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● Fast integrator → No mathematica package

● Precise, but no need for 50 significant figures!

● Ideally, fast enough not to use a grid

DiffExp [1] method: write Master Integrals in differential form, evolve it variable by variable from a boundary value to 

the desired final point with the Frobenius method. Avoid singularities with analytic continuation.

We could generate a grid of solutions with tools like DiffExp or SeaSyde [2], but dimensionality of the problem is large
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What do we need?

[1] M. Hidding (2020)
[2] T. Armadillo et al (2022)
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What do we need?

What if we evolve the differential equations numerically?

C++ integrator
[1] M. Hidding (2020)
[2] T. Armadillo et al (2022)
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● Fast integrator → No mathematica package

● Precise, but no need for 50 significant figures!

● Ideally, fast enough not to use a grid
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the desired final point with the Frobenius method. Avoid singularities with analytic continuation.
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● 10 MIs,  5 orders of ε

●  O(𝜇s)  per phase-space point

● 7+ significant figures of precision
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Example



● 8 MIs,  5 orders of ε

●  O(ms)  per phase-space point

● 7+ significant figures of precision
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Example 2.0



5

The GVMD model

 Figure from F. Ignatov, R.N. Lee (2022)
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Still a 5 point integral at maximum, but we need to work 

with up to 9 kinematic variables. We choose
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ISR NLO 2ɣ* diagrams 

We have 16 possible combinations of mv, mw  times 2 

permutations of the external momenta
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29 MIs 25 MIs 21 MIs 

The topologies



● Canonical MIs obtained by studying Leading & Landau singularities in different dimensions 

● Use of FiniteFlow [3] to reconstruct the DEs with an ansatz based on the alphabet

● Letters of the alphabet predicted by combining BaikovLetters [4] and Effortless [5]
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Obtaining the DE

[3] T. Peraro (2019)
[4] X. Jiang (2024)
[5] A. Matijašić, J. Miczajka (xxxx)
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1. Get partial DE w.r.t. each kinematic variable

2. Input expression for each MI and order of epsilon in terms of letters and other MIs

3. Input values for pre-canonical MIs obtained with AMFlow at a non-singular arbitrary point

4. Input singularities and branch cuts

5. Input expressions for derivatives of letters and square roots

6. Find optimal path between origin and desired final point for each kin. var.

7. Evolve the DE variable by variable in that path:

a. Multiply the AMFlow values by the canonical factors defined in terms of the current variable

b. Solve the coupled partial DE with controlled stepper from Boost Odeint library

c. Divide out the canonical factors from the solution

8. If desired, use the final result to go to a new final point

9

Returning to the integrator…
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Branch cuts and paths

We use the standard convention from 
mathematical software: branch cuts 
parallel to the negative real axis.
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Branch cuts and paths
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A* algorithm



More analytic manipulation….

For the NN topology, more simplifications:

● No need for 21 MIs x 3 O(ε) x 2 q(5) ↔ q(3)

● Use a rotation matrix R to evaluate only the relevant functions

● By decomposing in terms of independent functions,

118 MIs → 65 Ws

This can be applied to MN and MM, but less simplification is expected
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Check for the Ws

Comparison with Collier. Results of I
1,0,1,1,1

 at finite order

*Thanks to Daniel Gerardo 
Melo Porras
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Precision for MM

Runge-Kutta Cash Karp 45

Runge-Kutta 
Dopri

Bulirsch-Stoer 

Complex mass = x
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Precision for MM

Complex mass = x, y, z Complex mass = x, y, z & 6 b.c



18

Runtime for MM

Runge-Kutta Cash Karp 45

Runge-Kutta 
Dopri

Bulirsch-Stoer 

23.9 ms

20.04 ms

27.2 ms

Complex mass = x
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Runtime for MM

Complex mass = x Complex mass = x, y, z
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Runtime for MM

Complex mass = x, y, z Complex mass = x, y, z & 6 b.c.

20.04 ms28.41 ms 23.68 ms



1. Decompose amplitude in Form Factors

2. Implement in Phokhara, also GVMD amplitude (compare time with Collier)

3. Need for quad. prec. version to check error in higher orders of ε
4. Generate small ~100 boundary values grid

5. Explore implicit methods for solving DEs, maybe exponential integrator?

6. Solving DEs numerically is a huge field, learn from them

7. NNLO → See W. T. Bobadilla’s talk

21

Next steps
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Next steps

Thanks!


