LEVERHULME TRUST

Progress on Soft Photon Resummation Implementation in Phokhara

Jérémy Paltrinieri

- Importance of hadron cross-sections measurements in g-2 determination
- Radiative corrections studies must be undertaken in order to clear up the tensions between experiments
- From radiative return experiments like KLOE, this means taking care of NNLO and all-order exponentiation effects: many challenges!
- In Phokhara, pursing NNLO accuracy on one side and approximate all order accuracy in the soft photon regime on the other side, for radiative return processes such as $e^+e^- \rightarrow \mu^+\mu^-\gamma$

- photon emission events and the emission of two real hard photons.
- Case of muons: complete NLO [arXiv:1312.3610]
- Case of pions: FxsQED for the pion treatment [Szymon Tracz PhD Thesis]
- Disclaimer: not discussing many other hadronic final states: 3π , 4π , NN, KK...

 Phokhara simulates electron-positron annihilation into hadrons (and muons) at NLO accuracy. This includes virtual and soft photon corrections to one

- Current version: Phokhara v10.0: https://looptreeduality.csic.es/phokhara/ (October 2020)
- Last update: two remaining gauge-invariant contributions: FSRNLO & TVP
- Strong2020 paper [2410.22882] and website

Roadmap for Phokhara

 $e^+e^- \rightarrow \mu^+\mu^-\gamma, \pi^+\pi^-\gamma$ @ NLO sQED for pions

CEEX formalism implemented in Phokhara, with the goal of implementing resummed $e^+e^- \rightarrow \mu^+\mu^-\gamma, \pi^+\pi^-\gamma$

valid at $\mathcal{O}(\alpha^1)_{CEEX}$ in the language of KKMC

Jérémy Paltrinieri

Roadmap for Phokhara

 $e^+e^- \rightarrow \mu^+\mu^-\gamma, \pi^+\pi^-\gamma$ @ NLO sQED for pions

CEEX formalism implemented in Phokhara, with the goal of implementing resummed $e^+e^- \rightarrow \mu^+\mu^-\gamma, \pi^+\pi^-\gamma$

valid at $\mathcal{O}(\alpha^1)_{CEEX}$ in the language of KKMC

Jérémy Paltrinieri

Roadmap for Phokhara

Treatment of pions: see Pau's talk (insertion of GVMD model in Phokhara)

 $e^+e^- \rightarrow \mu^+\mu^-\gamma, \pi^+\pi^-\gamma$ @ NLO sQED for pions

CEEX formalism implemented in Phokhara, with the goal of implementing resummed $e^+e^- \rightarrow \mu^+\mu^-\gamma, \pi^+\pi^-\gamma$

valid at $\mathcal{O}(\alpha^1)_{CEEX}$ in the language of KKMC

Jérémy Paltrinieri

Roadmap for Phokhara

$e^+e^- \rightarrow \mu^+\mu^-\gamma, \pi^+\pi^-\gamma$ @ NNLO See William's talk

Treatment of pions: see Pau's talk (insertion of GVMD model in Phokhara)

 $e^+e^- \rightarrow \mu^+\mu^-\gamma, \pi^+\pi^-\gamma$ @ NLO sQED for pions

Resummed CEEX results for $e^+e^- \rightarrow \mu^+\mu^-\gamma, \pi^+\pi^-\gamma$ Valid at $\hat{\mathcal{O}}(\alpha^2)_{CEEX}$?

CEEX formalism implemented in Phokhara, with the goal of implementing resummed $e^+e^- \rightarrow \mu^+\mu^-\gamma, \pi^+\pi^-\gamma$

valid at $\mathcal{O}(\alpha^1)_{CEEX}$ in the language of KKMC

Jérémy Paltrinieri

Roadmap for Phokhara

$e^+e^- \rightarrow \mu^+\mu^-\gamma, \pi^+\pi^-\gamma$ @ NNLO See William's talk

Treatment of pions: see Pau's talk (insertion of GVMD model in Phokhara)

 $e^+e^- \rightarrow \mu^+\mu^-\gamma, \pi^+\pi^-\gamma$ @ NLO sQED for pions

Towards CEEX in Phokhara

- Sheds another light on missing higher-order effects
- YFS formalism: resummation of soft photons effects
- 2-loop integrals are notoriously hard: approximations provide insight!

