(p)})^{rac{1}{3-p}}\,\mathfrak{c}_2(\Sigma_t^{(p)})^{-1}
ight]\mathfrak{m}_H^{(2)}(\Sigma_t^{(p)}).$

• Take any $p \in (1,2]$. For large $t_t \Sigma_t^{(p)}$ is almost spherical. Hence,

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Sigma_t^{(p)}} \frac{\mathrm{H}^2}{4} - \left(\frac{\mathrm{H}}{2} - \frac{|\nabla w_p|}{3-p}\right)^2 \mathrm{d}\sigma \leq \frac{1}{3-p} \left(\int_{\Sigma_t^{(p)}} \frac{\mathrm{R}^\top}{2} - \frac{\mathrm{H}^2}{4} \, \mathrm{d}\sigma\right) \leq \frac{4\pi}{3-p} \left(1 - \frac{1}{16\pi} \int_{\Sigma_t^{(p)}} \mathrm{H}^2 \, \mathrm{d}\sigma\right).$$

o By de l'Hôpital rule we infer

$$\lim_{t\to +\infty} \mathfrak{m}_H^{(p)}(\Sigma_t^{(p)}) \leq \overline{\lim_{t\to +\infty}} \, \frac{\mathfrak{c}_p(\Sigma_t^{(p)})^{\frac{1}{3-p}}}{\mathfrak{c}_1(\Sigma_t^{(p)})^{\frac{1}{2}}} \mathfrak{m}_H(\Sigma_t^{(p)}) \leq \overline{\lim_{t\to +\infty}} \, \frac{\mathfrak{c}_p(\Sigma_t^{(p)})^{\frac{1}{3-p}}}{\mathfrak{c}_2(\Sigma_t^{(p)})} \mathfrak{m}_H^{(2)}(\Sigma_t^{(p)}) \leq \mathfrak{m}_{\mathrm{ADM}}.$$

We conclude that

$$\sqrt{\frac{|\partial M|}{16\pi}} \leq \lim_{n \to 1^+} \mathfrak{m}_H^{(p)}(\partial M) \leq \mathfrak{m}_{ADM}.$$

Theorem - [B —, Fogagnolo, Mazzieri '24 · CPAM]

Let (M,g) be a \mathscr{C}_{τ}^{1} -asymptotically flat 3-Riemannian manifold, $\tau>1/2$, with $\mathbf{R}\geq 0$ and a minimal connected outermost boundary. Then,

$$\sqrt{\frac{|\partial M|}{16\pi}} \le \mathfrak{m}_{ADM}.$$

Moreover, the equality holds if and only if (M,g) is isometric to the Schwarzschild of mass \mathfrak{m}_{ADM} .

- We also proved a Penrose inequality for the isoperimetric mass \mathfrak{m}_{iso} introduced by Huisken [Huisken '09], in \mathscr{C}^0 -asymptotically flat manifolds.
- $\text{O combining the theorem above with } \textit{[Jauregui, Lee 19 \cdot CRELLE]}, \text{ we show that } \mathfrak{m}_{\mathrm{iso}} = \mathfrak{m}_{\mathrm{ADM}} \text{ under optimal decay assumptions, which implies } \textit{[Bartnik '86 \cdot CPAM]}, \textit{[Chruściel '86 \cdot SPRINGER]}.$