Handling the internal structure of the pion

in
$$e^+e^-
ightarrow \pi^+\pi^-(\gamma)$$

Workshop on Radiative Corrections and Monte Carlo simulations for electron-positron collisions Scuola Normale Superiore, Pisa 8th May 2025

Francesco P. Ucci

In collaboration with: E. Budassi, C. M. Carloni Calame, M. Ghilardi, A. Gurgone, G.Montagna, M. Moretti, O. Nicrosini, F. Piccinini INFN

UNIVERSITÀ DI PAVIA

¹Based on: Budassi et al., "Pion pair production in e^+e^- annihilation at next-to-leading order matched to Parton Shower"

Outline

Introduction

Factorised sQED

Internal structure of the pion at NLO

GVMD Approach

FsQED Approach

Numerics

Further remarks

Introduction

Why do we care about the Pion FF?

The LO Hadronic Vacuum Polarisation contribution to the $(g-2)_\mu$ in the dispersive approach is computed as

$$a_{\mu}^{\rm HLO} = \frac{\alpha}{\pi^2} \int_{4m_{\pi}^2}^{\infty} \frac{{\rm d}s}{s} K(s) \left(\frac{\alpha(s)}{3} \frac{\sigma(e^+e^- \to {\rm hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} \right) \label{eq:alpha}$$

Most of the contribution comes from the $\pi\pi$ channel

$$\left.a_{\mu}^{\rm HLO}\right|_{\pi\pi}\simeq \frac{\alpha}{\pi^2}\int \frac{{\rm d}s}{s}K(s)\beta_{\pi}^2|F_{\pi}(s)|^2f(s)$$

Needed an accurate $(\mathcal{O}(10^{-3}))$ description of the process

$$e^+e^-
ightarrow \pi^+\pi^-(\gamma)$$

Scalar QED

The formal definition of the pion FF accounts for the non-perturbative nature of ud interactions at $q^2 < \Lambda^2_{
m OCD}$

 $j^{\mu}_{\rm em} = (2\bar{u}\gamma^{\mu}u - \bar{d}\gamma^{\mu}d - \bar{s}\gamma^{\mu}s)/3$

Pion Form factor $\langle \pi^\pm(p')|j^\mu_{\rm em}(0)|\pi^\pm(p)\rangle=\pm(p'+p)^\mu F_\pi\left((p'-p)^2\right)$

With the condition $F_{\pi}(0) = 1$

The cross section is given by

$$\frac{\mathrm{d}\sigma}{\mathrm{d}c} \propto \frac{1}{(p_1+p_2)^2} \sum_{\mathrm{spins}} |J_e^\nu g_{\mu\nu} J_\pi^\mu|^2 \label{eq:dstars}$$

- $\cdot ~J_e^{
 u}$ is a conserved spinor-QED current
- $\cdot ~ J^{\mu}_{\pi}$ can be computed in sQED \otimes form factor

We want to calculate the process

Scalar QED

Pions have $J^{PC}(\pi^{\pm})=0^-$ and are charged under $U(1)_{\rm em}$ so they can be described using scalar QED

$$\mathcal{L}_{\rm sQED} = \mathcal{L}_{\rm EM} + \mathcal{L}_{\rm Dirac} + (D_{\mu}\phi)^{\dagger}D^{\mu}\phi$$

Point-likeForm factor
$$\pi^+$$
 $D_{\mu}\phi = \partial_{\mu}\phi - ieA_{\mu}F_{\pi}(q^2)\phi$ π^-

- At LO we have $\operatorname{Point-like} \times F_{\pi}(q^2)$
- At NLO we have to be careful, since we integrate $\int {\rm d}q F_\pi(q^2) {\cal M}_{\rm NLO}(q)$

sQED \otimes QED Lagrangian

$$\begin{split} \mathcal{L}_{\mathrm{sQED}}^{\mathrm{int}} &= -\,e\bar{\psi}\gamma^{\mu}\psi A_{\mu} \\ &- ieA_{\mu}F_{\pi}(q^2)\left(\phi^*\partial^{\mu}\phi - \phi\partial^{\mu}\phi^*\right) \\ &+ e^2A_{\mu}A^{\mu}\phi^*\phi F_{\pi}(q_1^2)F_{\pi}(q_2^2) \end{split}$$

(The 4-point is not necessarily the most general)

Observables

In energy scan experiments, the pion FF is extracted as²

$$|F_{\pi}|^2 = \left(\frac{N_{\pi^+\pi^-}}{N_{e^+e^-}} - \Delta^{\mathrm{bg}}\right) \cdot \frac{\sigma_{e^+e^-}^0 \cdot (1 + \delta_{e^+e^-}) \cdot \varepsilon_{e^+e^-}}{\sigma_{\pi^+\pi^-}^0 \cdot (1 + \delta_{\pi^+\pi^-}) \cdot \varepsilon_{\pi^+\pi^-}}$$

We are interested in predictions for the following observables

Cross section

 $\sigma^0_{\pi^+\pi^-}$ is the LO cross section $\delta_{\pi^+\pi^-} \text{ accounts for the radiative corrections}$

Charge Asymmetry

$$A_{FB} = \frac{N_{\theta < \pi/2} - N_{\theta > \pi/2}}{N_{\theta < \pi/2} + N_{\theta > \pi/2}}$$

Used to determine the fiducial volume of the detector, enters $\varepsilon_{\pi^+\pi^-}$

$$A_{FB}^{\rm NLO}=\!A_{FB}^{\rm LO}+\frac{\alpha}{\pi}A_{FB}^{\alpha}=0+\frac{\alpha}{\pi}\left(\frac{\sigma_B^{\rm odd}-\sigma_F^{\rm odd}}{\sigma^{\rm NLO}}\right)$$

 $\delta_{\pi^+\pi^-}, A_{FB}$ are sensitive to the insertion of $F_\pi(q^2)$ in loop diagrams

 $^{^2}$ F. V. Ignatov et al., "Measurement of the $e^+e^-
ightarrow \pi^+\pi^-$ cross section from threshold to 1.2 GeV with the CMD-3 detector"