CEEX Private			⊙ Unwatch 1	• 양 Fork 0 • ☆
main 👻 🖁 H Branch 💿 0 Tags	Q Go to file	t Add file 👻	<> Code -	About
jpaltrin updated README		0dc50b2 · 1 hour ago	🕚 18 Commits	Implementation of Soft Phot Resummation in Fortran
ANALYSIS	multiple histograms		19 hours ago	🛱 Readme
NOTES	added eikonal notebook		last week	-∿- Activity
RESULTS	cleaner environment		last week	⊙ 1 watching
RUN	cleaner environment		last week	양 0 forks
SCRIPTS	organise folders a bit better		1 hour ago	Releases
MC.f	organise folders a bit better		1 hour ago	No releases published
Makefile	updated README 1 hour ago			
] README.md	updated README		1 hour ago	Packages
README			∅ :≡	No packages published Publish your first package

Differential Distributions for $e^+e^- \rightarrow \mu^+\mu^-$ within the CEEX Framework

This Fortran code computes differential distributions for the process $e^+e^- \rightarrow \mu^+\mu^-$, taking into account lepton masses. It supports calculations at Leading Order (LO) and includes optional soft photon resummation, called Coherent Exclusive Exponentiation (CEEX), which is WIP.

Packages No packages published Publish your first package Languages Python 40.4% Fortran 3 Mathematica 23.0% She Makefile 0.6%

Based on your tech stack

di Django

Star 0	•
ton	ŝ
31.4% ell 4.6%	
Configur	'e

$$\sigma^{(r)} = \frac{1}{\text{flux}(s)} \sum_{n=0}^{\infty} \int d\text{Lips}_{n+2}(p_a + p_b; p_c, p_d, k_1, \dots, k_n) \ \rho_{\text{CEEX}}^{(r)}(p_a, p_b, p_c, p_d, k_1, \dots, k_n)$$

 $ho_{ ext{CEEX}}^{(r)}(p_a,p_b,p_c,p_d,k_1,k_2,\ldots,k_n)$

$$\sum_{i,j,l,m=0}^{3} \hat{\varepsilon}_{a}^{i} \hat{\varepsilon}_{b}^{j} \sigma_{\lambda_{a}\bar{\lambda}_{a}}^{i} \sigma_{\lambda_{b}\bar{\lambda}_{b}}^{j} \mathfrak{M}$$

Jérémy Paltrinieri

Progress on CEEX in Fortran

$$_{n}) = \frac{1}{n!} e^{Y(\Omega; p_{a}, \dots, p_{d})} \bar{\Theta}(\Omega) \sum_{\sigma_{i} = \pm 1} \sum_{\lambda_{i}, \bar{\lambda}_{i} = \pm 1}$$

 $\mathfrak{N}_{n}^{(r)}\left(\begin{smallmatrix}p k_{1} k_{2} \\ \lambda \sigma_{1} \sigma_{2} \end{smallmatrix}\right) \left[\mathfrak{M}_{n}^{(r)}\left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \sigma_{2} \end{smallmatrix}\right) \cdot \left[\mathfrak{M}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \sigma_{2} \end{smallmatrix}\right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \sigma_{2} \end{smallmatrix}\right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \sigma_{2} \end{smallmatrix}\right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \sigma_{2} \end{smallmatrix}\right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \sigma_{2} \end{smallmatrix}\right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \sigma_{2} \end{smallmatrix}\right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \sigma_{2} \end{smallmatrix}\right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \sigma_{2} \end{smallmatrix}\right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \sigma_{2} \end{smallmatrix}\right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \sigma_{2} \end{smallmatrix}\right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \sigma_{2} \end{smallmatrix}\right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \sigma_{2} \end{smallmatrix}\right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \sigma_{2} \end{smallmatrix}\right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \sigma_{2} \end{smallmatrix}\right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \sigma_{2} \end{smallmatrix}\right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \sigma_{2} \end{smallmatrix}\right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \sigma_{2} \end{smallmatrix}\right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \sigma_{2} \end{smallmatrix}\right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \sigma_{2} \end{smallmatrix}\right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \sigma_{2} \end{smallmatrix}\right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \sigma_{2} \right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \sigma_{2} \right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{2} \right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{2} \right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{2} \right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{2} \right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{2} \right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{2} \right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{2} \right) \cdot \left[\mathfrak{m}_{n}^{(r)} \left(\begin{smallmatrix}p k_{1} k_{2} \\ \bar{\lambda} \sigma_{2} \right) \cdot \left[\mathfrak{m}_{n}^{(r)$

