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Introduction




Why do we care about the Pion FF?

jz 2
Needed an accurate (O(1073)) description of the 10°
process

ete” = mtr ()

Monte Carlo

Generators

Radiative
Corrections

The LO Hadronic Vacuum Polarisation contribution to the (g —2),, in

the dispersive approach is computed as

attlo = g/4 9 ko) (a<s>w)

" w2 Jya 8 3 o(eter = ptu)

Most of the contribution comes from the wr channel
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Scalar QED

The formal definition of the pion FF accounts for the We want to calculate the process
non-perturbative nature of ud interactions at ¢® < A2

) e (pr)er(pa) = 7" = 7 (ps) 7 (pa)
Jbm = (2uy"u — dyt'd — 5y"s) /3

et T
P2 .
y @ Ps
(7= () |jom (0)| 7 (p)) = £(p" + P)*Fr (0" — p)?) / v
Py \ \\
e Py at
With the condition F,.(0) =1
The cross section is given by
do 1 v )2
de ™ G 2 T

spins

- J¥is a conserved spinor-QED current

- J& can be computed in sQED ® form factor



Scalar QED

sQED ® QED Lagrangian

Pions have JP¢(n%) = 0~ and are charged under
U(1)em SO they can be described using scalar QED

‘CSQED = Lew + ‘CDirac + (DH¢)1D‘L¢

Point-like Form factor ™ .
w v
D,¢=0,¢—ieA,d D¢ = 0,6 —ieA,F (¢°)¢ '”NVW = —ie(p_—p)F.((p-—p)?)
7.r_/
- At LO we have Point-likex F_(¢?) v /7T+
- At NLO we have to be careful, since we integrate » L, 2 5
' = 2ie*g"E (7)) Fr(q2)
[ daF,(¢*) Myo(a) i:k\\ P
v T

(The 4-point is not necessarily the most general)



Observables

In energy scan experiments, the pion FF is extracted as?

‘Fﬂ"Z _ N1r+1r* 7Abg 0 +e— (1 +5e+e ) Eete
Ne*e* (7 +q— (1+(>‘r+7‘ )

We are interested in predictions for the following observables

Cross section Charge Asymmetry

N9<7r/2 - N9>7'r/2

0¥, _ is the LO cross section App =
Nocrsz + Nosrjo

0.+ accounts for the radiative corrections ) )
Used to determine the fiducial volume of the

detector, enters e

T

odd odd
[e% g -
4NLO 4LO 4 B F
FB —4FB + =0+ — (70,“0 )

8,+n-y App are sensitive to the insertion of F,(¢?) in loop diagrams

T

2F vy, Ignatov et al,, “Measurement of the ete™ — w7~ cross section from threshold to 1.2 GeV with the CMD-3 detector”



Factorised sQED




NLO

The fixed-order NLO cross section can be written as

NLO cross section

ONo = 0252 T 02,3 = 09 +0gy + x5

where the splitting is given by

Oy = _l}- {/di’z‘MLoF + /d‘l)z 2R (MIOMV(/\))} =00 (14 0y(V)

1
9223 = F {/ dd, M, )2 +/ d®, |M2~>32} =05(MAE) +og(AE),
A<w<AE w>AFE

- my, = A photon mass IR regulator Splitting in gauge-invariant subsets
- On-shell renormalisation of UV divergences doyo dog doy
— 1 5ISR 6FSR 6\FI .
dcosf dcosﬂ( 050+ 050 + 05v) + dcosfd

- Phase-space slicing for soft-hard bremsstrahlung



NLO in FxsQED approach

In the FxsQED approach, each diagram is multiplied by F, (¢?) evaluated at the ¢2 flowing into the propagator,
preserving the soft limit for radiative corrections

NLO differential cross-section

doyio dog ISR, sFSR | sIFl doy
=20 1 5
dcosf dcose( +6SV+6SV+6SV)+dcos0
The soft-virtual correction has to be IR safe and AE-independent
o5y =05v010 = (g + y)o0
Soft Virtual

os(A\AE) = §g(N\, AE) 00y x |F.(s)]? ;
LA = [ dPy2R (M gMU(N)) x Fi(s)F,(q?
Factorises always over the Born, ¢% = s oY) / 2% (Mo MYN)) X P () Po(a?)

To cancel the A\, AE dependence one should have in
the soft limit

Fr(s)Fr(q}) = |[Fr(s)]?