Factorised sQED

NLO

The fixed-order NLO cross section can be written as

NLO cross section

$$\sigma_{\rm NLO} = \sigma_{2 \rightarrow 2} + \sigma_{2 \rightarrow 3} = \sigma_{\rm LO} + \sigma_{\rm SV} + \sigma_{\rm H} \,, \label{eq:slower}$$

where the splitting is given by

$$\begin{split} \sigma_{2\to2} &= \frac{1}{\mathcal{F}} \left\{ \int \mathrm{d}\Phi_2 |\mathcal{M}_{\mathrm{LO}}|^2 + \int \mathrm{d}\Phi_2 \, 2 \Re \left(\mathcal{M}_{\mathrm{LO}}^{\dagger} \mathcal{M}_V(\lambda) \right) \right\} \equiv \sigma_{\mathrm{LO}} \left(1 + \delta_V(\lambda) \right) \\ \sigma_{2\to3} &= \frac{1}{\mathcal{F}} \left\{ \int_{\lambda \leq \omega \leq \Delta E} \mathrm{d}\Phi_3 \, |\mathcal{M}_{2\to3}|^2 + \int_{\omega > \Delta E} \mathrm{d}\Phi_3 \, |\mathcal{M}_{2\to3}|^2 \right\} \equiv \sigma_S(\lambda, \Delta E) + \sigma_H(\Delta E) \, , \end{split}$$

- $\cdot \,\, m_{
 m ph} = \lambda$ photon mass IR regulator
- On-shell renormalisation of UV divergences
- Phase-space slicing for soft-hard bremsstrahlung

Splitting in gauge-invariant subsets

$$\frac{\mathrm{d}\sigma_{\rm NLO}}{\mathrm{d}\cos\theta} = \frac{\mathrm{d}\sigma_{\rm LO}}{\mathrm{d}\cos\theta} \left(1 + \delta_{SV}^{\rm ISR} + \delta_{SV}^{\rm FSR} + \delta_{SV}^{\rm IFI}\right) + \frac{\mathrm{d}\sigma_H}{\mathrm{d}\cos\theta}\,.$$

NLO in F×sQED approach

In the F×sQED approach, each diagram is multiplied by $F_{\pi}(q^2)$ evaluated at the q^2 flowing into the propagator, preserving the soft limit for radiative corrections

The soft-virtual correction has to be IR safe and ΔE -independent

$$\sigma_{SV} = \delta_{SV} \sigma_{\rm LO} = (\delta_S + \delta_V) \sigma_{\rm LO}$$

Soft

$$\sigma_S(\lambda,\Delta E) = \delta_S(\lambda,\Delta E) \, \sigma_{\rm LO}^0 \times |F_\pi(s)|^2$$

Factorises always over the Born, $q^2=s$

$$\sigma_V^i(\lambda) = \int \mathrm{d}\Phi_2 2 \Re \left(\mathcal{M}_{\mathrm{LO}}^\dagger \mathcal{M}_V^i(\lambda) \right) \times F_\pi^*(s) F_\pi(q_i^2)$$

Virtual

To cancel the $\lambda, \Delta E$ dependence one should have in the soft limit

 $F_{\pi}^{*}(s)F_{\pi}(q_{i}^{2}) \rightarrow |F_{\pi}(s)|^{2}$

ISR and FSR

For ISR and FSR the soft limit is clear. In IFI diagrams to which vertex we assign the form factor?

The $F_{\pi} \times \mathrm{sQED}$ approach is justified because the IR divergence appears when

$$\begin{array}{rcl} q_2 \rightarrow 0 & \Rightarrow & F(q_1^2) \rightarrow F(s), \ F(q_2^2) \rightarrow 1 \\ q_1 \rightarrow 0 & \Rightarrow & F(q_2^2) \rightarrow F(s), \ F(q_1^2) \rightarrow 1 \end{array}$$

However the factorised prescription is valid only in the soft limit

Parton Shower

To take into account additional photon emission, the Higher Order (HO) contribution could be resummed. One way is the Parton Shower

PS master formula
$$\mathrm{d}\sigma_{\mathrm{matched}} = F_{\mathrm{SV}} \ \Pi(\varepsilon,Q^2) \sum_{n=0}^{\infty} \frac{1}{n!} \ \left(\prod_{i=1}^n F_{\mathrm{H},i}\right) \ |\mathcal{M}_n^{\mathrm{PS}}|^2 \mathrm{d}\Phi_n$$

For the $e^+e^- \to \pi^+\pi^-$ process, the Sudakov form factor $\Pi(\varepsilon,Q^2)$ is a combination of the scalar and spinor one

$$\Pi^{(\mathrm{s})\mathrm{QED}}(\varepsilon,Q^2) \,=\, \exp\left\{-\frac{\alpha}{2\pi}\,I^{(\mathrm{s})\mathrm{QED}}_+\,\int\mathrm{d}\Omega_k\,\mathcal{I}(k)\right\}\,.$$

$$P_f(z) \,=\, \frac{1+z^2}{1-z}\,, \qquad P_s(z) \,=\, \frac{2\,z}{1-z}\,.$$

$$\begin{split} I^{\rm QED}_+(\varepsilon) &= \int_0^{1-\varepsilon}\,{\rm d} z\, P_f(z) = -2\ln\varepsilon - \frac{3}{2} + 2\varepsilon - \frac{1}{2}\varepsilon^2\,,\\ I^{\rm sQED}_+(\varepsilon) &= \int_0^{1-\varepsilon}\,{\rm d} z\, P_s(z) = -2\ln\varepsilon - 2 + 2\varepsilon\,. \end{split}$$

Internal structure of the pion at NLO

Inserting F_{π} in loops

The non-trivial task is integrating the pion FF over loop momentum if one wants to write the NLO amplitude in terms of Passarino-Veltman A,B,C,D functions

$$\mathcal{A}^V_{
m NLO} \propto 2 {
m Re} \, \mathcal{C}_D \int {
m d}^D q \, F^*_{\pi}(s) \, F_{\pi}(q^2) \, \mathcal{M}^\dagger_{
m LO,0} \tilde{\mathcal{M}}_V(q^2,\lambda^2)$$