$$\sigma^{(r)} = \frac{1}{\text{flux}(s)} \sum_{n=0}^{\infty} \int d\text{Lips}_{n+2}(p_a + p_b; p_c, p_d, k_1, \dots, k_n) \rho^{(r)}_{\text{CEEX}}(p_a, p_b, p_c, p_d, k_1, \dots, k_n)$$

Multi-Photon Phase-Space Generation

 $\rho_{\text{CEEX}}^{(r)}(p_a, p_b, p_c, p_d, k_1, k_2, \dots, k_n)$

$$\sum_{i,j,l,m=0}^{3} \hat{\varepsilon}_{a}^{i} \hat{\varepsilon}_{b}^{j} \sigma_{\lambda_{a}\bar{\lambda}_{a}}^{i} \sigma_{\lambda_{b}\bar{\lambda}_{b}}^{j} \mathfrak{M}$$

Jérémy Paltrinieri

Progress on CEEX in Fortran

$$(n_i) = \frac{1}{n!} e^{Y(\Omega; p_a, \dots, p_d)} \bar{\Theta}(\Omega) \sum_{\sigma_i = \pm 1} \sum_{\lambda_i, \bar{\lambda}_i = \pm 1}$$

 $\mathfrak{N}_{n}^{(r)}\left(\begin{smallmatrix}p\,k_{1}\,k_{2}\\\lambda\sigma_{1}\,\sigma_{2}\end{smallmatrix}\cdots \begin{smallmatrix}k_{n}\\\sigma_{n}\end{smallmatrix}\right)\left[\mathfrak{M}_{n}^{(r)}\left(\begin{smallmatrix}p\,k_{1}\,k_{2}\\\bar{\lambda}\sigma_{1}\,\sigma_{2}\end{smallmatrix}\cdots \begin{smallmatrix}k_{n}\\\sigma_{n}\end{smallmatrix}\right)\right]^{\star}\sigma_{\bar{\lambda}_{c}\lambda_{c}}^{l}\sigma_{\bar{\lambda}_{d}\lambda_{d}}^{m}\hat{h}_{c}^{l}\hat{h}_{d}^{m}$

$$\sigma^{(r)} = \frac{1}{\text{flux}(s)} \sum_{n=0}^{\infty} \int d\text{Lips}_{n+2}(p_a + p_b; p_c, p_d, k_1, \dots, k_n) \rho^{(r)}_{\text{CEEX}}(p_a, p_b, p_c, p_d, k_1, \dots, k_n)$$

YFS form factor

Multi-Photon Phase-Space Generation

 $\rho_{\text{CEEX}}^{(r)}(p_a, p_b, p_c, p_d, k_1, k_2, \dots, k_n)$

$$\sum_{i,j,l,m=0}^{3} \hat{\varepsilon}_{a}^{i} \hat{\varepsilon}_{b}^{j} \sigma_{\lambda_{a}\bar{\lambda}_{a}}^{i} \sigma_{\lambda_{b}\bar{\lambda}_{b}}^{j} \mathfrak{M}$$

