

Workshop on Radiative Corrections and Monte Carlo Simulations for e^+e^- collisions

$e^+e^- \to \gamma\gamma$ at NNLO

Marco Rocco for the McMule Team

Università di Torino & INFN

Pisa, May $5^{\mbox{\tiny TH}},\ 2025$

M. Rocco, 07.05.25 - p.1/12

Workshop on Radiative Corrections and Monte Carlo Simulations for e^+e^- collisions

$e^+e^- ightarrow \gamma\gamma$ at NNLO with m McMule

Marco Rocco for the McMule Team

Università di Torino & INFN

Pisa, May $5^{\mbox{\tiny TH}},\ 2025$

M. Rocco, 07.05.25 - p.1/12

- luminosity in general has been discussed
- the role of $ee
 ightarrow \gamma\gamma$ is clear
- as is the role of QED corrections
- $\bullet\,$ this is the environment where ${\rm McMule}\,$ thrives
- now fully differential NNLO QED corrections, including electron-mass and fermion-loop effects
 - ${\bf code} \rightarrow {\tt https://gitlab.com/mule-tools/mcmule/-/tree/digamma?ref_type={\tt heads}$
 - $\textbf{docs} \rightarrow \texttt{https://mcmule.readthedocs.io/}$

- - pseudo-singularities) virtual amplitudes with massive
 - particles

a peek in the stable theory

M. Rocco, 07.05.25 - p.4/12

two-loop diagrams without fermion loops

• use
$$m_e^2 \ll Q^2
ightarrow$$
 expand in m_e^2/Q^2

$$\underbrace{\underbrace{\text{figure}}}_{\text{max}} \sim A \log^2 \frac{m_\ell^2}{Q^2} + B \log \frac{m_\ell^2}{Q^2} + C + \mathcal{O}\left(\frac{m_\ell^2}{Q^2}\right)$$

• apply massification factor Z for each massified leg (S = 1 here):

$$\mathcal{A}(m_e) = \mathcal{S} \times Z \times Z \times \mathcal{A}(0) + \mathcal{O}(m_e)$$

[Penin 06, Becher, Melnikov 07; Engel, Gnendiger, Signer, Ulrich 18, Ulrich 23]

• USE [Anastasiou, Glover, Tejeda-Yeomans 02] for $\mathcal{A}(0)$

M. Rocco, 07.05.25 - p.5/12

+...

- Vacuum Polarisation diagrams ()
 - hyperspherical method [Fael 18]
 - dispersive method
 - no particular reason for preferring one over the other
- Light-By-Light diagrams (□)
 - USE [Anastasiou, Glover, Tejeda-Yeomans 02] for $\mathcal{A}(0)$ with massless electron
 - see later for phenomenological contribution
- massification is trickier for VP ($S \neq 1$), while S = Z = 1 for LBL

one-loop diagrams at NNLO

+...

- OpenLoops [Buccioni, Pozzorini, Zoller 18, Buccioni et al. 19], for both bosonic and fermionic (LBL, electronic only) loops
- stability in soft and pseudo-collinear phase space regions
 - no need for next-to-soft stabilisation

[LBK 58-61, McMule 21, Engel, Signer, Ulrich 21, 2×Engel 23]

crossing to Compton scattering might require it

one-loop and tree-level diagrams at NNLO

+ ...

- OpenLoops [Buccioni, Pozzorini, Zoller 18, Buccioni et al. 19], for both bosonic and fermionic (LBL, electronic only) loops
- stability in soft and pseudo-collinear phase space regions
 - no need for next-to-soft stabilisation

[LBK 58-61, McMule 21, Engel, Signer, Ulrich 21, 2xEngel 23]

- crossing to Compton scattering might require it
- optimised analytic implementation of lengthy double-real expression
- phase-space tuning and partitioning improve convergence esp. at higher energies

phenomenology at low energies (1-10 GeV)

M. Rocco, 07.05.25 - p.8/12

 $e^+e^- \rightarrow \gamma\gamma @ \{1,3,10\} \text{GeV}$

> at least two accepted photons (l and s are the most energetic) with

 $E_{\gamma} \ge 0.3\sqrt{s}, \quad 45^{\circ} \le \theta_{\gamma} \le 135^{\circ}, \quad \xi \equiv |\theta_l + \theta_s - \pi| \le 10^{\circ}$

\sqrt{s}	1 GeV		3 GeV		10 GeV	
	MCMULE [nb]	RMCL1 [nb]	MCMULE [nb]	RMCL1 [nb]	MCMULE [nb]	RMCL1 [nb]
σ_0	137.531	137.53	15.2812	15.281	1.375	1.3753
σ_1	129.444	129.45	14.2099	14.211	1.26185	1.2620
σ_2	129.760		14.2570		1.26738	
$\sigma_{1+\mathrm{PS}}$		129.77		14.263		1.2685

$e^+e^- \rightarrow \gamma\gamma @ \{1,3,10\} \,\mathrm{GeV}$

\sqrt{s}	1 GeV		3 GeV		10 GeV	
	MCMULE [nb]	$ \delta K $	MCMULE [nb]	$ \delta K $	MCMULE [nb]	$ \delta K $
σ_0	137.531		15.2812		1.375	
σ_1	129.444	5.9%	14.2099	7.0%	1.26185	8.2%
σ_2	129.760	0.2%	14.2570	0.3%	1.26738	0.4%
$\sigma^{(2,\gamma)}$	0.383	0.3%	0.0598	0.4%	0.00738	0.6%
$\sigma^{(2,VPe)}$	- 0.069	0.1%	- 0.0128	0.1%	- 0.00186	0.2%
$\sigma^{(2,LbLe)}$	- 0.0014		- 0.00016		- 0.000014	
$\sigma^{(2,rLbLe)}$	0.0030		0.00033		0.000030	
$\sigma^{(2,VP\mu\tau)}$	- 0.000077		- 0.00018		- 0.000080	
$\sigma^{(2,{\rm VPh})}$	0.000090		- 0.00010		- 0.000097	