Numerical Integration

$$\mathcal{A}_{\rm NLO}^V = \frac{1}{N}\sum_i {\rm Re}\bigg[\tilde{\mathcal{A}}(q_i;s,t)F_{\pi}(q_i^2)\bigg]$$

- \cdot Need to sample for q divergences
- Very hard numerically
- Unfeasible (?) for MC event generation

Explicit form of F_π

$$F_{\pi}(q^2)\simeq \mathrm{GVMD}(q^2), \mathrm{FsQED}(q^2)$$

- Do the loop integration 'analytically'
- Evaluate numerically PaVe functions
- Feasible MC event generation
- · Relies on a fit function to separate $\operatorname{Re}F_{\pi}$ and $\operatorname{Im}F_{\pi}$

UV Renormalisation and FSR

The insertion of $F_{\pi}(q^2)$ in the wavefunction renormalisation

The virtual corrections are also modified and can be written as

$$\delta^{i}_{V,\mathrm{FF}}(\lambda) = \frac{2\Re F^{*}_{\pi}(s)\mathcal{M}^{\dagger}_{\mathrm{LO},0}\,\mathcal{M}^{i}_{V,\mathrm{FF}}(\lambda)}{\left|F_{\pi}(s)\right|^{2}\left|\mathcal{M}_{\mathrm{LO},0}\right|^{2}}\,, \qquad \begin{array}{l} i=\mathrm{FSR},\,\mathrm{IFI}\\ \mathrm{FF}=\mathrm{GVMD},\,\mathrm{FSQED} \end{array}$$

 $\delta_{V,\mathrm{FF}}^{\mathrm{FSR}} = \delta_{V,0}^{\mathrm{FSR}} + \mathrm{IR} ext{-finite terms}$

IFI

The soft virtual correction should be IR-finite

$$\delta_{SV,FF}^{\rm IFI} = \delta_{SV,0}^{\rm IFI} |_{\rm IR} + \rm IR-finite \ terms \,. \tag{1}$$

This is true only if the IR coefficient matches the soft-photon emission

$$\delta_{S,\mathrm{IR}}^{\mathrm{IFI}} = \mathcal{C}_{\mathrm{IR}}^{\mathrm{IFI}} \log \frac{4\Delta E^2}{\lambda^2}$$

Massive Photons

What happens is that photon propagators are substituted as

$$\frac{1}{q^2-\lambda^2 \ (+i\varepsilon)} \quad \rightarrow \quad \frac{1}{q^2-m^2-\lambda^2 \ (+i\varepsilon)} = \frac{1}{q^2-s' \ (+i\varepsilon)}$$

We can define massive photon kernels to compute the virtual corrections

$$\bar{\delta}_V^{\rm FSR}(s') = \frac{2\mathcal{M}_{\rm LO,0}^\dagger \, \mathcal{M}_{V,0}^{\rm FSR}(s')}{|\mathcal{M}_{\rm LO,0}|^2} \qquad \qquad \bar{\delta}_V^{\rm IFI}(s',s'') = \frac{2\mathcal{M}_{\rm LO,0}^\dagger \, \mathcal{M}_{V,0}^{\rm IFI}(s',s'')}{|\mathcal{M}_{\rm LO,0}|^2}\,,$$

GVMD Approach

GVMD³

In the GVMD approach, form factor is written as a sum over additional propagators, written as Breit-Wigners

 $\begin{aligned} & \text{GVMD Form factor} \\ & F_{\pi}^{\text{BW}}(q^2) = \sum_{v=1}^{n_r} F_{\pi,v}^{\text{BW}}(q^2) = \frac{1}{c_t} \sum_{v=1}^{n_r} c_v \frac{\Lambda_v^2}{\Lambda_v^2 - q^2} \end{aligned} \qquad \begin{aligned} & \Lambda_v^2 = m_v^2 - im_v \Gamma_v \\ & c_v = |c_v| e^{i\phi_v} \\ & c_t = \sum_v c_v \end{aligned}$

Vertices are modified diagrammatically

³Fedor Ignatov and Roman N. Lee. **"Charge asymmetry in** e⁺e⁻ → π⁺π⁻ **process".** In: *Phys. Lett. B* 833 (2022), p. 137283. doi: 10.1016/j.physletb.2022.137283. arXiv: 2204.12235 [hep-ph]

GVMD: Virtual

The virtual FSR and ISR amplitudes can be written as

$$\begin{split} \mathcal{M}_{V,\text{GVMD}}^{\text{FSR}} &= \int \mathrm{d}^D q \, \mathcal{M}_{V,0}^{\text{FSR}} \, F_{\pi}^{\text{BW}}(s) \, \sum_{v,w=1}^{n_r} F_{\pi,v}^{\text{BW}}(q^2) \, F_{\pi,w}^{\text{BW}}(q^2) \\ \mathcal{M}_{V,\text{GVMD}}^{\text{IFI}} &= \int \mathrm{d}^D q \, \mathcal{M}_{V,0}^{\text{IFI}} \, \sum_{v,w=1}^{n_r} \, F_{\pi,v}^{\text{BW}}(q^2) \, F_{\pi,w}^{\text{BW}}((q-p_3-p_4)^2) \end{split}$$

- Preserves gauge invariance
- Since $F_{\pi}(q^2)$ is propagator-like \Rightarrow standard loop techniques

Two Propagator identity
$$\frac{1}{q_i^2 - \lambda^2} \frac{1}{q_i^2 - \Lambda_i^2} = \frac{1}{\Lambda_i^2 - \lambda^2} \left[\frac{1}{q_i^2 - \Lambda_i^2} - \frac{1}{q_i^2 - \lambda^2} \right]$$

The identity can be iterated to the three propagator case with masses $\lambda^2, \Lambda_i^2, \Lambda_i^2$