ISR and FSR

Subset Diagrams F.(¢?)
2 Fym2,
[24
2}
©
£ Fo(s)
>
Tg F.(s)
o
b
©
g Fy(s)
S




IFI

For ISR and FSR the soft limit is clear. In IFI diagrams to which vertex we assign the form factor?

s s ’
a2 // // //
— > , ,
4 4 7’
’
! ! 7’
| | 4 ) [ ) )
| | N X I (q1)Fr(go) — Fr(s)
| | \\
N \ \
—_— N N N
Q1 N N \

=0 = F(¢)— F(s), F(g3) =1
¢ —0 = F(g¢)— F(s), F(¢

However the factorised prescription is valid only in the soft limit



Parton Shower

To take into account additional photon emission, the Higher Order (HO) contribution could be resummed. One

way is the Parton Shower

PS master formula

For the ee~ — w"m~ process, the Sudakov form factor
(e, Q?) is a combination of the scalar and spinor one

IQED (, 92) = exp {—23 7iIQED / koI(k)} .
T

1+ 22 2z
P = R = 22
ED e 3 1
T9ED (¢) / dzPi(z) = —2Ine — = + 2 — =&?,
A 2 2
1—e
WD () / dzP,(z) = —2Ilne — 2 + 2¢.
0



Internal structure of the pion at NLO




Inserting F_in loops

The non-trivial task is integrating the pion FF over loop momentum if one wants to write the NLO amplitude in
terms of Passarino-Veltman A,B,C,D functions

Al xR Cpy [ AP F2(5) (0 Mo gMuAG, )

Numerical Integration Explicit form of F,
AN = ZRe[ (g;; 8, ) (af )} F.(¢%) ~ GVMD(¢?), FSQED(¢?)
- Need to sample for ¢ divergences - Do the loop integration "analytically’
* Very hard numerically - Evaluate numerically PaVe functions
- Unfeasible (?) for MC event generation - Feasible MC event generation

- Relies on a fit function to separate ReF, and ImF,.



UV Renormalisation and FSR

The insertion of F,(¢%) in the wavefunction renormalisation

0 )
024 (A) = “ o =0Z40(A) + IR-finite terms,,
p2=m?2
The virtual corrections are also modified and can be written as
5 () = 2R (5) Mo o MY (V) i =FSR, IFI
V. |Fo(s)[* | Myoof? ’ FF = GVMD, FsQED

5‘F/S?F§F - 5‘55% + IR-finite terms



IFI

The soft virtual correction should be IR-finite

IFI _ slIFl Fn
dsver = 0sv0 . IR-finite terms. ©)
e e /
7 e 7/
7 Va ;
7 e ,
& (D /
/
G B \
N\
N N N
A N N
N N N

This is true only if the IR coefficient matches the soft-photon emission

4AFE?
5ISF,I|R = C|IFF<‘ log 2




Massive Photons

What happens is that photon propagators are substituted as

1 1 1
_> =
q% — X2 (4ie) ¢2 ——m2 — X2 (+ie) %> — 5 (+ig)

Massive photons

mah =5

F_(¢?) in Loops

We can define massive photon kernels to compute the virtual corrections

2Mp o MER()
[Miool?

2'/V‘LOO'/\AIF| ( ’ )

JIFI( ) B |MLO 0| '



GVMD Approach




GVMD?

In the GVMD approach, form factor is written as a sum over additional propagators, written as Breit-Wigners

GVMD Form factor A2 =m2 —im,T,

F&(¢?) ZFBW E:ICUT_V‘IZ cz ; icv

Vertices are modified diagrammatically

7 e e
’ ’ ’
// // //
= '\/V\.MM = 'vvvv»\/ X FBW( 2)7
N \\ —_—> \\
N N q N
N
4 s
’ ’ ,
’ 4 \ s
G4 7 ,
() = ( = B A X F(g) FEV(g3).
N
A N \\

3Fedor Ignatov and Roman N. Lee. “Charge asymmetry in ete™ — 77~ process”. In: Phys. Lett. B 833 (2022),
p.137283. pol: 10.1016/j.physletb.2022.137283. arXiv: 2204.12235 [hep-ph]


https://doi.org/10.1016/j.physletb.2022.137283
https://arxiv.org/abs/2204.12235

GVMD: Virtual

The virtual FSR and ISR amplitudes can be written as

N,

MER o = /quMﬁ,ng FBW(s) Z FBY(¢?) FBY(¢%) - Preserves gauge invariance
vw=1 - Since F_(q¢?) is propagator-like =
"T standard loop techniques
v GYMD — /dD MIH nyvv(qz) Fquvu((q —P3 —P4)2)
v,w=1

Two Propagator identity

1 11 [ 1 1 ]
G —NG—A AN [gG A ¢ N

The identity can be iterated to the three propagator case with masses A%, A?, A3

Some technical details in the next slides



GVDM: FSR

In the FSR we have three propagators, we sum over all possible resonances

2RF, (5) MLOOME/S,%VMD A
|F7r b)‘ "/V‘LO,O‘2 v=1 w=1

Cy w FSR 2 2
AV GVMD(Av’ Aw) .

