

A mule never stops – future plans for McMule –

Sara Gündogdu for the MCMULE team

Monte Carlo for MUons and other LEptons

- integrator (generator WIP) for fixed-order QED up to NNLO
- use QCD methods: FKS^ℓ subtraction with massive fermions

- challenge virtual amplitudes with $m \neq 0 \implies$ massification (photonic)
- challenge numerical instabilities \implies next-to-soft stabilisation + **O**penLoops

Monte Carlo for $\ensuremath{\text{MU}}\xspace$ on the $\ensuremath{\text{LEptons}}\xspace$

- integrator (generator WIP) for fixed-order QED up to NNLO
- use QCD methods: FKS^ℓ subtraction with massive fermions
- challenge virtual amplitudes with $m \neq 0 \implies$ massification (photonic)

$$\mathcal{A}(m) = \left(\prod_j \sqrt{Z(m)}\right) \times \mathcal{A}(m=0) + \mathcal{O}(m) \quad \text{iff} \quad m^2 \ll \text{all other scales}$$

• challenge numerical instabilities \implies next-to-soft stabilisation + **O**penLoops

process#	experiment	physics motivation	order
$e\mu \to e\mu$	MUonE	HVP to $(g-2)_{\mu}$	NNLO
$\ell N \to \ell N$	P2, Muse, Prad, QWeak,	proton radius and weak charge	NNLO(-)
$e\nu ightarrow e\nu$	DUNE	flux & $\sin^2 heta_W$	NNLO-
$e^-e^- \to e^-e^-$	Prad	normalisation	NNLO
	MOLLER,	$\sin^2 heta_W$ at low Q^2	
$e^+e^- \rightarrow e^+e^-$	any e^+e^- collider	luminosity measurement	NNLO
$ee ightarrow \gamma^*$			NNLO
$ee ightarrow \ell\ell$	CMD+SND, BES, KLOE,	<i>R</i> -ratio	NNLO+
	Belle	$ au$ properties & $\sin^2 heta_W$	
$ee ightarrow \pi\pi$	CMD+SND, BES, KLOE,	R-ratio	NLO+
$ee ightarrow \gamma\gamma$	KLOE	dark searches	NNLO-
	any e^+e^- collider	luminosity measurement	
$\mu \rightarrow \nu \bar{\nu} e$	MEG, Mu3e, Pioneer, Mu2e	ALP searches	NNLO+
	DUNE	beam-line profiling	
$\mu \rightarrow \nu \bar{\nu} eee$	Mu3e	background	NLO

Sara Gündogdu, 08.05.25 - p.4/13

process#	experiment	physics motivation	order
$e\mu \to e\mu$	MUonE	HVP to $(g-2)_{\mu}$	NNLO
$\ell N \to \ell N$	P2, Muse, Prad, QWeak,	proton radius and weak charge	NNLO(-)
$e\nu \to e\nu$	DUNE	flux & $\sin^2 heta_W$	NNLO-
$e^-e^- \to e^-e^-$	Prad	normalisation	NNLO
	MOLLER,	$\sin^2 heta_W$ at low Q^2	
$e^+e^- \rightarrow e^+e^-$	any e^+e^- collider	luminosity measurement	NNLO
$ee ightarrow \gamma^* \gamma$			NLO+
$ee ightarrow \ell \ell \gamma$	CMD+SND, BES, KLOE,	<i>R</i> -ratio	NLO+
	Belle	$ au$ properties & $\sin^2 heta_W$	
$ee ightarrow \pi \pi \gamma$	CMD+SND, BES, KLOE,	R-ratio	LO+
$ee ightarrow \gamma\gamma$	KLOE	dark searches	NNLO-
	any e^+e^- collider	luminosity measurement	
$\mu \rightarrow \nu \bar{\nu} e$	MEG, Mu3e, Pioneer, Mu2e	ALP searches	NNLO+
	DUNE	beam-line profiling	
$\mu \rightarrow \nu \bar{\nu} eee$	Mu3e	background	NLO

Sara Gündogdu, 08.05.25 - p.4/13

$ee \rightarrow \gamma \gamma^* @$ NLO

- universal framework for arbitrary currents $X \in \{\pi, {}^{12}C, p, {}^{2}H, \dots\}$
- full mass dependence
 - $ee \to XX$

		$ee \rightarrow \gamma \gamma^*$ @ NNLO	methods & challenges
$ee \rightarrow \gamma \gamma^*$ @ NLO • universal framework for arbitrary currents X $\subset \{\pi^{-12}C, \pi^{-2}H\}$	RR	**	OL ✓ NTS (?) B/BES scenario (?)
• full mass dependence $ee \rightarrow XX$	RV		OL ✓ NTS ✓
}~~~<	VV		massification ✓ [Badger et al 23] KLOE SA hard-collinear (?)
	VP	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Disperon QED [Sophie's talk]

Sara Gündogdu, 08.05.25 - p.5/13

next step [~ 2026+] :: $ee \rightarrow \gamma^* @ N^3LO \supset ee \rightarrow \gamma\gamma^* @ NNLO$ \searrow [Badger et al 23] h

[Fael et al 22]

) PSI 🕼 Universität

[Badger et al 23] - + massification + jettification

└── light-by-light, ...