Some technical details in the next slides

GVDM: FSR

In the FSR we have three propagators, we sum over all possible resonances

$$\delta_{V,\mathrm{GVMD}}^{\mathrm{FSR}}(\lambda) = \frac{2\Re F_{\pi}(s)^* \mathcal{M}_{\mathrm{LO},0}^{\dagger} \mathcal{M}_{V,\mathrm{GVMD}}^{\mathrm{FSR}}(\lambda)}{|F_{\pi}(s)|^2 \, |\mathcal{M}_{\mathrm{LO},0}|^2} = \sum_{v=1}^{n_r} \sum_{w=1}^{n_r} \Re \frac{c_v \, c_w}{c_t^2} \, \Delta_{V,\mathrm{GVMD}}^{\mathrm{FSR}}(\Lambda_v^2, \Lambda_w^2) \, .$$

In the case $\Lambda_v
eq \Lambda_w$, we obtain

$$\Delta_{V,\mathrm{GVMD}}^{\mathrm{FSR}}(\Lambda_v^2,\Lambda_w^2) = \bar{\delta}_V^{\mathrm{FSR}}(\lambda^2) + \frac{1}{\Lambda_v^2 - \Lambda_w^2} \left[\Lambda_w^2 \ \bar{\delta}_V^{\mathrm{FSR}}(\Lambda_v^2) - \Lambda_v^2 \ \bar{\delta}_V^{\mathrm{FSR}}(\Lambda_w^2) \right],$$

while for $\Lambda_v = \Lambda_w$ we have

$$\Delta_{V,\mathrm{GVMD}}^{\mathrm{FSR}}(\Lambda_v^2,\Lambda_v^2) = \bar{\delta}_V^{\mathrm{FSR}}(\lambda^2) - \bar{\delta}_V^{\mathrm{FSR}}(\Lambda_v^2) + \Lambda_v^2 \, \frac{\partial}{\partial \Lambda_v^2} \bar{\delta}_V^{\mathrm{FSR}}(\Lambda_v^2) \,,$$

The IR singularities have the same structure of the $F \times sQED$ case

$$\sum_{v=1}^{n_r}\sum_{w=1}^{n_r} \Re \frac{c_v\,c_w}{c_t^2}\,\bar{\delta}_V^{\mathrm{FSR}}(\lambda^2) = \delta_{V,0}^{\mathrm{FSR}}(\lambda)$$

GVMD: IFI

In the IFI we have only two FFs

$$\delta_{V,\mathsf{GVMD}}^{\mathsf{IFI}}(\lambda) = \frac{2\Re F_{\pi}(s)^* \mathcal{M}_{\mathsf{L}0,0}^{\dagger} \, \mathcal{M}_{V,\mathsf{GVMD}}^{\mathsf{IFI}}(\lambda)}{|F_{\pi}(s)|^2 \, |\mathcal{M}_{\mathsf{L}0,0}|^2} = \sum_{v=1}^{n_r} \sum_{w=1}^{n_r} \Re \frac{c_v \, c_w}{c_t^2 F_{\pi}(s)} \, \Delta_{V,\mathsf{GVMD}}^{\mathsf{IFI}}(\Lambda_v^2,\Lambda_w^2)$$

With the propagator identity we obtain the simple relation

$$\Delta_{V,\mathsf{GVMD}}^{\mathsf{IFI}}(\Lambda_v^2,\Lambda_w^2) = \bar{\delta}_V^{\mathsf{IFI}}(\lambda^2,\lambda^2) - \bar{\delta}_V^{\mathsf{IFI}}(\Lambda_v^2,\lambda^2) - \bar{\delta}_V^{\mathsf{IFI}}(\lambda^2,\Lambda_w^2) + \bar{\delta}_V^{\mathsf{IFI}}(\Lambda_v^2,\Lambda_w^2)$$

All terms are IR divergent apart from the last one. In the soft limit we have

$$\left. \delta_{V, \mathrm{GVMD}}^{\mathrm{IFI}} \right|_{\mathrm{IR}} = \frac{1}{F_{\pi}(s)} \left. \left\{ \bar{\delta}_{V}^{\mathrm{ISR}}(\lambda^{2}, \lambda^{2}) \right|_{\mathrm{IR}} (F_{\pi}(s) + F_{\pi}(0) - 1) \right\}$$

in which the λ^2 dependence exactly cancels with $\delta^{\rm IFI}_S$, using $F_\pi(0)=1.$

GVMD: Complete NLO

Take the cross section differential in the photon energy

$$\sigma_{\rm NLO} = \sigma_{\rm LO}(F_{\pi}^{\rm LO}) + \frac{\alpha}{\pi} \left[\int_{\lambda}^{\Delta E} \mathrm{d}\sigma_{\rm LO} \left(\delta_{SV}^{\rm ISR} + \delta_{SV,\rm GVMD}^{\rm FSR}(F_{\pi}^{\rm BW}) + \delta_{SV,\rm GVMD}^{\rm IFI}(F_{\pi}^{\rm BW}) \right) + \int_{\Delta E}^{\sqrt{s_{\rm max}}} \mathrm{d}\sigma_{H}(F_{\pi}^{\rm P}) \right]$$

Born

In principle one could use any form factor in the Born, being consistent at each perturbative order

To cancel λ^2 dependence, we have to use $F^{\rm BW}_{\pi}$ both in soft and virtual corrections

Soft+Virtual

Hard

To ensure E-independence we use $F^{\rm BW}_{\pi}$, other choices would have

 $\delta_{SV}\!(\Delta E) \neq \delta_{H}(\Delta E)$

- + For consistency we use the same F_{π} everywhere
- The BW fit has **limited** accuracy (TBD in next slides)

FsQED Approach

$FsQED^4$

The dispersive Form factor relies on the analiticity of $F_{\pi}(s)$ on all the complex plane, except for the physical branch cut at $s \ge 4m_{\pi}^2$

⁴Gilberto Colangelo et al. **"Radiative corrections to the forward-backward asymmetry in** $e^+e^- \rightarrow \pi^+\pi^-$ ". In: JHEP 08 (2022), p. 295. DOI: 10.1007/JHEP08(2022)295. arXiv: 2207.03495 [hep-ph]