S omn (M) =
In the case A, # A,,, we obtain

ARG (AT, A%) = 67 (W) + AL OPR(AD) — AT OPR(AT) |

1
AZ— A2
while for A, = A, we have

9
TR

AE/S,RGVMD(Agv A}) = gxisR()\z) 6FSR(A2

VEAD),

The IR singularities have the same structure of the FxsQED case

ZZ% L GIR(2) = 55N

v=1 w=1



GVMD: IFI

In the IFl we have only two FFs

Qme(s)*MIo,o MI‘E‘,GVMD()‘) _ o ”n Cy Co IFI
= Z 3F(s) V,GVMD

™

(A7, A%)

6‘\5|,G\/MD( ) ) 2
|F7r(5’)| |MLO,O‘ v=1 w=1

With the propagator identity we obtain the simple relation
AR (A2, A2) = 872, A2) — B (A2, 42) — 87(X2, A2) + BJFI(A2, A2)
All terms are IR divergent apart from the last one. In the soft limit we have

1 {&/SR()\ZM\?)

6$‘GVMD =
omo| T Fy(s)

(F,(s) + F.(0) — 1)}

IR

in which the A2 dependence exactly cancels with %', using F,(0) = 1.




GVMD: Complete NLO

Take the cross section differential in the photon energy

a AE ‘ N V/Smax
Iy = a10(F30) + P doyo (51955‘*‘ 5% cump (£") + 08y quo (1 )) +/ dog (/)
A AE
Born Soft+Virtual
In principle one could use any form To cancel A2 dependence, we have to To ensure E-independence we use
factor in the Born, being consistent use FBW both in soft and virtual FBY, other choices would have
at each perturbative order corrections

OgW(AE) # 0y(AE)

- For consistency we use the same F, everywhere
- The BW fit has limited accuracy (TBD in next slides)

20



FSQED Approach




FsQED*

The dispersive Form factor relies on the analiticity of F(s) on all the complex plane, except for the physical

branch cut at s > 4m?2

Dispersive approach (FSQED) Comes with the sum rule

1 [ ds’
2 *® ds’ ImFE. / - N —
F(qZ):l_,’_qi/ S r(s) 77_/4 & |mFﬂ_(S) 1

™ ’ 0 =B Sl 2
T Jymz 8" 8" —q* —ie my

In loop integrals the ratio F,(¢?)/q? has to be regularised as

R 11T 4 b
q? @ —N+iee «w i 32 s’ 2 —s — N2 +ig’

— ) O

4Gilberto Colangelo et al. “Radiative corrections to the forward-backward asymmetry in ete™ — wFa=" In: JHEP

08 (2022), p. 295. poI: 10.1007/IHEPO8(2022)295. arXiv: 2207.03495 [hep-ph]


https://doi.org/10.1007/JHEP08(2022)295
https://arxiv.org/abs/2207.03495

FSQED: Pion Self Energy

d"q { (2p+9)°F7(¢%)
2mP L ((g+p)? —m2)g?
Since no particular extra divergence arises, the operations can be performed in this order (A=

azﬂ'(p27mzr70)
[ op?
The counterterm in the dispersive approach reads

2 [ds , ,
57, :{525; -2 / & ImF, (511025500 (s')

+7/ /ds” IMF,(s")ImF,(s") (6Zd\sp( " Zd'Sp( or )}

0%, (p?,m3,s")

FsQED _—
675 =

p2=m2 p2=mZ

s — s

)

0)

22



FSQED: FSR

The FSR contribution works in the same way

——FSR
(2##) 2R /d qMJLrO,OMV,FSQED<Q¢/\) F2 ()

SFSR \) = ;
VA,FSQED( |ML0,0|2 @ =X\ +ic

im2

with the two FF expressed as

——FSR
5P _90 Re /quM[o,o My sqen (4 A) 12 /°° ds’  ImF,.(s)
V,FSQED P [Miool? R R R N o
N 1 [ ds’"ds” ImE (s")ImE,(s”) s” s’
2 s’ s &' —s —ig’ +ig’ q2 —\2_g” + 4" q2 — N2y + 4e’

