Workshop on Radiative Corrections and Monte Carlo Simulations for e⁺e⁻ collisions, Scuola Normale Superiore Pisa, May 7-9, 2025

Luminosity Measurement at modern e^+e^- Colliders

Precision Physics, Fundamental Interactions and Structure of Matter

Achim Denig Institute for Nuclear Physics Johannes Gutenberg University Mainz

Normalization Techniques for absolute Cross Section Measurements

Achim Denig

Measurements of σ_{had} – Energy Scan vs. Initial State Radiation

4

Measurements of σ_{had} – Energy Scan vs. Initial State Radiation

Experiment	Published Method	Normalization
KLOE $\sqrt{s} \sim 1$ GeV	ISR untagged ISR tagged ISR untagged	$\frac{\text{Luminosity} + \text{H}_{rad}}{\text{Luminosity} + \text{H}_{rad}}$ $\mu + \mu - \gamma$
BABAR √s~10 GeV	ISR tagged	μ+μ-γ
BESIII √s~4 GeV	ISR tagged	Luminosity + H _{rad}
BELLE-II √s~10 GeV		
CMD-2/CMD-3	Scan < ~1 GeV	e+e-
SND	Scan < ~1 GeV	e+e-

Luminosity measurement:

Normalization to QED reference channel with well-known cross section

 \rightarrow Count number of signal events

$$\int \mathcal{L} \, \mathrm{d}t = \frac{N_{\rm obs} - N_{\rm bkg}}{\sigma_{\rm eff}}$$

Reference channels:

- Bhabha $e^+e^- \rightarrow e^+e^-$

$$- e^+e^- \to \mu^+\mu^-$$

- $e^+e^- \rightarrow \gamma \gamma$

Two independent normalization methods:

1) normalization to L_{int} (obtained from Bhabha events) and H_{rad}; subtraction of background (μ + μ - γ , ...)

$$\sigma_{bare}(e^+e^- \to \pi^+\pi^-) = \underbrace{N_{\pi\pi\gamma}/\epsilon_{exp}}_{L_{int} \cdot H_{rad} \cdot \delta_{vac} \cdot (1 + \delta_{FSR})}_{\substack{\sigma(e^+e^- \to \pi^+\pi^-) \text{ and } \sigma(e^+e^- \to \mu^+\mu^-) \\ 0.8 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.6 \\ 0.4$$

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Two independent normalization methods:

1) normalization to L_{int} (obtained from Bhabha events) and H_{rad}; subtraction of background (μ + μ - γ , ...)

$$\sigma_{bare}(e^+e^- \to \pi^+\pi^-) = \underbrace{V_{\pi\pi\pi\gamma}/\epsilon_{exp}}_{L_{int} \cdot H_{rad} \cdot \delta_{vac} \cdot (1 + \delta_{FSR})}$$

$$() \text{ normalization to } \mu + \mu - \gamma \text{ events, i.e. R ratio } (\pi\pi\gamma/\mu\mu\gamma)$$

$$\Rightarrow L_{int}, H_{rad}, \delta_{vac} \text{ cancel in ratio!}$$

$$\Rightarrow \text{ requires high statistics of } \mu + \mu - \gamma$$

$$R = \frac{N_{\pi^+\pi^-}}{N_{\mu^+\mu^-}} \cdot \frac{\varepsilon_{\mu^+\mu^-} \cdot (1 + \delta_{\pi^+\pi^-})}{\varepsilon_{\pi^+\pi^-} \cdot (1 + \delta_{\pi^+\pi^-})}$$

$$= \underbrace{\sum_{k=1}^{n} \frac{1}{\mu^+\mu^-}}_{e^-} \cdot \underbrace{\sum_{k=1}^{n} \frac{1}{\mu^$$

2

Unfortunately, big deviations seen between e^+e^- experiments for two-pion channel

→ mistakes in luminosity measurements reason for these deviations?

Independent cross check given by QED test $\rightarrow e^+e^- \rightarrow \mu^+\mu^-$, however also dependence on radiator function (precision of QED generator)

For pure luminosity measurement, high-quality Bhabha generator as well as generator for di-muon and $\gamma\gamma$ - channel needed

Radiative corrections needed, however mainly Born-level selection (see below)

→ BABAYAGA@NLO serves as a high-precision tool for all three QED reference channels

	$e^+e^- \to e^+e^-$	$e^+e^- \to \mu^+\mu^-$	$e^+e^- \to \gamma\gamma$
Order	NLOPS	NLOPS	NLOPS
Accuracy	$\mathcal{O}(0.1\%)$	$\mathcal{O}(0.1\%)$	$\mathcal{O}(0.1\%)$

Experimental Details Luminosity Measurement

Overview Publications (likely not complete)