FsQED: Pion Self Energy

$$\Sigma_{\pi}(p^2) = - - - - - - - - - - - - - - - = e^2 \int \frac{\mathrm{d}^D q}{(2\pi)^D} \left\{ - \frac{(2p+q)^2 F_{\pi}^2(q^2)}{((q+p)^2 - m_{\pi}^2)q^2} \right\}^2 \left[- \frac{\mathrm{d}^D q}{((q+p)^2 - m_{\pi}^2)q^2} \right]^2 \left[- \frac{\mathrm{d}^D q}{(q+p)^2 - m_{\pi}^2} \right]^2 \left[- \frac{\mathrm{d}^D q}{(q+p)^$$

Since no particular extra divergence arises, the operations can be performed in this order (λ =0)

$$\begin{split} \int \mathrm{d}^D q & \longrightarrow & -\frac{\partial}{\partial p^2} & \longrightarrow & \int \frac{\mathrm{d}s'}{s'} \\ \delta Z^0_\phi &\equiv -\frac{\partial \Sigma_\pi(p^2, m^2_\pi, 0)}{\partial p^2} \Big|_{p^2 = m^2_\pi} & \delta Z^{\mathrm{FsQED}}_\phi \equiv -\frac{\partial \Sigma_\pi(p^2, m^2_\pi, s')}{\partial p^2} \Big|_{p^2 = m^2_\pi} \end{split}$$

The counterterm in the dispersive approach reads

$$\begin{split} \delta Z_{\phi} = & \left\{ \delta Z_{\phi}^{0} - \frac{2}{\pi} \int \frac{\mathrm{d}s'}{s'} \mathrm{Im} F_{\pi}(s') \delta Z_{\phi}^{\mathrm{FSQED}}(s') \right. \\ & \left. + \frac{1}{\pi^{2}} \int \mathrm{d}s' \int \frac{\mathrm{d}s''}{s''} \frac{\mathrm{Im} F_{\pi}(s') \mathrm{Im} F_{\pi}(s'')}{s'' - s'} \left(\delta Z_{\phi}^{\mathrm{disp}}(s'') s'' - Z_{\phi}^{\mathrm{disp}}(s') s' \right) \right] \end{split}$$

FsQED: FSR

The FSR contribution works in the same way

$$\tilde{\delta}_{V,\mathrm{FSQED}}^{\mathrm{FSR}}(\lambda) = \frac{(2\pi\mu)^{4-D}}{i\pi^2} 2\mathrm{Re} \int \mathrm{d}^D q \frac{\mathcal{M}_{\mathrm{LO},0}^{\dagger} \,\overline{\mathcal{M}}_{V,\mathrm{FSQED}}^{\mathrm{FSR}}(q,\lambda)}{|\mathcal{M}_{\mathrm{LO},0}|^2} \frac{F_{\pi}^2(q^2)}{q^2 - \lambda^2 + i\varepsilon}$$

with the two FF expressed as

$$\begin{split} \tilde{\delta}_{V,\text{FSQED}}^{\text{FSR}} = & 2\mathcal{C}_D \text{Re} \! \int \! \mathrm{d}^D q \frac{\mathcal{M}_{\text{LO},0}^{\dagger} \overline{\mathcal{M}}_{V,\text{FSQED}}^{\text{FSR}}(q,\lambda)}{|\mathcal{M}_{\text{LO},0}|^2} \bigg[\frac{1}{q^2 - \lambda^2} - \frac{2}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{\mathrm{d}s'}{s'} \frac{\mathrm{Im} F_{\pi}(s')}{q^2 - \lambda^2 - s' + i\varepsilon'} \\ & + \frac{1}{\pi^2} \int_{\Omega_{\infty}} \frac{\mathrm{d}s'}{s'} \frac{\mathrm{d}s''}{s''} \frac{\mathrm{Im} F_{\pi}(s') \mathrm{Im} F_{\pi}(s'')}{s'' - s' - i\varepsilon'' + i\varepsilon'} \left(\frac{s''}{q^2 - \lambda^2 - s'' + i\varepsilon''} - \frac{s'}{q^2 - \lambda^2 - s' + i\varepsilon'} \right) \bigg] \,, \end{split}$$

where massless propagators are replaced by massive photons propagators

$$\begin{split} \delta^{\mathrm{FSR}}_{V,\mathrm{FSQED}} = & \left\{ \bar{\delta}^{\mathrm{FSR}}_{V}(0) - \frac{2}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{\mathrm{d}s'}{s'} \mathrm{Im} F_{\pi}(s') \bar{\delta}^{\mathrm{FSR}}_{V}(s') \right. \\ & \left. + \frac{1}{\pi^{2}} \int_{\Omega_{\infty}} \mathrm{d}s' \frac{\mathrm{d}s''}{s''} \frac{\mathrm{Im} F_{\pi}(s') \mathrm{Im} F_{\pi}(s'')}{s'' - s' - i\varepsilon'' + i\varepsilon'} \left(\bar{\delta}^{\mathrm{FSR}}_{V}(s'') s'' - \bar{\delta}^{\mathrm{FSR}}_{V}(s') s' \right) \right\} \end{split}$$

 $\bar{\delta}_V^{\text{FSR}}(s')$ is the massive-photon kernel

FsQED: IFI

The most difficult contribution is given by the FsQED IFI

$$\delta_{V,\mathrm{FSQED}}^{\mathrm{IFI}} = \frac{2\mathrm{Re}F_\pi^*(s)\mathcal{M}_{\mathrm{LO},0}^\dagger \,\mathcal{M}_{V,\mathrm{FSQED}}^{\mathrm{IFI}}}{|F_\pi(s)|^2 \,|\mathcal{M}_{\mathrm{LO},0}|^2} \equiv \frac{\mathrm{Re}F_\pi^*(s)\Delta_{V,\mathrm{FSQED}}^{\mathrm{IFI}}}{|F_\pi(s)|^2} \,.$$