Qo

where massless propagators are replaced by massive photons propagators

ds’ INEFSR/ 1
5\F/ FSQED *{5FSR( ) — ;/ . s —ImE(s)0pR(s")
4am2 °

1 ds” ImE, (s")ImE,(s") - - < ,
4oy [ ar SR REIESD) s - ) |

Qoo

512R(s") is the massive-photon kernel

23



FSQED: IFI

The most difficult contribution is given by the FSQED IFI

2REF;(5)MIO,O MI&',FSQED _ REF;(S)A“E‘,FSQED
|Fr(s) [Mio o2 |[Fr(s)2

The correction can be written in terms of polar and dispersive contributions

A‘\ﬂ,FsQED :Sl&l()\zv /\2)

7l _
OV rsqep =

pole-pole
_ l/oo 4 F (s) [B51(s, A2) + 31 (A2, &)
T Jys S ™ v vt pole-disp.
1 ds’ ds” , INFF g ” . .
+ | v IMF(s")ImE(s”)oy! (s, ") disp.-disp.

The IR divergence has to be carefully isolated. We write

FSQED Virtual IFI

1
5l‘EI,FsQED = 7|F B [Rer(S)REAI‘E,FsQED -+ |me(S)|mAI\;|,FsQED]
ki

In the following we shall treat separately Re and Im

24



Real Part

The divergence in the IFI massive kernel arises in two regions of the loop integration, namely for ¢ — 0 and
q — P3 + Pyl
B = =5 Crlog
ViIRAE > 20s— s +ic’) ® s
We can add and subtract the IR divergence of the pole-pole part

ReA oep = Redl! (A2, A2)—Redll! o (A2, A2) +Red|f! |1 (A2, A2)

IR-finite
2 > ds’ 5 5 5 ,
;Re/ j Im£(s”) 5‘\9()\2,3')*”‘\7\ "\:~‘*"7"\r\ (A%, 87)
am3 IR-finite
1 ds’ ds”

—IME(s")ImF(s”)Red! (s, 5") .

2
s Q..

25



Real Part: The missing piece

- The pole-pole and disp-disp corrections are fine
- The pole-dispersive correction exhibits a singularity that has to be treated with the Principal Value

. . f(s) _ Ref(s") T | T .
llm Re/ds Ty tie P.V./( n >+§Imf(.s+)+ §Imf(.57)

/=0, s—s

The piece in red was overlooked by literature and by a previous version of this work

)\2
ReAl\E‘,FSQED =ReF,(s)Cj log .

+ [RedP (A2, A2) — RedY! o (A2, Az)]ﬁ

n.

2 °° ds’ <
- ZP.V. —ImE,(s) [Redl (A2, s") — Redl! o (A2, 8)]
T iz S ' fin.
—M [ lim ImS{E‘(AZ..s’)(.< = .5’/)]
& s/ s~
1 ds’ ds” oSl
+ﬁ A - 5 IME(s")ImE(s”)Res! (s7,s"),

This missing piece was spotted with the help of Fedor Ignatov and completely changes the picture (be patient)

26



Remark on order of limits

The discussion is valid with this order

If one wants to reverse the order of limits the following substitution should be applied

SO, 8) = SO, 8+ X2) Ey() = Fy(s' + %)

e—0 i

All the results are valid also in IR dimensional regularisation



Imaginary Part

Most of the effort in computing the imaginary part

2
ImA‘V'FSQED = Iméf (A2, \?) — Wlm/

2
4m?2

s ds’

(IME,(s))—ImF,(s)) 81 (A2, s")

S /7
- g\mFﬁ(s)Im/ 95 Sea2, o)
™ lam2 S

1 ds’ ds” 5
+ 5 [ S imE(s)ImE(s”)Imaf (s, 5) -
s Q. S 5
The IR divergence is contained in
pole-disp ds’
IMAY o = 77ImF Im/ S0, s,
IR 4771 s
Computed using Cutkosky rules
: /// ///
b 1. I
Im ! = —Disc
L 2i l
)
AN N

28



Imaginary Part

Long story short, after some iteration we got the exact answer
pole-disp 2
ImFﬂ(s){Cl/s, () Ly (1) + Cyryr (1) Lyr yr (8) — (¢ — u)} ,