Jérémy Paltrinieri

Progress on CEEX in Fortran

 $\mathfrak{N}_{n}^{(r)}\left(\begin{smallmatrix}p\,k_{1}\,k_{2}\\\lambda\sigma_{1}\,\sigma_{2}\end{smallmatrix}\ldots\begin{smallmatrix}k_{n}\\\sigma_{n}\end{smallmatrix}\right)\left[\mathfrak{M}_{n}^{(r)}\left(\begin{smallmatrix}p\,k_{1}\,k_{2}\\\bar{\lambda}\sigma_{1}\,\sigma_{2}}\ldots\begin{smallmatrix}k_{n}\\\sigma_{n}\end{smallmatrix}\right)\right]^{\star}\sigma_{\bar{\lambda}_{c}\lambda_{c}}^{l}\sigma_{\bar{\lambda}_{d}\lambda_{d}}^{m}\hat{h}_{c}^{l}\hat{h}_{d}^{m}$

$$\sigma^{(r)} = \frac{1}{\mathrm{flux}(s)} \sum_{n=0}^{\infty} \int d\mathrm{Lips}_{n+2}(p_a + p_b; p_c, p_d, k_1, \dots, k_n) \rho_{\mathrm{CEEX}}^{(r)}(p_a, p_b, p_c, p_d, k_1, \dots, k_n)$$

YFS form factor

Multi-Photon Phase-Space Generation

 $\rho_{\text{CEEX}}^{(r)}(p_a, p_b, p_c, p_d, k_1, k_2, \dots, k_n)$

$$\sum_{i,j,l,m=0}^{3} \hat{\varepsilon}_{a}^{i} \hat{\varepsilon}_{b}^{j} \sigma_{\lambda_{a}\bar{\lambda}_{a}}^{i} \sigma_{\lambda_{b}\bar{\lambda}_{b}}^{j} \mathfrak{M}_{n}^{(r)} \left(\begin{smallmatrix} p k_{1} k_{2} \\ \lambda \sigma_{1} \sigma_{2} \\ \cdots \\ \sigma_{n} \end{smallmatrix} \right) \left[\mathfrak{M}_{n}^{(r)} \left(\begin{smallmatrix} p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \sigma_{2} \\ \cdots \\ \sigma_{n} \end{smallmatrix} \right) \right]^{\star} \sigma_{\bar{\lambda}_{c}\lambda_{c}}^{l} \sigma_{\bar{\lambda}_{d}\lambda_{d}}^{m} \hat{h}_{c}^{l} \hat{h}_{d}^{m}$$

Jérémy Paltrinieri

Progress on CEEX in Fortran

$$(x_n) = rac{1}{n!} e^{Y(\Omega; p_a, \dots, p_d)} \bar{\Theta}(\Omega) \sum_{\sigma_i = \pm 1} \sum_{\lambda_i, \bar{\lambda}_i = \pm 1}$$

Beta functions (IR safe Matrix Elements)

$$\sigma^{(r)} = \frac{1}{\mathrm{flux}(s)} \sum_{n=0}^{\infty} \int d\mathrm{Lips}_{n+2}(p_a + p_b; p_c, p_d, k_1, \dots, k_n) \rho_{\mathrm{CEEX}}^{(r)}(p_a, p_b, p_c, p_d, k_1, \dots, k_n)$$

YFS form factor

Multi-Photon Phase-Space Generation

 $\rho_{\text{CEEX}}^{(r)}(p_a, p_b, p_c, p_d, k_1, k_2, \dots, k_n)$

$$\sum_{i,j,l,m=0}^{3} \hat{\varepsilon}_{a}^{i} \hat{\varepsilon}_{b}^{j} \sigma_{\lambda_{a}\bar{\lambda}_{a}}^{i} \sigma_{\lambda_{b}\bar{\lambda}_{b}}^{j} \mathfrak{M}_{n}^{(r)} \left(\begin{smallmatrix} p k_{1} k_{2} \\ \lambda \sigma_{1} \sigma_{2} \\ \cdots \\ \sigma_{n} \end{smallmatrix} \right) \left[\mathfrak{M}_{n}^{(r)} \left(\begin{smallmatrix} p k_{1} k_{2} \\ \bar{\lambda} \sigma_{1} \sigma_{2} \\ \cdots \\ \sigma_{n} \end{smallmatrix} \right) \right]^{\star} \sigma_{\bar{\lambda}_{c}\lambda_{c}}^{l} \sigma_{\bar{\lambda}_{d}\lambda_{d}}^{m} \hat{h}_{c}^{l} \hat{h}_{d}^{m}$$