The correction can be written in terms of polar and dispersive contributions

$$\begin{split} \Delta_{V,\text{FSQED}}^{|\text{FI}|} = & \bar{\delta}_{V}^{\text{FI}}(\lambda^{2},\lambda^{2}) & \text{pole-pole} \\ & -\frac{1}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{\mathrm{d}s'}{s'} \mathrm{Im}F_{\pi}(s') \left[\bar{\delta}_{V}^{|\text{FI}}(s',\lambda^{2}) + \bar{\delta}_{V}^{|\text{FI}}(\lambda^{2},s') \right] & \text{pole-disp} \\ & + \frac{1}{\pi^{2}} \int_{\Omega_{\infty}} \frac{\mathrm{d}s'}{s'} \frac{\mathrm{d}s''}{s''} \mathrm{Im}F(s') \mathrm{Im}F(s'') \bar{\delta}_{V}^{|\text{FI}}(s',s'') & \text{disp.-disp} \end{split}$$

The IR divergence has to be carefully isolated. We write

$$\begin{split} & \textbf{FsQED Virtual IFI} \\ & \delta^{\text{IFI}}_{V,\text{FsQED}} = \frac{1}{|F_{\pi}(s)|^2} \left[\text{Re}F_{\pi}(s)\text{Re}\Delta^{\text{IFI}}_{V,\text{FsQED}} + \text{Im}F_{\pi}(s)\text{Im}\Delta^{\text{IFI}}_{V,\text{FsQED}} \right] \end{split}$$

In the following we shall treat separately Re and Im

Real Part

The divergence in the IFI massive kernel arises in two regions of the loop integration, namely for $q \to 0$ and $q \to p_3 + p_4$:

$$\bar{\delta}_{V,\mathrm{IR}}^{\mathrm{IFI}}(\lambda^2,s') = \frac{s}{2(s-s'+i\varepsilon')}\mathcal{C}_{\mathrm{IR}}\log\frac{\lambda^2}{s}$$

We can add and subtract the IR divergence of the pole-pole part

$$\begin{split} \text{Re}\Delta_{V,\text{FsQED}}^{\text{IFI}} &= \underbrace{\text{Re}\overline{\delta_{V}^{\text{IFI}}(\lambda^{2},\lambda^{2})} - \text{Re}\overline{\delta_{V,\text{IR}}^{\text{IFI}}(\lambda^{2},\lambda^{2})}_{\text{IR-finite}} + \text{Re}\overline{\delta_{V,\text{IR}}^{\text{IFI}}(\lambda^{2},\lambda^{2})} \\ &- \frac{2}{\pi}\text{Re}\int_{4m_{\pi}^{2}}^{\infty}\frac{\mathrm{d}s'}{s'}\text{Im}F_{\pi}(s')\left[\underbrace{\overline{\delta_{V}^{\text{IFI}}(\lambda^{2},s')} - \overline{\delta_{V,\text{IR}}^{\text{IFI}}(\lambda^{2},s')}}_{\text{IR-finite}} + \frac{1}{\pi^{2}}\int_{\Omega_{\infty}}\frac{\mathrm{d}s'}{s'}\frac{\mathrm{d}s''}{s''}\text{Im}F(s')\text{Im}F(s'')\text{Re}\overline{\delta_{V}^{\text{IFI}}(s',s'')} \right] \end{split}$$

Real Part: The missing piece

- The pole-pole and disp-disp corrections are fine
- The pole-dispersive correction exhibits a singularity that has to be treated with the Principal Value

$$\lim_{\varepsilon' \to 0_+} \operatorname{Re} \int \mathrm{d} s' \frac{f(s')}{s-s'+i\varepsilon'} = \operatorname{P.V.} \int \left(\frac{\operatorname{Re} f(s')}{s-s'}\right) + \frac{\pi}{2} \operatorname{Im} f(s_+) + \frac{\pi}{2} \operatorname{Im} f(s_-)$$

The piece in red was overlooked by literature and by a previous version of this work

$$\begin{split} \mathrm{Re}\Delta_{V,\mathrm{FSQED}}^{\mathrm{IFI}} = & \mathrm{Re}F_{\pi}(s)\mathcal{C}_{\mathrm{IR}}\log\frac{\lambda^{2}}{s} \\ & + \left[\mathrm{Re}\bar{\delta}_{V}^{\mathrm{IFI}}(\lambda^{2},\lambda^{2}) - \mathrm{Re}\bar{\delta}_{V,\mathrm{IR}}^{\mathrm{IFI}}(\lambda^{2},\lambda^{2})\right]_{\mathrm{fin.}} \\ & - \frac{2}{\pi}\operatorname{P.V.}\int_{4m_{\pi}^{2}}^{\infty}\frac{\mathrm{d}s'}{s'}\mathrm{Im}F_{\pi}(s')\left[\mathrm{Re}\bar{\delta}_{V}^{\mathrm{IFI}}(\lambda^{2},s') - \mathrm{Re}\delta_{V,\mathrm{IR}}^{\mathrm{IFI}}(\lambda^{2},s')\right]_{\mathrm{fin.}} \\ & - \frac{\mathrm{Im}F_{\pi}(s)}{s}\left[\lim_{s' \to s^{-}}\mathrm{Im}\bar{\delta}_{V}^{\mathrm{IFI}}(\lambda^{2},s')(s-s')\right] \\ & + \frac{1}{\pi^{2}}\int_{\Omega_{\infty}}\frac{\mathrm{d}s'}{s'}\frac{\mathrm{d}s''}{s''}\mathrm{Im}F(s')\mathrm{Im}F(s'')\mathrm{Re}\bar{\delta}_{V}^{\mathrm{IFI}}(s',s'')\,, \end{split}$$

This missing piece was spotted with the help of Fedor Ignatov and completely changes the picture (be patient)

Remark on order of limits

The discussion is valid with this order

$$\int \mathrm{d}^D q \qquad \longrightarrow \qquad \lambda o 0 \qquad \longrightarrow \qquad \varepsilon o 0 \qquad \longrightarrow \qquad \int \frac{\mathrm{d} s'}{s'}$$

If one wants to reverse the order of limits the following substitution should be applied

$$\begin{split} \bar{\delta}_{V}^{\text{FI}}(\lambda^{2},s') \to \bar{\delta}_{V}^{\text{FI}}(\lambda^{2},s'+\lambda^{2}) & F_{\pi}(s') \to F_{\pi}(s'+\lambda^{2}) \\ \\ \int \mathrm{d}^{D}q & \longrightarrow & \epsilon \to 0 & \longrightarrow & \lambda \to 0 & \longrightarrow & \int \frac{\mathrm{d}s'}{s'} \end{split}$$