™

|mAI\;I,FSQED
IR
where the integrals are proportional to the Eikonal integral
i dS/ e, ’ ”
Ty (x)=1m |, ?Do (z,5",8") = gﬁ(x) +Zy(z),
ma
S
1
7['(37)7

Ty o (x) =1m ds'Dy" (w,s,8") = 1

2
4mZ

In the end, the IR divergence in IFl diagrams is correctly reconstructed as

Pole-disp IR part
2 2 2
+ ||mF1r(3)| CIR) log )‘? _ CIR lOg )‘? :

SIF | _ [ReF,(s)[?
VIRl B T |E(s)P

29



Numerics




Fitting F,

We have two ways of fitting the FF, relying on BW functions or GS functions

Breit-Wigner Function Gounaris-Sakurai Function

< Im(BW(q? < 4m2)) =0

- Has almost the right analytical properties of F,
(branch cut)

- Does not have the right analycal properties

- Has complex poles for ¢*> = m%,— im,T',

1 7
GS(,2) — 2 GS [ 2 GS (2 GS [ 2
F2(e?) = FE— (1+U;¢cv 3 B (g )) BWS® (¢2) + ¢, BWS? (¢2) + ¢, BWSS (¢?)
PR BW,,(¢%) + ¢, BW,,(¢%) + ¢,BW,(¢) + ¢, BW . (¢2) + ¢, BW . (¢%)
™

T+e,+cy+ey+ey

30



Fitting F

The numerical results are produced using a parameterisation of F, inspired by data

- CMD-2 scenario: we use only CMD-2 data

- CMD-3 scenario: we use a combination fo CMD-2+CMD-3 (as done in their works)

CMD-2 CMD-3

P w o P w ® o o’

m, 77549 78266 13698 77398 78222 10195 14567  1870.74
w T, 14570 8560 38521 14786 8174 5.275 52405  170.49
C e, - 0.0016  0.0887 - 0.0016  0.00059  0.097 0.037
o, - 0179  3.159 - 0.057 2.836 3.541 2.277
m, 75808 78280 12538 75571 78207 10195 133864  1745.02
= I, 13681 8004 53086 14286  7.997 6.251 98229  397.85
o, - 0.0079  0.144 - 0.0085 0.00089  0.259 0.098
o, - 2014 3.021 - 1.782 5.561 3.340 0.817

31



Fitting F

CMD-2 CMD-3
5
&
10t}
10% ‘
CMD-2 data FS5(s) CMD-2 data F¥(s
—— FBW(g) { CMD-3 data  —— FBW(q)
0.1}
T 0.0} \_/N/V\/
—0.1— ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.4 0.6 0.8 1.0 1.2 0.4 0.6 0.8 1.0 1.2
Vs [GeV]

Vs [GeV]
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Form factors and cuts

The form factor can be chosen from the following list

Data A2[GeV?] FxSQED GVMD  FsQED

CMD-3 4 v v The cuts we have used are inspired by CMD-3
CMD-2 2 v v
BW sum 2/3 2/4 v v v p* = [¥| > 0.45E,
SND 1 v v 1
Babar 9 v v Vavg = g(ﬂ—w +97) e [l,m—1],
Strong2020 9 v v
BeslI| 9 v v 89 = 9+ + 9~ — 7| <0.25,
Kloe2 1 v v o - _
Phokhara 16 v v dp=|l¢T —¢~| 7] <0.15
Bern 4 v v



Interplay of Radiative Corrections and F_s

INLO — 9L0O
Kypo=—""">,
ILo

KFSR+IFI =

INLO — OISR

INLOPS — INLO

K =
) HO
L0

910

E 1000}
N
800¢
6007
400F

2007

CMD-3

— Ko 10 - Kpsp1r1

10 - Kyo

— Ko 10 - Kpspy1r1 10 - Ko

0.4 0.6 0.8 1.0

1.2 0.4

V5 [GeV]

0.6 0.8 1.0 1.2

V5 [GeV]
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Angular distributions

% dJFF dUFactorised
K =
o ( dd ) ( AUy

V5 =04GeV

)71_1

V5 =04GeV

[nb/rad ]

do
AWy

=]

50

Factorised

0.0

— LO
—— NLO GVMD
NLOPS —— FsQED
i
,0,1\%%@\ ——FKxto — Kpspomn 107 Kovwp  —— Kruqep
1.2 1.4 1.6 1.8 2.0

12 14 16 18 20
Dawg [rad]

Dawg [rad]
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Angular distributions