Jérémy Paltrinieri

Progress on CEEX in Fortran

Analysis Framework

$$\sigma_n) = \frac{1}{n!} e^{Y(\Omega; p_a, \dots, p_d)} \bar{\Theta}(\Omega) \sum_{\sigma_i = \pm 1} \sum_{\lambda_i, \bar{\lambda}_i = \pm 1} \sum_{\lambda$$

Beta functions (IR safe Matrix Elements)

Progress on CEEX in Fortran

Multi-Photon Phase-Space Generation

Module PS

Multi-photon Phase-Space event generator is necessary for resummed results. Can be cross-checked with NLO generator in Phokhara.

Jérémy Paltrinieri

Multi-Photon Phase-Space Generation

Module PS

Multi-photon Phase-Space event generator is necessary for resummed results. Can be cross-checked with NLO generator in Phokhara.

Input:

- n: integer, number of photons **Outputs**:

- momenta (modified in-place)
- weight: phase space weight (modified in-place)

Step 1: Initialise incoming momenta

- Generate initial energy and momentum
- Add positron and electron momenta
- Update weight

Step 2: If no photons

- Reconstruct final state muon-antimuon pair momenta

Step 3: If photons are emitted

Repeat until a valid event is generated:

- For each photon:

- Generate massless photon momentum - Reconstruct final state muon-antimuon pair momenta - Check kinematic validity:

- Update weight

Jérémy Paltrinieri

Progress on CEEX in Fortran

Multi-Photon Phase-Space Generation

Module PS

Multi-photon Phase-Space event generator is necessary for resummed results. Can be cross-checked with NLO generator in Phokhara.

Input:

- n: integer, number of photons **Outputs**:

- momenta (modified in-place)
- weight: phase space weight (modified in-place)

Step 1: Initialise incoming momenta

- Generate initial energy and momentum
- Add positron and electron momenta
- Update weight

Step 2: If no photons

- Reconstruct final state muon-antimuon pair momenta

Step 3: If photons are emitted

Repeat until a valid event is generated:

- For each photon:

- Generate massless photon momentum - Reconstruct final state muon-antimuon pair momenta - Check kinematic validity:

- Update weight

Jérémy Paltrinieri

Progress on CEEX in Fortran

	 	·		
£ 	рх 	ру 	pz 	
0.500000	0.00000	0.000000	0.499975	0
0.500000	0.00000	0.00000	-0.499975	0
0.500000	0.051492	0.043576	-0.484031	0
0.500000	-0.051492	-0.043576	0.484031	0
Total mome	ntum			
0.000000	0.000000	0.000000	0.000000	

0-photon event

E	px	ру	pz	 m2
0.500000 0.500000 0.278691 0.223409 0.131952 0.020522 0.047267 0.027761 0.167504	0.000000 0.000000 -0.087642 -0.027450 -0.018749 0.001769 0.023795 -0.010782 0.127600	0.000000 0.000000 0.088248 -0.008661 0.024650 -0.001243 -0.004575 -0.000331 -0.088527 -0.000550	0.499975 -0.499975 -0.225912 0.194729 -0.128266 -0.020407 0.040584 -0.025580 0.062760	0.000025 0.000025 0.011164 0.011164 -0.000000 0.000000 0.000000 -0.000000 -0.000000
0.102894 Total mome 0.000000	-0.008541 ntum 0.0000000	0.000000	-0.000000	