 $\begin{array}{l} e^- \, e^+ \rightarrow \gamma \, \gamma \, \, \mathfrak{O} \, \sqrt{s} = 1 \, \, \mathrm{GeV} \\ > \, \mathrm{at \ least \ two \ photons \ satisfying} \\ E_\gamma \geq 300 \, \mathrm{MeV} \\ 45^\circ \leq \theta_\gamma \leq 135^\circ \\ \xi \equiv |\theta_l + \theta_s - \pi| \leq 10^\circ \end{array}$

> Gaussian beam spread of FWHM of 0.12 MeV $_{\mbox{[KLOE 2005]}}$ is applied

 \rightarrow cures soft enhancement when energies of photons are equal

M. Rocco, 07.05.25 - p.10/12

 $e^{-}(7 \,\mathrm{GeV}) e^{+}(4 \,\mathrm{GeV}) \rightarrow \gamma \gamma$ $Q_{\sqrt{s}} = 10.583 \text{ GeV}$ > at least two photons satisfying $E_{\gamma} \geq 1 \, \text{GeV}$ $15^{\circ} \leq \theta_{\gamma} \leq 165^{\circ}$ > no beam spread is applied

M. Rocco, 07.05.25 - p.11/12

- MCMULE provides NNLO QED corrections for $e^+e^- \rightarrow \gamma\gamma$ with electron-mass and fermion-loop effects throughout (most of) the calculation
- we agree with previous results for low-energy phenomenology
- crossing to Compton scattering $(e\gamma \rightarrow e\gamma)$ is being put in place

- MCMULE provides NNLO QED corrections for $e^+e^- \rightarrow \gamma\gamma$ with electron-mass and fermion-loop effects throughout (most of) the calculation
- we agree with previous results for low-energy phenomenology
- crossing to Compton scattering $(e\gamma
 ightarrow e\gamma)$ is being put in place

- MCMULE provides NNLO QED corrections for $e^+e^- \rightarrow \gamma\gamma$ with electron-mass and fermion-loop effects throughout (most of) the calculation
- we agree with previous results for low-energy phenomenology
- crossing to Compton scattering $(e\gamma
 ightarrow e\gamma)$ is being put in place

◊ compare with other RMCL2 codes

- MCMULE provides NNLO QED corrections for $e^+e^- \rightarrow \gamma\gamma$ with electron-mass and fermion-loop effects throughout (most of) the calculation
- we agree with previous results for low-energy phenomenology
- crossing to Compton scattering $(e\gamma
 ightarrow e\gamma)$ is being put in place

- ◊ compare with other RMCL2 codes
- ◊ improve stability at higher energies

- MCMULE provides NNLO QED corrections for $e^+e^- \rightarrow \gamma\gamma$ with electron-mass and fermion-loop effects throughout (most of) the calculation
- we agree with previous results for low-energy phenomenology
- crossing to Compton scattering $(e\gamma
 ightarrow e\gamma)$ is being put in place

- ◊ compare with other RMCL2 codes
- ◊ improve stability at higher energies
- ◊ include electroweak effects

- MCMULE provides NNLO QED corrections for $e^+e^- \rightarrow \gamma\gamma$ with electron-mass and fermion-loop effects throughout (most of) the calculation
- we agree with previous results for low-energy phenomenology
- crossing to Compton scattering $(e\gamma
 ightarrow e\gamma)$ is being put in place

- ◊ compare with other RMCL2 codes
- $\diamond~$ improve stability at higher energies
- ◊ include electroweak effects
- $\diamond~$ LBL for any fermion loop

- MCMULE provides NNLO QED corrections for $e^+e^- \rightarrow \gamma\gamma$ with electron-mass and fermion-loop effects throughout (most of) the calculation
- we agree with previous results for low-energy phenomenology
- crossing to Compton scattering $(e\gamma
 ightarrow e\gamma)$ is being put in place

- ◊ compare with other RMCL2 codes
- $\diamond~$ improve stability at higher energies
- ◊ include electroweak effects
- $\diamond~$ LBL for any fermion loop
- ◊ world dominance

- MCMULE provides NNLO QED corrections for $e^+e^- \rightarrow \gamma\gamma$ with electron-mass and fermion-loop effects throughout (most of) the calculation
- we agree with previous results for low-energy phenomenology
- crossing to Compton scattering $(e\gamma
 ightarrow e\gamma)$ is being put in place

- ◊ compare with other RMCL2 codes
- $\diamond~$ improve stability at higher energies
- ◊ include electroweak effects
- $\diamond~$ LBL for any fermion loop

Thank you!

 FKS^{ℓ} subtraction

a universal recipe for divergent radiative corrections

$$\int d\Phi_n \left\{ \mathbf{\Phi}_n + \int d\Phi_\gamma \mathbf{\Phi}_\gamma \right\}$$
$$= \int d\Phi_n \, d\Phi_\gamma \left\{ \mathbf{\Phi}_\gamma - \mathbf{\Phi}_\gamma \right\} + \int d\Phi_n \left\{ \mathbf{\Phi}_\gamma + \int d\Phi_\gamma \mathbf{\Phi}_\gamma \right\}$$

- exploits exponentiation of soft singularities [YFS 61]
- works at all orders in QED [Engel, Signer, Ulrich 19]
- singularities are dealt with locally \rightarrow stable numerical integration

- no resolution parameters \rightarrow theory error: 0