V5 = 0.7TGeV

V5 = 0.77GeV

1000

800

Factorised
GVMD

600 —— FsQED
0.0 /
«
— Kxro KFsRITF - Ko Kavain —— Kroep
-0l 12 14 1.6 1.8 2.0 12 14 1.6 1.8 2.0
Vg [rad] Vg [rad]

s =1.1GeV

s =1.1GeV

Factorised
GVMD
—— FsQED

o
005 ——Kyio Krspmrr 10-Kuo i
12 14 1.6 1.8 2.0 12 14 1.6 2.0
Dag [rad] Vavg [rad]
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Pion pair invariant mass

/5= 0.77GeV

V5 = 0.77GeV

E’ N LO A Factorised
S 0% — N1o GVMD
= T r
< 0} NLOPS S FsQED
g
T 100
S .
a=] s
1071
1072
10-3L
0.5F
N
0.0f
Kpsri1r1 Kno 10-Kavam —— 10-Kreqep
680 700 720 740 760 680 700 720 740 760
My [MeV] My [MeV]



2D distributions

Vs =0.5GeV

1.0
SIS

0.9
0.8

0.7

0.6

0.6 0.8

V5 = 0.77GeV

104
103
102

10!
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The charge asymmetry: September 2024

m

<= 0.0150
0.0125
0.0100

0.0075

Factorised NLO

0.0050
—— Factorised NLOPS
0.0025 GVMD NLO
GVMD NLOPS
FsQED NLO
0.0000f —— PsQED NLOPS
+  CMD-3 data
—0.0025=—57 05 06 07 08 0.9 10 1

Vs [GeV]
One can conclude, that at some level, GYMD and FsQED disagree, especially in the p peak region
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The charge asymmetry: September 2024

m
=
<

0.0150

0.0125

0.0100

0.0075

0.0050

0.0025

0.0000

—0.0025

Factorised NLO
Factorised NLOPS
GVMD NLO
GVMD NLOPS
FsQED NLO
FsQED NLOPS

CMD-3 data ‘H

0.5 0.6 0.7 0.8 0.9 1.0

_ImEL(s) [

5 lim Iméy (A2, 5")(s — &)

s/ —s~ ]
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The charge asymmetry: accepted version of BabaYaga paper

m

<3

< 0.0150
0.0125

0.0100

0.0075

A

0.0050 Factorised NLO
—— Factorised NLOPS
GVMD NLO
GVMD NLOPS
FsQED NLO
—— FsQED NLOPS
+  CMD3 data

—0.0025=—57 05 06 07 038 0.0 10 11

0.0025

0.0000

After adding the Principal Value pole, the discrepancy is gone. The two approaches yield to the same results (up
to FF limitations)



State of BabaYaga

- As of today, we can generate ete™ — wfm + — at NLO and NLO PS with all masses
Approach  NLO  NLO PS

F, xsQED v v
GVMD v v
Dispersive v v

- In the next future, we will calculate ete™ — nF ™ v(+ny) Marco’s Talk this afternoon
- Investigate if mmyy vertex needs improvement for radiative return

- Extend to other hadronic channels, i.e. K™K~
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Further remarks




Fit Procedure

When fitting F.(s) as a sum of BW functions, one should also take into account the sum rule. Take 2 resonances
for example
F_(s) = e [|e,|e®1BW(s;my, Ty) + |co|e?¥2BW(s;my, T'y)] (5)

™

One could rephase the function
ReF_ (s) = cosfRe (Z ciBWi(s)> —sinflm (Z ciBWi(s)>
If one imposes the sum rule, the degeneracy is removed

ds’ . ds’ ds’
/ 7 ImE,_(s") :77:51110/ 7 Re (ZciBWl) +(:os€)/?lm (ZCiBWi) (6)

This allows to a correct separation of Re-Im parts of F,.
Another strategy is fitting as a normalisation

F,(s;&)SR[¢])? = <%/?,Ime(s’)>B;ciBWi(s) @)

This constrained fit improves the agreement with GS functions
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Estimation of parametric uncertainty?

We need a fit to obtain

What is the role of the sum rule in the fits? (GS sum in the example)

[Fo(s)?

ReF, +ilmF,

associated uncertainty

Every fit has an

10!

100

o7

0% omm o o 0w om

10 + Sum Rule

lo

Fit

0.6

0.8

10

12

18

2.0
V5 [GeV]

Bootstrap the
prediction?

App + AATE

Is it needed by experiments?
WIP in BabaYaga
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