6-photon event

Progress on CEEX in Fortran

Jérémy Paltrinieri

YFS Form Factor

Module FormFactor

Jérémy Paltrinieri

Input:

- pl: momenta particle l
- p2: momenta particle 2

Outputs:

- YFS formfactor B(p1,p2)

Virtual IR Function

Here we present the expression for the virtual part of the YFS for any two charged massive particles.

$$2\alpha \mathcal{R}B(p_{1},p_{2}) = -Z_{i}Z_{j}\theta_{i}\theta_{j}\frac{\alpha}{\pi} \bigg[\bigg(\frac{1}{\rho}\ln\frac{\mu(1+\rho)}{m_{1}m_{2}} - 1\bigg)\ln\frac{m_{\gamma}^{2}}{m_{1}m_{2}} + \frac{\mu\rho}{s}\ln\frac{\mu(1+\rho)}{m_{1}m_{2}} + \frac{m_{1}^{2} - m_{2}^{2}}{2s}\ln\frac{m_{1}}{m_{2}} - 1 \\ + \frac{1}{\rho}\bigg(\pi^{2} - \frac{1}{2}\ln\frac{\mu(1+\rho)}{m_{1}^{2}}\ln\frac{\mu(1+\rho)}{m_{2}^{2}} - \frac{1}{2}\ln^{2}\frac{m_{1}^{2} + \mu(1+\rho)}{m_{2}^{2} + \mu(1+\rho)} - \operatorname{Li}_{2}(\zeta_{1}) - \operatorname{Li}_{2}(\zeta_{2})\bigg)\bigg],$$
(A.1)

where,

$$\mu = p_1 p_2, \quad s = 2\mu + m_1^2 + m_2^2, \quad \rho = \sqrt{1 - \left(\frac{m_1 m_2}{\mu}\right)^2}, \quad \zeta_i = \frac{2\mu\rho}{m_i^2 + \mu(1+\rho)}.$$
 (A.2)

Real IR Function

Here we present an expression for the IR function \tilde{B} which corresponds to the emission of a real photon $k \in \Omega$ from a dipole consisting of two charged massive particles p_1 and p_2 .

$$2\alpha \tilde{B}(p_1, p_2) = -Z_i Z_j \theta_i \theta_j \frac{\alpha}{\pi} \left[\left(\frac{1}{\rho} \ln \frac{\mu(1+\rho)}{m_1 m_2} - 1 \right) \ln \frac{\omega}{m_\gamma^2} + \frac{1}{2\beta_1} \ln \frac{1+\beta_1}{1-\beta_1} + \frac{1}{2\beta_2} \ln \frac{1+\beta_2}{1-\beta_2} + \mu G(p_1, p_2) \right],$$
(A.3)

logarithms and dilogarithms,

$$G(p_1, p_2) = \frac{1}{\sqrt{(Q^2 + M^2)(Q^2 + \delta^2)}} \left[\ln \frac{\sqrt{\Delta^2 + Q^2} - \Delta}{\sqrt{\Delta^2 + Q^2} + \Delta} \left[\chi_{23}^{14}(\eta_1) - \chi_{23}^{14}(\eta_0) \right] + Y(\eta_1) - Y(\eta_0) \right],$$
(A.4)

Progress on CEEX in Fortran

[2203.10948] **Sherpa YFS**

where $\beta_i = \frac{|\vec{p}_i|}{E_i}$ and μ, ρ are defined in Eq. (A.2) and ω is the momentum cut-off specifying Ω in the frame \tilde{B} is to be evaluated in. $G(p_1, p_2)$ is a complicated function that can be expressed as a combination of

YFS Form Factor

Module FormFactor

Jérémy Paltrinieri

Input:

- pl: momenta particle l
- p2: momenta particle 2

Outputs:

- YFS formfactor B(p1,p2)

Virtual IR Function

Here we present the expression for the virtual part of the YFS for any two charged massive particles.