All the results are valid also in IR dimensional regularisation

Imaginary Part

Most of the effort in computing the imaginary part

$$\begin{split} \mathrm{Im}\Delta_{V,\mathrm{FsQED}}^{\mathrm{IFI}} &= \mathrm{Im}\bar{\delta}_{V}^{\mathrm{IFI}}(\lambda^{2},\lambda^{2}) - \frac{2}{\pi}\mathrm{Im}\int_{4m_{\pi}^{2}}^{s}\frac{\mathrm{d}s'}{s'}\left(\mathrm{Im}F_{\pi}(s') - \mathrm{Im}F_{\pi}(s)\right)\bar{\delta}_{V}^{\mathrm{IFI}}(\lambda^{2},s') \\ &- \frac{2}{\pi}\mathrm{Im}F_{\pi}(s)\mathrm{Im}\int_{4m_{\pi}^{2}}^{s}\frac{\mathrm{d}s'}{s'}\bar{\delta}_{V}^{\mathrm{IFI}}(\lambda^{2},s') \\ &+ \frac{1}{\pi^{2}}\int_{\Omega_{s}}\frac{\mathrm{d}s'}{s'}\frac{\mathrm{d}s''}{s''}\mathrm{Im}F(s')\mathrm{Im}F(s'')\mathrm{Im}\bar{\delta}_{V}^{\mathrm{IFI}}(s',s'') \,. \end{split}$$

The IR divergence is contained in

$$\mathrm{Im}\Delta_{V,\mathrm{FsQED}}^{\mathrm{IFI}}\Big|_{\mathrm{IR}}^{\mathrm{pole-disp}} = -\frac{2}{\pi}\mathrm{Im}F_{\pi}(s)\mathrm{Im}\int_{4m_{\pi}^2}^s \frac{\mathrm{d}s'}{s'}\bar{\delta}_V^{\mathrm{IFI}}(\lambda^2,s')\,,$$

Computed using Cutkosky rules

Imaginary Part

Long story short, after some iteration we got the exact answer

$$\mathrm{Im}\Delta_{V,\mathrm{FsQED}}^{\mathrm{IFI}}\Big|_{\mathrm{IR}}^{\mathrm{pole-disp}} = -\frac{2}{\pi}\mathrm{Im}F_{\pi}(s)\bigg\{C_{1/s'}(t)\,\mathcal{I}_{1/s'}(t) + C_{s'/s'}(t)\,\mathcal{I}_{s'/s'}(t) - (t \to u)\bigg\}\,,$$

where the integrals are proportional to the Eikonal integral

$$\begin{split} \mathcal{I}_{1/s'}(x) &= \mathrm{Im} \int_{4m_{\pi}^2}^s \frac{\mathrm{d}s'}{s'} \mathcal{D}_0^{e,\pi}(x,s',s'') = \frac{1}{4s} \mathcal{L}(x) + \mathcal{I}_2(x) \,, \\ \mathcal{I}_{s'/s'}(x) &= \mathrm{Im} \int_{4m_{\pi}^2}^s \mathrm{d}s' \mathcal{D}_0^{e,\pi}(x,s',s'') = \frac{1}{4} \mathcal{L}(x) \,, \end{split}$$

In the end, the IR divergence in IFI diagrams is correctly reconstructed as

$$\begin{split} & \text{Pole-disp IR part} \\ & \delta_{V,\text{FsQED}}^{\text{IFI}} \Big|_{\text{IR}} = \left(\frac{|\text{Re}F_{\pi}(s)|^2}{|F_{\pi}(s)|^2} \, \mathcal{C}_{\text{IR}} + \frac{|\text{Im}F_{\pi}(s)|^2}{|F_{\pi}(s)|^2} \, \mathcal{C}_{\text{IR}} \right) \log \frac{\lambda^2}{s} = \mathcal{C}_{\text{IR}} \log \frac{\lambda^2}{s} \, , \end{split}$$

Numerics

Fitting F_{π}

We have two ways of fitting the FF, relying on BW functions or GS functions

Breit-Wigner Function
$${\rm BW}_v(q^2) = \frac{m_v^2}{m_v^2 - i m_v \Gamma_v - q^2}$$

- Does not have the right analycal properties
- + Has complex poles for $q^2=m_V^2-im_v\Gamma_v$

Gounaris-Sakurai Function

$$\mathrm{BW}_v^{\mathrm{GS}}(q^2) = \frac{m_v^2 + d(m_v)\,m_v\,\Gamma_v}{m_v^2 - q^2 + f(q^2) - i\,m_v\,\Gamma(q^2)}$$

- $\cdot \ \mathrm{Im}(\mathrm{BW}(q^2 < 4m_\pi^2)) = 0$
- Has almost the right analytical properties of F_π (branch cut)

$$\begin{split} F^{\rm GS}_{\pi}(q^2) &= \frac{1}{1 + c_{\rho'} + c_{\rho''}} \left[\left(1 + \sum_{v = \omega, \phi} c_v \frac{q^2}{m_v^2} \mathsf{BW}_v(q^2) \right) \mathsf{BW}^{\rm GS}_{\rho}(q^2) + c_{\rho'} \, \mathsf{BW}^{\rm GS}_{\rho'}(q^2) + c_{\rho''} \, \mathsf{BW}^{\rm GS}_{\rho''}(q^2) \right] \\ F^{\rm BW}_{\pi}(q^2) &= \frac{\mathsf{BW}_{\rho}(q^2) + c_\omega \mathsf{BW}_{\omega}(q^2) + c_\phi \mathsf{BW}_{\phi}(q^2) + c_{\rho''} \mathsf{BW}_{\rho'}(q^2) + c_{\rho''} \mathsf{BW}_{\rho''}(q^2)}{1 + c_\omega + c_\phi + c_{\rho'} + c_{\rho''}} \end{split}$$

Fitting F_{π}

The numerical results are produced using a parameterisation of F_{π} inspired by data