RVV matrix element needs massification

 $\mathcal{M}_n(m) \xrightarrow{m \to 0} \mathcal{M}_n(0) \times Z \times Z$

$$\mathcal{M}_{n+1}^{(2)} \sim \frac{1}{E_{\gamma}^2} \frac{1}{(1 - \beta \cos \theta_{\gamma})}$$

• $(m^2 \ll \text{ all other scales})$ not valid everywhere

RVV matrix element needs massification

 $\mathcal{M}_n(m) \xrightarrow{m \to 0} \mathcal{M}_n(0) \times Z \times Z$

 E_{γ}

$$\mathcal{M}_{n+1}^{(2)} \sim rac{1}{E_{\gamma}^2} rac{1}{(1-eta\cos heta_{\gamma})}$$

- $(m^2 \ll$ all other scales) not valid everywhere
- detected photon ($ee \rightarrow \gamma \gamma^*$ @ NNLO) : region excluded by cuts : \checkmark Kloe SA scenario region included : **X**

massification

RVV matrix element needs massification

 $\mathcal{M}_n(m) \xrightarrow{m \to 0} \mathcal{M}_n(0) \times Z \times Z$

$$\mathcal{M}_{n+1}^{(2)} \sim \frac{1}{E_{\gamma}^2} \frac{1}{(1 - \beta \cos \theta_{\gamma})}$$

- $(m^2 \ll$ all other scales) not valid everywhere
- detected photon ($ee \rightarrow \gamma \gamma^*$ @ NNLO) : region excluded by cuts : \checkmark Kloe SA scenario region included : **X**
- inclusive process ($ee \rightarrow \gamma^* @ N^3LO$): next-to-soft jettification: massive J unknown at 2 loop

$$\mathcal{M}_{n+1}(m) \xrightarrow[\theta_{\gamma} \to 0]{m \to 0} \mathcal{M}_n(0) \times Z \times J$$

KLOE-SA scenario

DSI 🗰 Universität

Ô

Sara Gündogdu, 08.05.25 - p.8/13

Sara Gündogdu, 08.05.25 - p.8/13

matrix elements with real emission need ${\color{black} next-to-soft}$ stabilisation

current state :: NTS for RV \implies automatized for arbitrary process

Sara Gündogdu, 08.05.25 - p.9/13

soft function

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	rds N ³ L(Toward		sität	
VVV massification & prayers VVR from $pp \rightarrow 2j + \gamma$		challenges	$ee \rightarrow \mu\mu \; (e\mu \rightarrow e\mu \; MuonE)$	$ee \to \gamma^*$	
VVR $\langle \rangle \sim 2j + \gamma$		massification & prayers			VVV
[Badger et al 23]+massification Disperon QED, NTS, jettifica- tion	γ າ ca-	from $pp \rightarrow 2j + 2j$ [Badger et al 23]+massification Disperon QED, NTS, jettification	$\sum \sum \sum \sum $		VVR
VRR		OL, NTS			VRR
RRR		NTS			RRR

Ideas for the future

- event generation
- additional *ee* pair
- MCMULE @ higher energies :: numerical instability for real-real in $ee \rightarrow \mu\mu\gamma$ @ B/BES-like \implies collinear subtraction?
- YFS/LBK shower approximate higher orders
- electroweak
- polarisation
- . . .

MCMULE

mule-tools.gitlab.io

f.l.t.r.: S.Kollatzsch (Zurich & PSI), A.Signer (Zurich & PSI), V.Sharkovska (Zurich & Mainz), S.Gündogdu (Zurich & PSI), D.Moreno (PSI), A.Coutinho (IFIC), Y.Ulrich (Liverpool), D.Radic (Zurich & PSI), L.Naterop (Zurich & PSI), M.Rocco (Turin) not shown: F.Hagelstein (Mainz), N.Schalch (Oxford), P.Banerjee (Cosenza), M.Ronchi (Mainz), Y.Fang (ETH), P.Wahlen (ETH), R.Krolzig (UZH)

Sara Gündogdu, 08.05.25 - p.13/13