$$2\alpha \mathcal{R}B(p_{1},p_{2}) = -Z_{i}Z_{j}\theta_{i}\theta_{j}\frac{\alpha}{\pi} \bigg[\bigg(\frac{1}{\rho}\ln\frac{\mu(1+\rho)}{m_{1}m_{2}} - 1\bigg)\ln\frac{m_{\gamma}^{2}}{m_{1}m_{2}} + \frac{\mu\rho}{s}\ln\frac{\mu(1+\rho)}{m_{1}m_{2}} + \frac{m_{1}^{2} - m_{2}^{2}}{2s}\ln\frac{m_{1}}{m_{2}} - 1 \\ + \frac{1}{\rho}\bigg(\pi^{2} - \frac{1}{2}\ln\frac{\mu(1+\rho)}{m_{1}^{2}}\ln\frac{\mu(1+\rho)}{m_{2}^{2}} - \frac{1}{2}\ln^{2}\frac{m_{1}^{2} + \mu(1+\rho)}{m_{2}^{2} + \mu(1+\rho)} - \operatorname{Li}_{2}(\zeta_{1}) - \operatorname{Li}_{2}(\zeta_{2})\bigg)\bigg],$$
(A.1)

where.

$$\mu = p_1 p_2, \quad s = 2\mu + m_1^2 + m_2^2, \quad \rho = \sqrt{1 - \left(\frac{m_1 m_2}{\mu}\right)^2}, \quad \zeta_i = \frac{2\mu\rho}{m_i^2 + \mu(1+\rho)}.$$
 (A.2)

Real IR Function

Here we present an expression for the IR function \tilde{B} which corresponds to the emission of a real photon $k \in \Omega$ from a dipole consisting of two charged massive particles p_1 and p_2 .

$$2\alpha \tilde{B}(p_1, p_2) = -Z_i Z_j \theta_i \theta_j \frac{\alpha}{\pi} \bigg[\bigg(\frac{1}{\rho} \ln \frac{\mu(1+\rho)}{m_1 m_2} - 1 \bigg) \ln \frac{\omega}{m_\gamma^2} + \frac{1}{2\beta_1} \ln \frac{1+\beta_1}{1-\beta_1} + \frac{1}{2\beta_2} \ln \frac{1+\beta_2}{1-\beta_2} + \mu G(p_1, p_2) \bigg],$$
(A.3)

logarithms and dilogarithms,

$$G(p_1, p_2) = \frac{1}{\sqrt{(Q^2 + M^2)(Q^2 + \delta^2)}} \left[\ln \frac{\sqrt{\Delta^2 + Q^2} - \Delta}{\sqrt{\Delta^2 + Q^2} + \Delta} \left[\chi_{23}^{14}(\eta_1) - \chi_{23}^{14}(\eta_0) \right] + Y(\eta_1) - Y(\eta_0) \right],$$
(A.4)

Progress on CEEX in Fortran

[2203.10948] **Sherpa YFS**

where $\beta_i = \frac{|\vec{p}_i|}{E_i}$ and μ, ρ are defined in Eq. (A.2) and ω is the momentum cut-off specifying Ω in the frame \tilde{B} is to be evaluated in. $G(p_1, p_2)$ is a complicated function that can be expressed as a combination of

See YFS.nb notebook in the NOTES folder of the git repository

ANALYSIS

Modules HISTO, VARIABLES

Jérémy Paltrinieri

Progress on CEEX in Fortran

Progress on CEEX in Fortran

ANALYSIS

Modules HISTO, VARIABLES

This module allows to **create, fill, display, and save histograms at running time** (MC event generation).

What each part does:

• init_histo:

Sets up empty histogram bins between a lower and upper limit. Each bin gets a range and starts with a value of zero.

• fill_histo:

Adds the *weight* of the event to the correct bin based on the input data. It figures out which bin the data point belongs to and increases that bin's count.

• finalize_histo:

Finishes the histogram by adjusting all the values so they're properly scaled.

• print_histo:

Simply prints out the histogram — showing the lower and upper edge of each bin and the value it holds.

 export_histogram_to_csv: Saves the histogram to a CSV file generators.