- CMD-2 scenario: we use only CMD-2 data
- CMD-3 scenario: we use a combination fo CMD-2+CMD-3 (as done in their works)

		CMD-2				CMD-3				
		ρ	ω	ho'	ρ	ω	ϕ	ho'	ho''	
GS	m_v	775.49	782.66	1369.8	773.98	782.22	1019.5	1456.7	1870.74	
	Γ_v	145.70	8.560	385.21	147.86	8.174	5.275	524.05	170.49	
	$ c_v $	-	0.0016	0.0887	-	0.0016	0.00059	0.097	0.037	
	φ_v	-	0.179	3.159	-	0.057	2.836	3.541	2.277	
BW	m_v	758.08	782.80	1253.8	755.71	782.07	1019.5	1338.64	1745.02	
	Γ_v	136.81	8.004	530.86	142.86	7.997	6.251	982.29	397.85	
	$ c_v $	-	0.0079	0.144	-	0.0085	0.00089	0.259	0.098	
	φ_v	-	2.014	3.021	-	1.782	5.561	3.340	0.817	

Fitting F_{π}

Form factors and cuts

Data	$\Lambda^2[{ m GeV}^2]$	F×sQED	GVMD	FsQED
CMD-3	4	\checkmark		\checkmark
CMD-2	2	\checkmark		\checkmark
BW sum 2/3	2/4	\checkmark	\checkmark	\checkmark
SND	1	\checkmark		\checkmark
Babar	9	\checkmark		\checkmark
Strong2020	9	\checkmark		\checkmark
BesIII	9	\checkmark		\checkmark
Kloe2	1	\checkmark		\checkmark
Phokhara	16	\checkmark		\checkmark
Bern	4	\checkmark		\checkmark

The form factor can be chosen from the following list

The cuts we have used are inspired by CMD-3
$$\begin{split} p^{\pm} &\equiv |^{\pm}| > 0.45E\,,\\ \vartheta_{\rm avg} &\equiv \frac{1}{2}(\pi - \vartheta^+ + \vartheta^-) \in [1, \pi - 1]\,,\\ \delta\vartheta &\equiv |\vartheta^+ + \vartheta^- - \pi| < 0.25\,,\\ \delta\phi &\equiv ||\phi^+ - \phi^-| - \pi| < 0.15 \end{split}$$

Interplay of Radiative Corrections and $F_{\pi}s$

Angular distributions

$$\tilde{K}_{\rm FF} = \left(\frac{{\rm d}\sigma_{\rm FF}}{{\rm d}\vartheta_{\rm avg}}\right) \left(\frac{{\rm d}\sigma_{\rm Factorised}}{{\rm d}\vartheta_{\rm avg}}\right)^{-1} - 1$$

Angular distributions

Pion pair invariant mass

2D distributions

The charge asymmetry: September 2024

One can conclude, that at some level, GVMD and FsQED disagree, especially in the ho peak region

The charge asymmetry: September 2024

The charge asymmetry: accepted version of BabaYaga paper

After adding the Principal Value pole, the discrepancy **is gone**. The two approaches yield to the same results (up to FF limitations)

 $\cdot\,$ As of today, we can generate $e^+e^- \rightarrow \pi^+\pi\,+-$ at NLO and NLO PS with **all masses**

Approach	NLO	NLO PS
$F_\pi \times \mathrm{SQED}$	\checkmark	\checkmark
GVMD	\checkmark	\checkmark
Dispersive	\checkmark	\checkmark

- \cdot In the next future, we will calculate $e^+e^- o \pi^+\pi^-\gamma(+n\gamma)$ Marco's Talk this afternoon
- Investigate if $\pi\pi\gamma\gamma$ vertex needs improvement for radiative return
- Extend to other hadronic channels, $i.e.~K^+K^-$

Further remarks

Fit Procedure

When fitting $F_{\pi}(s)$ as a sum of BW functions, one should also take into account the sum rule. Take 2 resonances for example

$$F_{\pi}(s) = e^{i\theta} \left[|c_1| e^{i\varphi_1} \mathsf{BW}(s; m_1, \Gamma_1) + |c_2| e^{i\varphi_2} \mathsf{BW}(s; m_2, \Gamma_2) \right] \tag{5}$$

One could rephase the function

$$\mathrm{Re}F_{\pi}(s) = \cos\theta\mathrm{Re}\left(\sum_{i}c_{i}\mathrm{BW}_{i}(s)\right) - \sin\theta\mathrm{Im}\left(\sum_{i}c_{i}\mathrm{BW}_{i}(s)\right)$$

If one imposes the sum rule, the degeneracy is removed

$$\int \frac{\mathrm{d}s'}{s'} \mathrm{Im}F_{\pi}(s') = \pi = \sin\theta \int \frac{\mathrm{d}s'}{s'} \mathrm{Re}\left(\sum_{i} c_{i} \mathrm{BW}_{i}\right) + \cos\theta \int \frac{\mathrm{d}s'}{s'} \mathrm{Im}\left(\sum_{i} c_{i} \mathrm{BW}_{i}\right)$$
(6)

This allows to a correct separation of Re-Im parts of F_π Another strategy is fitting as a normalisation

$$F_{\pi}(s;\vec{c})\mathsf{SR}[\vec{c}]^{\beta} = \left(\frac{1}{\pi}\int\frac{\mathrm{d}s'}{s'}\mathsf{Im}F_{\pi}(s')\right)^{\beta}\sum_{i}c_{i}\mathsf{BW}_{i}(s) \tag{7}$$

This constrained fit improves the agreement with GS functions

Estimation of parametric uncertainty?

 $|F_{\pi}(s)|^2$

101

 10^{0} 10^{-1}

 10^{-2}

 10^{-3}

 10^{-4}

 1σ $1 \sigma + Sum Rule$

- Fit

1.6

1.8

2.0

 \sqrt{s} [GeV]

What is the role of the sum rule in the fits? (GS sum in the example)

0.78 0.79

1.0

1.2

1.4

0.8

0.75 0.76 0.77

0.6

0.74

0.4

Is it needed by experiments? WIP in BabaYaga