Experime nt	Year	\sqrt{s} / GeV	Control Sample(s)	Accuracy	Generator	Reference
KLOE	2006	~ 1.0	e^+e^-	0.6 %	BABAYAGA 3.5	EPJ C47 (2006) 589
BABAR	2013	~ 10.4	$e^+e^-, \mu^+\mu^-$	0.43 0.88 %	BABAYGA@NLO, KKMC	NIM A726 (2013) 2013
BESIII	2013	3.65, 3.773	e^+e^-	1.0 %	BABAYAGA 3.5	Chin Phys C37 (2013) 123
BESIII	2015	3.81 - 4.6	e^+e^-	1.0 %	BABAYAGA 3.5	Chin Phys C39 (2015) 093
BESIII	2017	2.23 - 4.59	e^+e^- , $\gamma\gamma$	0.7 %, 1.1 %	BABAYAGA 3.5	Chin Phys C41 (2017) 063
BESIII	2017	2.125	e^+e^-	0.8 %	BABAYAGA 3.5	Chin Phys C41 (2017) 113
BESIII	2018	~ 3.77	e^+e^-	0.8 %	BABAYAGA 3.5	Chin Phys C42 (2018) 063
BESIII	2022	4.0 - 4.6	e^+e^-	0.66 %	BABAYAGA@NLO	Chin Phys C46 (2022) 113
BESIII	2022	4.61 - 4.95	e^+e^-	0.53 %	BABAYAGA@NLO	Chin Phys C46 (2022) 113
BESIII	2024	3.77	e^+e^-	0.4 %	BABAYAGA@NLO	Chin Phys C48 (2024) 123

- 1. Selection of two charged tracks with opposite charge originating from IP
- 2. Require both tracks to be in fiducial volume- Association of track to EMC cluster
- 3. Require **back-to-back signature**
 - beam momenta close to half of cms energy
 - accolinearity cuts (2dim. or 3dim.)
 removes also gamma-gamma events
- 4. Particle Identification Cuts- E/p: Energy release in EMC/mometum of track
- 5. Remove remaining background events
 - mu+mu-, pi+pi- (percent level)
 - gamma-gamma events

KLOE Luminosity Measurement $\sqrt{s} \sim 1 \text{ GeV}$

+ BABAYAGA uncertainy 0.5%

Features (uncertainty 0.6%):

- Preselection with calorimetric information only
- Refined selection including drift chamber information $55^{\circ} < \Theta_{track} < 125^{\circ}$
- Track momenta p > 400 MeV
- Accolinearity $\zeta = |\theta_{cl1} + \theta_{cl2} 180^{\circ}| < 9^{\circ}$

	correction $(\%)$	systematic error $(\%)$
angular acceptance	+0.25	0.25
tracking	-	0.06
clustering	+0.14	0.11
background	-0.62	0.13
cosmic veto	+0.40	_
energy calibration	-	0.10
center of mass energy	+0.10	0.10
	+0.34	0.32

Features (uncertainty 0.43% for e^+e^- , 0.88% for $\mu^+\mu^-$):

- Downscaling of Bhabha events at small polar angles
- Separation of electrons/muons by means of E/p
- Bhabha selection (similar for $\mu^+\mu^-$) $|\cos(\Theta_{track,1})| < 0.7 \text{ rad}, |\cos(\Theta_{track,1})| < 0.65 \text{ rad}$ $p_{track,1} > 75\% \cdot \sqrt{s}/2, p_{track,2} > 50\% \cdot \sqrt{s}/2$ Accolinearity $\alpha < 30^\circ$ E/p > 0.7 (0.4)
- Additional cross check with γγ events

Source	Relative uncertainty on \mathcal{L} (%)
Theoretical cross section	$0.26 (e^+e^-), 0.44 (\mu^+\mu^-)$
Track-reconstruction efficiency	0.13 (Runs 1-6), 0.20 (Run 7)
Trigger & offline-filter efficiency	0.10
Data-MC differences	$0.5-0.7 (e^+e^-), 0.24-0.28 (\mu^+\mu^-)$
Time dependence	0.16–0.46 (Off-resonance)
Background subtraction	0.02 (Runs 1–6), 0.10 ($\Upsilon(3S)$), 0.15 ($\Upsilon(2S)$)
Boost uncertainty	0.2 (Run 7)

BESIII Luminosity Measurement $\sqrt{s} \sim 3.77 \text{ GeV}$

40

Total

Features (uncertainty 0.4%):

- Bhabha selection $|\cos(\Theta_{\text{track},1})| < 0.8 \text{ rad (barrel EMC)}$ $p_{track,1} + p_{track,2} > 90\% \cdot \sqrt{s}$ $1.0 \text{ GeV} < E_{EMC} < 2.5 \text{ GeV}$ Accolinearity in polar angle 5° $< |\delta \phi| < 40^\circ$
- Requires strict cuts in momentum due to background from ISR production of I/ψ

0.38

Main control channel used for luminosity measurement: Large-angle Bhabha events

- high statistics \rightarrow optimal signal-to-background ratio
- full energy deposit in EMC \rightarrow clear signature
- allows to combine tracking and EMC information \rightarrow complementary information

Similar selection used by all modern collider experiments:

Experiment	\sqrt{s} / GeV	Polar Angle Tracks	Acceptance Momentum $p_{min}/\sqrt{s}/2$	Accolinearity cut
KLOE	~1	55° - 125°	80%	9° polar angle
BABAR	~10	45° - 135°	75% (50%)	30° 3dim. angle
BESIII	~ 4	37° - 143°	90%	>5°, <40° azimuthal angle

Conclusions

Conclusions

- Luminosity measurements mainly based on Bhabha reference channel \rightarrow cross checks with di-muon and $\gamma\gamma$ – channel
- Selection mainly based on Born process and (relatively) soft radiation
 → BABAYAGA@NLO provides already very high accuracy ~0.1%
- Experimental issues in luminosity measurement beyond event generator currently limiting the overall accuracy
 → trigger, background, electronics, hidden inefficiencies, saturation, ...
- Bhabha event generator with Born and hard radiation needed for many applications in precision physics presently not existing
 → Background processes, multi-photon background, ...

Thank you !