Jérémy Paltrinieri

Saves the histogram to a CSV file that can be compared to other MC

Progress on CEEX in Fortran

ANALYSIS

Modules HISTO, VARIABLES

This module allows to **create**, **fill**, **display**, **and save histograms at** running time (MC event generation).

What each part does:

• init histo:

Sets up empty histogram bins between a lower and upper limit. Each bin gets a range and starts with a value of zero.

• fill_histo:

Adds the *weight* of the event to the correct bin based on the input data. It figures out which bin the data point belongs to and increases that bin's count.

• finalize_histo:

Finishes the histogram by adjusting all the values so they're properly scaled.

• print_histo:

Simply prints out the histogram — showing the lower and upper edge of each bin and the value it holds.

• export_histogram_to_csv: generators.

Jérémy Paltrinieri

Saves the histogram to a CSV file that can be compared to other MC

Low Up Va 0.000000 0.200000 0.00000 0.200000 0.400000 0.00000 0.400000 0.600000 0.00000 0.600000 0.800000 0.00000 0.800000 1.000000 0.43349	Finalized Histogram				
0.0000000.2000000.000000.2000000.4000000.000000.4000000.6000000.000000.6000000.8000000.000000.8000001.0000000.000001.0000001.2000000.43349	Value				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D000E+00 D000E+00 D000E+00 D000E+00 D000E+00 D000E+00 D000E+00 D000E+00 D000E+00				

 $m_{\mu\mu}^{2}$ invariant mass of LO events

Validation of Fixed-Order Modules

As is Phokhara, everything can be run in parallel, and of course for LO events the generation and integration is very fast.

Jérémy Paltrinieri

Validation of Fixed-Order Modules

As is Phokhara, everything can be run in parallel, and of course for LO events the generation and integration is very fast.

```
[jpaltrinieri@kappa CEEX]$ ./MC 1 10000000
RUNNING FORTRAN CEEX PROGRAM
Seed set to:
                1
         1000000
NbEvents:
PRINTING RESULTS
Monte Carlo Integral Result (pb):
                         86788.666725620918
Analytical Result Massive (pb):
                        86788.525413961281
Analytical Result Massless (pb):
                         86854.463232265436
Ratio = 1.0000016282297570
PROGRAM COMPLETE
```

Jérémy Paltrinieri

generator)

Fortran modules in Phokhara

$e^+e^- \rightarrow \mu^+\mu^-\gamma, \pi^+\pi^-\gamma$ @ NNLO See William's talk

CEEX formalism implemented in Phokhara, with the goal of implementing resummed $e^+e^- \rightarrow \mu^+\mu^-\gamma, \pi^+\pi^-\gamma$

valid at $\mathcal{O}(\alpha^1)_{CEEX}$ in the language of KKMC

Jérémy Paltrinieri

Fortran modules in Phokhara

$e^+e^- \rightarrow \mu^+\mu^-\gamma, \pi^+\pi^-\gamma$ @ NNLO See William's talk

CEEX formalism implemented in Phokhara, with the goal of implementing resummed $e^+e^- \rightarrow \mu^+\mu^-\gamma, \pi^+\pi^-\gamma$

valid at $\mathcal{O}(\alpha^1)_{CEEX}$ in the language of KKMC

Jérémy Paltrinieri

All modules implemented for the CEEX resummation framework can be added to the Phokhara framework itself. There will be a switch between the fixed-order and the resummed calculation

Progress on CEEX in Phokhara

Summary

- Framework in Fortran established
- Fixed-Order Modules working
- Debugging multi-photon Modules

Jérémy Paltrinieri

Progress on CEEX in Phokhara

Summary

- Framework in Fortran established
- Fixed-Order Modules working
- Debugging multi-photon Modules -----

What's next?

- Validation of KKMC-like exponentiation
- Incorporation in Phokhara -
- -----
- GVMD@NLO for Pions, but no plans for GVMD@NNLO

Jérémy Paltrinieri

Improving the beta functions, rewrite the procedure in dim-reg